Linear Regression
Linear Regression with Shrinkage



Introduction

= Regression means predicting a continuous (usually
scalar) output y from a vector of continuous Inputs

(features) x.

= Example: Predicting vehicle fuel efficiency (mpg)
from 8 attributes:

y X
cyls  disp hp weight
18.0| 8 307.0 130.00 3504
26,0 | 4 O97.00 46.00 1835
335 | 4 98.00 83.00 2075




Linear Regression

M
The linear regression model: f(X)=w,+> w,X,

j=1

The w are unknown parameters and X can come from
different sources such as:

\\

Inputs
|

Transformation of inputs (Log, Square root, etc...) |
|

Basis expansions




Linear Regression

Typically we have a set of training data (X, ¥;)...(X,, ¥,)
from which to estimate the parameters w.

Each X =(X,,.-,X,, ) is a vector of measurements for
ith case.

or

[/h(xi) :{ho(xi ),---,h,v, (Xi )} a basis expansion of X

AN

y(X) = f(X;W) =w, + in h. (X) = wh(x)

(defineh,(x) =1



Basis Functions

= There are many basis functions we can use e.g.
= Polynomial j-1
y h; (X) = X

. . . (X_/‘j )2
* Radial basis functions h, (x) =exp -

25°

= Sigmoidal hj (X) = O{X_ﬂjj
S

= Splines, Fourier, Wavelets, etc



Linear Regression Estimation

= Minimize the residual error — prediction loss In
terms of mean squared error on n training
samples.
1 RY:
Jn(W) :EZ(yi - f(XnW)) empirical squared loss

2
18 M {
W) ==y =D wx, | =(Xw—y) (Xw -y)
N =1
Xll . XlM
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Z =1 S Z
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Linear Regression Solution

= By setting the derivatives of (Xw —y) (Xw —y)
to zero, we get the solution (as we did for MSE):

W= (XX) "Xty

The solution is a linear function of the outputs .



Statistical view of linear regression

= |n a statistical regression model we model both
the function and noise

Observed output = function + noise
y(x)=f(Xxw)+e
wheree.g. ¢ ~ N(0,0%)

= Whatever we cannot capture with our chosen
family of functions will be interpreted as noise

L
+*._* 4




Statistical view of linear regression

= f(X;W) is trying to capture the mean of the
observations Y given the input X:

E[y|[X]=E[f(X;wW)+¢&]|X]=Tf(XW)

= where E[ Y| X] is the conditional expectation of y

given X, evaluated according to the model (not
according to the underlying distribution of X)




Statistical view of linear regression

= According to our statistical model
y(X)= f(xW)+¢, £ ~N(0,o°)

the outputs Yy given X are normally distributed with
mean f (X;w) and variance o2

p(Y | %, W,02) = L }
J_

(we model the uncertainty in the predictions, not
just the mean)



Maximum likelihood estimation

= Given observations D = {(x,, ¥,),....(X,, ¥, ) jwe find
the parameters W that maximize the likelihood of
the outputs:

L(w,0°) = HP(Y.IX w, o)

:L/%)nex - 2(172 g(yk - f(xk:W))z}

= Maximize log-likelihood

logL(w, %) = Iog( J;—G] —(Zi ; 2(yk - f(xk:w))zj

minimize




Maximum likelihood estimation

= Thus
Wi, e _argmlnz (y = f(x;w))

= But the empirical squared loss Is

3,0 == (v~ £ (x: W)

=1

Least-squares Linear Regression is MLE for
Gaussian noise !!!




Linear Regression (is it “good”?)

= Simple model
= Straightforward solution

BUT
o MLS is not a good estimator for prediction error

o The matrix X"™X could be ill conditioned
>Inputs are correlated
>Input dimension is large
>Training set is small




Linear Regression - Example

In this example the output is generated by the
model (where ¢ Is a small white Gaussian noise):

y=08x + 02X, +¢

Three training sets with different correlations
between the two inputs were randomly chosen,
and the linear regression solution was applied.



Linear Regression — Example

And the results are...

RSS=0.29 RSS=0.204 RSS=0.47
w=0.82, 0.209 w=0.42, 0.56 w=30.36, -29.21
1; el 3
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X1 X1 X1
X,,X, uncorrelated X1,X; correlated X1,X; Strongly
correlated

Strong correlation can cause the coefficients
to be very large, and they will cancel each
other to achieve a good RSS.



Linear Regression

What can be
done?



Shrinkage methods

= Ridge Regression

= Lasso

= PCR (Principal Components Regression)
= PLS (Partial Least Squares)




Shrinkage methods

Before we proceed.:

= Since the following methods are not invariant under input
scale, we will assume the input is standardized (mean O,
variance 1):

Xj X% =X >gj<—ﬁ

O

= The offset W, is always estimated as W, = (Z yi)IN
and we will work with centered y (meaning y'é Y-W)



Ridge Regression

= Ridge regression shrinks the regression coefficients by
Imposing a penalty on their size ( also called weight decay)

= |n ridge regression, we add a quadratic penalty on the

weights: \ " 2
a0 -3 v -S| + 1wz
i=1 j=1 j=1

where A 2 0 Is a tuning parameter that controls the amount of
shrinkage.

= The size constraint prevents the phenomenon of wildly large
coefficients that cancel each other from occurring.



Ridge Regression Solution

= Ridge regression in matrix form:
J(W) = (y— Xw) (y— Xw)+ Aw'w
= The solution is
W% = (XX +A1,) XYy W = (XX Xty

= The solution adds a positive constant to the
diagonal of X"X before inversion. This makes the
problem non singular even if X does not have full
column rank.

= For orthogonal inputs the ridge estimates are the
scaled version of least squares estimates:

N

Wridgezj/\;‘VLS 037/31



Ridge Regression (insights)

The matrix X can be represented by it's SVD:
X =UDV'

* Uis a N*M matrix, it's columns span the column space of X
* Disa M*M diagonal matrix of singular values

* Vis a M*M matrix, it's columns span the row space of X

Lets see how this method looks in the Principal
Components coordinates of X



Ridge Regression (insights)

X'= XV
Xw=(XV VW)= X'w

The least squares solution is given by:

W =VTW* =V (vDUTUDV' ] 'VDU Ty =Dy
The Ridge Regression is similarly given by:
W% =V TV % =T (VDUTUDV + A1 | 'VDU Ty =
=(D?+ 1) 'DUTy = (D?+ A1 ) DAW" Diagonal




Ridge Regression (insights)

d12 Aals
d*+4 |

In the PCA axes, the ridge coefficients are just scaled LS coefficients!

~aridge
W =

The coefficients that correspond to smaller input variance directions are
scaled down more.




Ridge Regression

In the following simulations, quantities are plotted versus
the quantity

M d?

df (1)= )
) ;d.2+/1

J

This monotonic decreasing function is the effective
degrees of freedom of the ridge regression fit.



Ridge Regression

Simulation results: 4 dimensions (w=1,2,3,4)

No correlation Strong correlation
3 Ridge Regression . Ridge Regression
5 - 5
3: — 3: —
WZ; e W2§ S ey
1: B 1 ——
0 ——— 0 — :
O 05 1 15 2 25 3 35 0 1 2 3 4
Effective Dimension Effective Dimension
e 6
5 — 5
4 4
n 9))
23 23
2 - 2
1 = 1
- ol
05 1 15 2 25 3 35 05 1 15 2 25 3 35 4

Effective Dimension Effective Dimension



Ridge regression iIs MAP with Gaussian
prior

J(w) =—logP(D |w)P(w)

=—|09{1£[N(yi |Wt>§,<72)N(W|0,TZ)}

1 1
— XwW)' (VY = XW) + — W'W+ const
o (y ) (Y ) o

This Is the same objective function that ridge
solves, using A=0°/7’

Ridge: J(w) =(y— Xw) (y— Xw)+ Aw'w



L. asso

Lasso is a shrinkage method like ridge, with a subtle but
Important difference. It is defined by

WP — argmin%i(yi - i >quj) }

B i=1
M
subject t )" |w;| <t
Ei

There Is a similarity to the ridge regression problem: the

L, ridge regression penalty is replaced by the L, lasso
penalty.

The L, penalty makes the solution non-linear in y and

requires a quadratic programming algorithm to compute
it.



L. asso

V\AIIS

M
If t is chosen to be larger then t;: t>t,=>
j=1

then the lasso estimation is identical to the least squares. On
the other hand, for say t=t,/2, the least squares coefficients
are shrunk by about 50% on average.

For convenience we will plot the simulation results versus

shrinkage factor s:
t

\;\\,ls

S

1
tO

i
=1



L. asso

Simulation results:

NoO correlation
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L2 vs L1 penalties

Contours of the LS error function

In Lasso the constraint region has corners;
when the solution hits a corner the
corresponding coefficients becomes 0 (when
M>2 more than one).



Problem:

Figure 1 plots linear regression results on the basis of only thi@alats. We used
various types of regularization to obtain the plots (see below) bubgbised about
which plot corresponds to which regularization method. Please asslgpleato one

(and only one) of the following regularization method

a)
=15
//
04
% 05 15
X

TIE.:I'::P'# — Bxp — 80 4+ A0 where A =1 @

'

Eﬁillﬁ:yt — Bxy — )% + A8 where A = 10

a

S (e —Ar — 0,12 + A(B2 4+ A2) where A = 1

=1

S (W — B3 — 6a1® + A(67 4 62) where A = 10



Consider a regression problem where the two dimensional input points x = [z, z5]" are
constrained to lie within the unit square: z; € [-1,1], i = 1,2. The training and test input
points x are sampled uniformly at random within the unit square. The target outputs y
are governed by the following model

T L [
Yy~ N (ﬁrg — 10xy25 + T;rf + by — 3, 1)
In other words, the outputs are normally distributed with mean given by
E . ‘
2315 — 10229 + T 4 Sy — 3

and variance 1.

We learn to predict y given x using linear regression models with 1st through 10th order
polvnomial features. The models are nested in the sense that the higher order models will
mclude all the lower order features. The estimation criterion is the mean squared error.

We first train a 1st, 2nd, 8th, and 10th order model using n = 20 training points, and then
test the predictions on a large number of independently sampled points.



Y ~ N[ri’;r.‘ﬁ — 10z29 + T;rf + by — 3, 1)

Select all the appropriate models for each column.

Lowest test error

Lowest training error Highest training error (tvpically)
Ist order X
2nd order X
&th order X
10th order X

Briefly explain vour selection in the last column, 1.e., the model vou would expect to

have the lowest test error:



Y ~ N[ﬁ’;rg — 10z29 + T;rf + by — 3, 1)

Select all the appropriate models for each column.

Lowest test error

Lowest training error Highest training error (tvpicallyv)
Ist order X
2nd order X
Sth order X
10th order X

Briefly explain vour selection in the last column, 1.e.., the model vou would expect to

have the lowest test error:

The 10th order regression model would seriously overfit when presented only with
n = 20 training points. The second order model on the other hand might find
some useful structure in the data based only on 20 points. The true model is also
dominated by the second order terms. Since |zy| < 1 and |z5| < 1 any higher order
terms without large coefficients are vanishingly small.




