Linear Regression
Linear Regression with Shrinkage



Introduction

= Regression means predicting a continuous (usually
scalar) output y from a vector of continuous inputs

(features) Xx.

= Example: Predicting vehicle fuel efficiency (mpg)
from 8 attributes:

y X
cyls  disp hp weight
18.0| 8 307.0 130.00 3504
26,0 4 97.00 46.00 1835

335 4 98.00 83.00 2075




Linear Regression

g * 4
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" Instances: <x;, y;>

= Learn: Mapping from X to y(x)

= Given, basis functions, h(x)={h,(x),...,h, (X)},
(defineh,(x) =1)

= Find coefficients w={w,,...,w,, }

y(X) ~ f(x;w) =w, + iwj h, (X) = w'h(x)

data
assumes the functional mapping

IS linear in its M parameters w



Basis Functions

= There are many basis functions we can use eg
= Polynomial j—1
y h; (X) = X

_ . . (X_/‘j )2
* Radial basis functions h, (X) =exg —

25°

= Sigmoidal hj (X) = O{X_ﬂjj
S

= Splines, Fourier, Wavelets, etc



Linear Regression Estimation

= Minimize the residual error — prediction loss In
terms of mean squared error on n training

samples. |
Jn(W) — _Z(yi — f (X| ! W))2 empirical squared loss
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Linear Regression Solution

= By setting the derivatives of (Hw —y) (Hw —y)
to zero, we get the solution (as we did for MSE):

W=(HH) Hy =A"b

The solution is a linear function of the outputs .

whereA = H'H = b=H'y =

MxM matrix of basis Mx1 vector

functions



Statistical view of linear regression

= |n a statistical regression model we model both
the function and noise

Observed output = function + noise
y(X)=f(X;w)+¢&
whereg.g., e ~ N(0,0°)

= Whatever we cannot capture with our chosen
family of functions will be interpreted as noise

1‘+ t-i-
Rk




Statistical view of linear regression

= f(X;W) is trying to capture the mean of the
observations Yy given the input X:

E[y[X]=E[f(X;wW)+¢&]|X]=T(XW)

= where E[ y| X] is the conditional expectation of y

given X, evaluated according to the model (not
according to the underlying distribution P)



Statistical view of linear regression

= According to our statistical model
y(X)= f(xW)+¢, e ~N(0,0c°)

the outputs Yy given X are normally distributed with
mean f (x;w) and variance 02'

p(Y | X, W, %) = J—
2no
(we model the uncertainty in the predictions, not
just the mean)




Maximum likelihood estimation

= Given observations D = {(x,, V,),....(X,, ¥,) jwe find
the parameters W that maximize the likelihood of
the outputs:

L(w,0%) = HD(Y.IX w, o)

:[\/ﬁjnex - 2(172 Z(yk - f(xk:W))z}

= Maximize log-likelihood

logL(w, o) = Iog( J;—G] —(Zi ; 2(yk - f(xk:w))zj

minimize




Maximum likelihood estimation

= Thus
W, e _argmlnz (y — f(x;w))

= But the empirical squared loss is

3,0 =2 (- %W

=1

Least-squares Linear Regression is MLE for
Gaussian noise !!!




Pseudo Inverse

W=(HH) Hy =A"b

- (HtH)_lis called the pseudo-inverse of H (since H
will not usually be square).

= The predictions on the training data are
V=HW=H'(H'H)'H'y=S

= where S is called the “hat” matrix. This computes
an orthogonal projection of y into the space
spanned by the columns of H



Geometric interpretation of linear
regression with two input points




Numerical issues in computing A™

= Recall that His an M X n matrix.

= If n< M or if some of the columns (features) are
colinear, then A is not full rank (so det(A) = 0)

= Even if A is singular, ¥ = H'Wis still the projection
of y onto the column space of H

= there Is just more than one way to express that
projection in terms of the columns of H (the model is

unidentifiable).

= How do we compute A™if it is not of full rank?

= Use SVD
= Use regularization



a2

SVD FOR NON SQUARE MATRICES

e A is m % n, ie m equations and n unknowns.

o lf m > n, the system is over-determined. SVD will find the least
squares solution. If there are degenerate columns in A (due to col-
inearity ), you should set small oj's to 0 before inverting.

o If m < n, then there is an n — m dimensional family of solutions.
SVD will set n —m o;'s to 0. (If there are degeneracies in A, you
should set small o;'s to 0.)

¢ In both cases, pinv will do the right thing.



Linear regression with regularization

= |f there are correlated features, their
coefficients might become poorly determine
and exhibit high variance.

= A large positive coefficient on one variable
can be canceled by a similarly large
negative coefficient on its correlated cousin.

= Solutions:

= Select a subset of strong inputs — subset
selection

= Add a regularization term to control weights.
= Methods using Derived Input Directions



Ridge Regression

= Ridge regression shrinks the regression coefficients by
Imposing a penalty on their size ( also called weight decay)

= |n ridge regression, we add a quadratic penalty on the

weights: \ v 2
J(W) — Z(yi — W _injwjj +ZZWJ'2
i=1 j=1 j=1

where A = 0 is a tuning parameter that controls the amount of
shrinkage.

= This Is equivalent to

2
| N M M
W = argminZ[yi W, — ) xjwjj subject to) W’ <s
wo g j=1

j=1

where s Is related to A



Standardizing

= |n ridge regression, we add a quadratic penalty to all the

weights except the offset W,
M

J(W) :ZKyi —WO—ZX”WJ-) +4 WJ2
i=1 =1 J

j=1
= We do not penalize the bias term W,, since we want a shift

In input to shift the output by the same amount.
= We can estimate the offset W, by Y= (Z y.)/' N

= The remaining coefficients are estimated using ridge regression
without Wy, using the centered data X; — X

= Now the input matrix X (centered) has M (not M+1) columns.

= Since ridge is not invariant to scaling of inputs, we usually
also standardize the inputs, I.e., we use

X — X

o

Z; =



Ridge Regression Solution

= Ridge regression in matrix form:
IJ(W) = (y—2w) (y - 2Zw)+ Aw'w

where Zz, =(X; —X;) is the centered matrix
= The solution Is
WS = (XX Xty

W' =(z'z+ )2y

= The problem is non singular even if Z'Z is not
full rank.

= Still linear in .

= For orthogonal inputs the ridge estimates are the
scaled version of least squares estimates:

e

Wridgezj/\;‘vLS OS]/S].




SVD and LS

= Assume X Is centered. Let the SVD be X=UDW,

where

= U is nxM orthogonal matrix with its columns spanning
the column space of X

= V Iis Mxn orthogonal matrix with its columns spanning
the row space of X

= D is MxM diagonal matrix with diagonal entries
d>d,>..d >0 called the singular values of X.

= |t is easy to show (do it!) that the predictions on
the training set are

v=XW" = X(X'X)"X'y=UU'y



Ridge and SVD

= The ridge solutions are
X W' = X(X'X + A1) X'y

M d?
=UD(D+41)"DU'y=> u, ﬁujy
= Oy

where U are the columns of U.
= Note 4>0,d}/(dj+2)<1

= Like linear regression, ridge computes the
coordinates of y with respect to the orthonormal
basis U. It then shrinks these coordinates by the

factor of d’/(d?+2)

= Thus the greater shrinkage Is applied to basis
vectors with smallerd?. What does small d? mean?



PCA and Ridge

= [f X=UDV,, , then the Eigen decomposition of the
sample covariance matrix is

X'X =VD¥
= The eigenvectors V;are the principle components

directions of X. The first principle component
Z, =XV, = uldl

has the largest variance
Var(z) =Var(Xv,)=d>/n

= Hence small singular values d, correspond to
directions in the column spaces of X having small
variance, and ridge shrinks these directions the

MOost.



PCA and Ridge

= |tis easier to determine the gradient of the plane
In the long direction than the short.

= Ridge protects against potentially high variance of
gradient estimates Iin the short direction.

———— -

Figure 3.1: Linear least squares fitting with X £ IR?.

We seek the binear function of X that minimizes the
swin: of squored residuads from Y. Xy



Ridge regression is MAP with Gaussian
prior

J(w) =—logP(D |w)P(w)

=—|09{1_£[N(yi |Wt>§,02)N(W|0,T2)}

1 1
— XW)' (V= XW) + — W'W+ const
g (y ) (Y ) o

This is the same objective function that ridge
solves, using A=o°/7"

Ridge: J(W)=(y— Xw) (y— Xw)+ Aw'w



The Lasso (L1-Penalty)

= Lasso (least absolute shrinkage and selection operator)
uses an L1 penalty on the weights

N M 2 M
J(W):Z(yi—wo—ijwjj +/12‘Wj‘
i—1 =1 =1
This is equivalent to )
W = argminZN:(yi — W, —i xjwj) subject toi‘wj‘ <t
wo g =1 =1

where t is related to A

= This encourages sparcity, i.e., some weights go exactly to
0.

= |tis like soft feature selection.

= However, we must now use quadratic programming (or
iterative methods).



L2 vs L1 penalties

Contours of the LS error function

In Lasso the constraint region has corners;
when the solution hits a corner the
corresponding coefficients becomes 0 (when
M>2 more than one).



Lasso is MAP with Laplace prior

- Con3|der a double-sided exponentlalwpnor

M

P(w) = HLapIaceéw la) = ; < expl alw) = (%) expalw,)

= Then the MAP estimate minimizes
J(w) =— Iog{H N(y, |W'x,o%)Laplacgw] a)}
=1

B 20°°

= This is the same objective function that lasso
solves, using 4=20°c



Examples

= See examples of regression at
http://en.wikipedia.org/wiki/Linear _regression



