Linear Regression
 Linear Regression with Shrinkage

Introduction

- Regression means predicting a continuous (usually scalar) output y from a vector of continuous inputs (features) x.
- Example: Predicting vehicle fuel efficiency (mpg) from 8 attributes:

y		x			
	cyls	disp	hp	weight	\ldots
18.0	8	307.0	130.00	3504	\ldots
26.0	4	97.00	46.00	1835	\ldots
33.5	4	98.00	83.00	2075	\ldots
\ldots					

Linear Regression

- Instances: $\left\langle\mathbf{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}}\right\rangle$
- Learn: Mapping from x to $y(\mathbf{x})$
- Given, basis functions, $h(x)=\left\{h_{0}(x), \ldots, h_{M}(x)\right\}$, (define $h_{0}(x)=1$)
- Find coefficients $w=\left\{w_{0}, \ldots, w_{M}\right\}$
$y(x) \approx f(x ; w)=w_{0}+\sum_{j=1}^{M} w_{j} h_{j}(x)=w^{t} h(x)$
data
assumes the functional mapping is linear in its M parameters w

Basis Functions

- There are many basis functions we can use eg
- Polynomial

$$
h_{j}(x)=x^{j-1}
$$

- Radial basis functions $h_{j}(x)=\exp \left(-\frac{\left(x-\mu_{j}\right)^{2}}{2 s^{2}}\right)$
- Sigmoidal $h_{j}(x)=\sigma\left(\frac{x-\mu_{j}}{s}\right)$
- Splines, Fourier, Wavelets, etc

Linear Regression Estimation

- Minimize the residual error - prediction loss in terms of mean squared error on n training samples.

$$
\begin{aligned}
& J_{n}(w)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i} ; w\right)\right)^{2} \text { empirical squared loss } \\
& J_{n}(w)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sum_{j} w_{j} h_{j}\left(x_{i}\right)\right)^{2}=(\mathrm{Hw}-\mathrm{y})^{t}(\mathrm{Hw}-\mathrm{y})
\end{aligned}
$$

Linear Regression Solution

- By setting the derivatives of $(\mathrm{Hw}-\mathrm{y})^{t}(\mathrm{Hw}-\mathrm{y})$ to zero, we get the solution (as we did for MSE):

$$
\hat{w}=\left(\mathrm{H}^{\mathrm{t}} \mathrm{H}\right)^{-1} \mathrm{H}^{\mathrm{t}} \mathrm{y}=\mathrm{A}^{-1} \mathrm{~b}
$$

The solution is a linear function of the outputs y .

Statistical view of linear regression

- In a statistical regression model we model both the function and noise

Observed output = function + noise

$$
y(x)=f(x ; w)+\varepsilon
$$

where, e.g., $\varepsilon \sim N\left(0, \sigma^{2}\right)$

- Whatever we cannot capture with our chosen family of functions will be interpreted as noise

Statistical view of linear regression

- $f(x ; w)$ is trying to capture the mean of the observations y given the input x :

$$
E[y \mid x]=E[f(x ; w)+\varepsilon \mid x]=f(x ; w)
$$

- where $E[y \mid x]$ is the conditional expectation of y given x, evaluated according to the model (not according to the underlying distribution P)

Statistical view of linear regression

- According to our statistical model

$$
y(x)=f(x ; w)+\varepsilon, \varepsilon \sim N\left(0, \sigma^{2}\right)
$$

the outputs y given x are normally distributed with mean $f(x ; w)$ and variance σ^{2} :

$$
p\left(y \mid x, w, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{1}{2 \sigma^{2}}(y-f(x ; w))^{2}\right]
$$

(we model the uncertainty in the predictions, not just the mean)

Maximum likelihood estimation

- Given observations $D=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ we find the parameters w that maximize the likelihood of the outputs:

$$
\begin{aligned}
& L\left(w, \sigma^{2}\right)=\prod_{i=1}^{n} p\left(y_{i} \mid x_{i}, w, \sigma^{2}\right) \\
& =\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)^{n} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{k}-f\left(x_{k} ; w\right)\right)^{2}\right\}
\end{aligned}
$$

- Maximize log-likelihood

$$
\log L\left(w, \sigma^{2}\right)=\log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)^{n}-\left(\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{k}-f\left(x_{k} ; w\right)\right)^{2}\right)
$$

minimize

Maximum likelihood estimation

- Thus

$$
w_{M L E}=\underset{w}{\arg \min } \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i} ; w\right)\right)^{2}
$$

- But the empirical squared loss is

$$
J_{n}(w)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i} ; w\right)\right)^{2}
$$

Least-squares Linear Regression is MLE for Gaussian noise !!!

Pseudo Inverse

$$
\hat{w}=\left(\mathrm{H}^{\mathrm{t}} \mathrm{H}\right)^{-1} \mathrm{H}^{\mathrm{t}} \mathrm{y}=\mathrm{A}^{-1} \mathrm{~b}
$$

- $\left(\mathrm{H}^{t} \mathrm{H}\right)^{-1}$ is called the pseudo-inverse of H (since H will not usually be square).
- The predictions on the training data are

$$
\hat{y}=\mathrm{H}^{\mathrm{t}} \hat{w}=\mathrm{H}^{\mathrm{t}}\left(H^{t} H\right)^{-1} H^{t} y \equiv S y
$$

- where S is called the "hat" matrix. This computes an orthogonal projection of y into the space spanned by the columns of H

Geometric interpretation of linear regression with two input points

Numerical issues in computing A^{-1}

- Recall that H is an $M \times n$ matrix.
- If $n<M$ or if some of the columns (features) are colinear, then A is not full rank (so $\operatorname{det}(\mathrm{A})=0)$
- Even if A is singular, $\hat{y}=\mathrm{H}^{\mathrm{t}} \hat{w}$ is still the projection of y onto the column space of H
- there is just more than one way to express that projection in terms of the columns of H (the model is unidentifiable).
- How do we compute A^{-1} if it is not of full rank?
- Use SVD
- Use regularization
- A is $m \times n$, ie m equations and n unknowns.
- If $m>n$, the system is over-determined. SVD will find the least squares solution. If there are degenerate columns in A (due to colinearity), you should set small σ_{j} 's to 0 before inverting.
- If $m<n$, then there is an $n-m$ dimensional family of solutions. SVD will set $n-m \sigma_{j}$'s to 0 . (If there are degeneracies in A, you should set small σ_{j} 's to 0 .)
- In both cases, pinv will do the right thing.

Linear regression with regularization

- If there are correlated features, their coefficients might become poorly determine and exhibit high variance.
- A large positive coefficient on one variable can be canceled by a similarly large negative coefficient on its correlated cousin.
- Solutions:
- Select a subset of strong inputs - subset selection
- Add a regularization term to control weights.
- Methods using Derived Input Directions

Ridge Regression

- Ridge regression shrinks the regression coefficients by imposing a penalty on their size (also called weight decay)
- In ridge regression, we add a quadratic penalty on the weights:

$$
J(w)=\sum_{i=1}^{N}\left(y_{i}-w_{0}-\sum_{j=1}^{M} x_{i j} w_{j}\right)^{2}+\lambda \sum_{j=1}^{M} w_{j}^{2}
$$

where $\lambda \geq 0$ is a tuning parameter that controls the amount of shrinkage.

- This is equivalent to

$$
\hat{w}^{\text {ridge }}=\underset{w}{\arg \min } \sum_{i=1}^{N}\left(y_{i}-w_{0}-\sum_{j=1}^{M} x_{i j} w_{j}\right)^{2} \text { subject to } \sum_{j=1}^{M} w_{j}^{2} \leq s
$$

where s is related to λ

Standardizing

- In ridge regression, we add a quadratic penalty to all the weights except the offset w_{0}

$$
J(w)=\sum_{i=1}^{N}\left(y_{i}-w_{0}-\sum_{j=1}^{M} x_{i j} w_{j}\right)^{2}+\lambda \sum_{j=1}^{M} w_{j}^{2}
$$

- We do not penalize the bias term w_{0}, since we want a shift in input to shift the output by the same amount.
- We can estimate the offset w_{0} by $\bar{y}=\left(\sum_{i} y_{i}\right) / N$
- The remaining coefficients are estimated using ridge regression without w_{0}, using the centered data $x_{i j}-\bar{x}_{j}$
- Now the input matrix X (centered) has M (not $M+1$) columns.
- Since ridge is not invariant to scaling of inputs, we usually also standardize the inputs, i.e., we use

$$
z_{i j}=\frac{x_{i j}-\bar{x}_{j}}{\sigma_{j}}
$$

Ridge Regression Solution

- Ridge regression in matrix form:

$$
J(w)=(y-Z w)^{t}(y-Z w)+\lambda w^{t} w
$$

where $Z_{i j}=\left(X_{i j}-\bar{X}_{i j}\right)$ is the centered matrix

- The solution is

$$
\hat{w}^{L S}=\left(\mathrm{X}^{\mathrm{t}} \mathrm{X}\right)^{-1} \mathrm{X}^{\mathrm{t}} y
$$

$$
\hat{w}^{\text {ridge }}=\left(Z^{t} Z+\lambda I_{M}\right)^{-1} Z^{t} y
$$

- The problem is non singular even if $Z^{t} Z$ is not full rank.
- Still linear in y.
- For orthogonal inputs the ridge estimates are the scaled version of least squares estimates:

$$
\hat{w}^{\text {ridge }}=\gamma \hat{w}^{L S} \quad 0 \leq \gamma \leq 1
$$

SVD and LS

- Assume X is centered. Let the SVD be $X=U D V^{t}$, where
- U is nxM orthogonal matrix with its columns spanning the column space of X
- V is Mxn orthogonal matrix with its columns spanning the row space of X
- D is MxM diagonal matrix with diagonal entries $d_{1} \geq d_{2} \geq \ldots d_{M} \geq 0 \quad$ called the singular values of X .
- It is easy to show (do it!) that the predictions on the training set are

$$
\hat{y}=X \hat{w}^{L S}=X\left(X^{t} X\right)^{-1} X^{t} y=U U^{t} y
$$

Ridge and SVD

- The ridge solutions are

$$
\begin{aligned}
& X \hat{w}^{\text {ridge }}=X\left(X^{t} X+\lambda I\right)^{-1} X^{t} y \\
& =U D(D+\lambda I)^{-1} D U^{t} y=\sum_{j=1}^{M} u_{j} \frac{d_{j}^{2}}{d_{j}^{2}+\lambda^{2}} u_{j}^{t} y
\end{aligned}
$$

where u_{j} are the columns of U .

- Note $\lambda \geq 0, d_{j}^{2} /\left(d_{j}^{2}+\lambda\right) \leq 1$.
- Like linear regression, ridge computes the coordinates of y with respect to the orthonormal basis U . It then shrinks these coordinates by the factor of $d_{j}^{2} /\left(d_{j}^{2}+\lambda\right)$
- Thus the greater shrinkage is applied to basis vectors with smaller d_{j}^{2}. What does small d_{j}^{2} mean?

PCA and Ridge

- If $X=U D V^{t}$, , then the Eigen decomposition of the sample covariance matrix is

$$
X^{t} X=V D^{2} V
$$

- The eigenvectors v_{j} are the principle components directions of X. The first principle component

$$
z_{1}=X v_{1}=u_{1} d_{1}
$$

has the largest variance

$$
\operatorname{Var}\left(z_{1}\right)=\operatorname{Var}\left(X v_{1}\right)=d_{1}^{2} / n
$$

- Hence small singular values d_{j} correspond to directions in the column spaces of X having small variance, and ridge shrinks these directions the most.

PCA and Ridge

- It is easier to determine the gradient of the plane in the long direction than the short.
- Ridge protects against potentially high variance of gradient estimates in the short direction.

Figure 3.1: Linear least squares fitting with $X \in \mathbb{R}^{2}$.
We seek the linear function of X that minimizes the sum of squared residuals from Y.

Ridge regression is MAP with Gaussian prior

$$
\begin{aligned}
& J(w)=-\log P(D \mid w) P(w) \\
& =-\log \left[\prod_{i=1}^{n} N\left(y_{i} \mid w^{t} x_{i}, \sigma^{2}\right) N\left(w \mid 0, \tau^{2}\right)\right] \\
& =\frac{1}{2 \sigma^{2}}(y-X w)^{t}(y-X w)+\frac{1}{2 \tau^{2}} w^{t} w+\text { const }
\end{aligned}
$$

This is the same objective function that ridge solves, using $\lambda=\sigma^{2} / \tau^{2}$

Ridge: $J(w)=(y-X w)^{t}(y-X w)+\lambda w^{t} w$

The Lasso (L1-Penalty)

- Lasso (least absolute shrinkage and selection operator) uses an $L 1$ penalty on the weights

$$
J(w)=\sum_{i=1}^{N}\left(y_{i}-w_{0}-\sum_{j=1}^{M} x_{i j} w_{j}\right)^{2}+\lambda \sum_{j=1}^{M}\left|w_{j}\right|
$$

- This is equivalent to

$$
\hat{w}^{\text {ridge }}=\underset{w}{\arg \min } \sum_{i=1}^{N}\left(y_{i}-w_{0}-\sum_{j=1}^{M} x_{i j} w_{j}\right)^{2} \text { subject to } \sum_{j=1}^{M}\left|w_{j}\right| \leq t
$$

where t is related to λ

- This encourages sparcity, i.e., some weights go exactly to 0.
- It is like soft feature selection.
- However, we must now use quadratic programming (or iterative methods).

L2 vs L1 penalties

In Lasso the constraint region has corners;
when the solution hits a corner the corresponding coefficients becomes 0 (when M>2 more than one).

Lasso is MAP with Laplace prior

- Consider a double-sided exponential prior

$$
P(w)=\prod_{i=1}^{M} \operatorname{Laplace}\left(w_{i} \mid \alpha\right)=\prod_{i=1}^{M} \frac{\alpha}{2} \exp \left(-\alpha\left|w_{i}\right|\right)=\left(\frac{\alpha}{2}\right)^{M} \exp \left(-\alpha|w|_{1}\right)
$$

- Then the MAP estimate minimizes

$$
\begin{aligned}
& J(w)=-\log \left[\prod_{i=1}^{n} N\left(y_{i} \mid w^{t} x_{i}, \sigma^{2}\right) \text { Laplace }(w \mid \alpha)\right] \\
& =\frac{1}{2 \sigma^{2}}(y-X w)^{t}(y-X w)+\alpha \sum_{i=1}^{M}\left|w_{i}\right|+\text { const }
\end{aligned}
$$

- This is the same objective function that lasso solves, using $\quad \lambda=2 \sigma^{2} \alpha$

Examples

- See examples of regression at http://en.wikipedia.org/wiki/Linear_regression

