
Linear Regression
Linear Regression with Shrinkage



Introduction
� Regression means predicting a continuous (usually 

scalar) output y from a vector of continuous inputs 
(features) x.

� Example: Predicting vehicle fuel efficiency (mpg) 
from 8 attributes:



Linear Regression

� Instances: <xj, yj>
� Learn: Mapping from x to y(x)

� Given, basis functions,                                

� Find coefficients
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Basis Functions

� There are many basis functions we can use eg
� Polynomial 

� Radial basis functions 

� Sigmoidal

� Splines, Fourier, Wavelets, etc
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Linear Regression Estimation

� Minimize the residual error – prediction loss in 
terms of mean squared error on n training 
samples.
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Linear Regression Solution

� By setting the derivatives of  

to zero, we get the solution (as we did for MSE):
( ) ( )yHwyHw −− t

( ) bAyHHHˆ 1t1t −−
==w

















== HHA where t

MxM matrix of basis 
functions
















== yHb t

Mx1 vector

The solution is a linear function of the outputs y.



Statistical view of linear regression

� In a statistical regression model we model both 
the function and noise

Observed output = function + noise

� Whatever we cannot capture with our chosen 
family of functions will be interpreted as noise
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Statistical view of linear regression

� f(x;w) is trying to capture the mean of the 
observations y given the input x:

� where E[ y| x] is the conditional expectation of y
given x, evaluated according to the model (not 
according to the underlying distribution P)
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Statistical view of linear regression

� According to our statistical model

the outputs y given x are normally distributed with 
mean f (x;w) and variance σ2:

(we model the uncertainty in the predictions, not 
just the mean)
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Maximum likelihood estimation

� Given observations                                   we find 
the parameters w that maximize the likelihood of 
the outputs:

� Maximize log-likelihood
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� Thus

� But the empirical squared loss is

Maximum likelihood estimation
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Least-squares Linear Regression is MLE for 
Gaussian noise !!!



Pseudo Inverse

� is called the pseudo-inverse of H (since H
will not usually be square).

� The predictions on the training data are

� where S is called the “hat” matrix. This computes 
an orthogonal projection of y into the space 
spanned by the columns of H
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Geometric interpretation of linear 
regression with two input points



Numerical issues in computing 
� Recall that H is an M x n matrix.
� If n < M or if some of the columns (features) are 

colinear, then A is not full rank (so det(A) = 0)
� Even if A is singular,             is still the projection 

of y onto the column space of H
� there is just more than one way to express that 

projection in terms of the columns of H (the model is 
unidentifiable).

� How do we compute       if it is not of full rank?
� Use SVD
� Use regularization
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Linear regression with regularization

� If there are correlated features, their 
coefficients might become poorly determine 
and exhibit high variance.

� A large positive coefficient on one variable 
can be canceled by a similarly large 
negative coefficient on its correlated cousin.

� Solutions: 
� Select a subset of strong inputs – subset 

selection
� Add a regularization term to control weights.
� Methods using Derived Input Directions



Ridge Regression
� Ridge regression shrinks the regression coefficients by 

imposing a penalty on their size ( also called weight decay)
� In ridge regression, we add a quadratic penalty on the 

weights:

where λ ≥ 0 is a tuning parameter that controls the amount of 
shrinkage.

� This is equivalent to

where s is related to λ
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Standardizing
� In ridge regression, we add a quadratic penalty to all the 

weights except the offset 

� We do not penalize the bias term     , since we want a shift 
in input to shift the output by the same amount.
� We can estimate the offset         by

� The remaining coefficients are estimated using  ridge regression
without      , using the centered data 

� Now the input matrix X (centered) has M (not M+1) columns.                            

� Since ridge is not invariant to scaling of inputs, we usually 
also standardize the inputs, i.e., we use 
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Ridge Regression Solution
� Ridge regression in matrix form:

where                         is the centered matrix 
� The solution is 

� The problem is non singular even if          is not 
full rank.

� Still linear in y.
� For orthogonal inputs the ridge estimates are the 

scaled version of least squares estimates: 
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SVD and LS

� Assume X is centered. Let the SVD be X = UDVt, 
where
� U is nxM orthogonal matrix with its columns spanning 

the column space of X
� V is Mxn orthogonal matrix with its columns spanning 

the row space of X
� D is MxM diagonal matrix with diagonal entries

called the singular values of X. 

� It is easy to show (do it!) that the predictions on 
the training set are
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Ridge and SVD
� The ridge solutions are

where uj are the columns of U.

� Note                                
� Like linear regression, ridge computes the 

coordinates of y with respect to the orthonormal
basis U. It then shrinks these coordinates by the 
factor of                     

� Thus the greater shrinkage is applied to basis 
vectors with smaller    . What does small     mean?
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PCA and Ridge
� If X = UDVt, , then the Eigen decomposition of the 

sample covariance matrix is

� The eigenvectors    are the principle components 
directions of X. The first principle component

has the largest variance

� Hence small singular values dj correspond to 
directions in the column spaces of X having small 
variance, and ridge shrinks these directions the 
most.
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PCA and Ridge

� It is easier to determine the gradient of the plane 
in the long direction than the short.

� Ridge protects against potentially high variance of 
gradient estimates in the short direction.



Ridge regression is MAP with Gaussian 
prior

This is the same objective function that ridge 
solves, using

Ridge:
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The Lasso (L1-Penalty)
� Lasso (least absolute shrinkage and selection operator) 

uses an L1 penalty on the weights

� This is equivalent to

where t is related to λ
� This encourages sparcity, i.e., some weights go exactly to 

0.
� It is like soft feature selection.
� However, we must now use quadratic programming (or 

iterative methods).
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L2 vs L1 penalties
Contours of the LS error function

L1 L2
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In Lasso the constraint region has corners; 
when the solution hits a corner the 
corresponding coefficients becomes 0 (when 
M>2 more than one).



Lasso is MAP with Laplace prior
� Consider a double-sided exponential prior

� Then the MAP estimate minimizes

� This is the same objective function that lasso 
solves, using
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Examples

� See examples of regression at 
http://en.wikipedia.org/wiki/Linear_regression


