Nonparametric Density Estimation Intro Parzen Windows

Non-Parametric Methods

- Neither probability distribution nor discriminant function is known

a lot is
known
"easier"

- Happens quite often
- All we have is labeled data

- Estimate the probability distribution from the labeled data

NonParametric Techniques: Introduction

- In previous lectures we assumed that either 1. someone gives us the density $\boldsymbol{p}\left(\boldsymbol{x} / \boldsymbol{c}_{\boldsymbol{j}}\right)$
- In pattern recognition applications this never happens

2. someone gives us $\boldsymbol{p}\left(\boldsymbol{x} \mid \theta_{c j}\right)$

- Does happen sometimes, but
- we are likely to suspect whether the given $\boldsymbol{p}(\boldsymbol{x} \mid \boldsymbol{\theta})$ models the data well
- Most parametric densities are unimodal (have a single local maximum), whereas many practical problems involve multi-modal densities

NonParametric Techniques: Introduction

- Nonparametric procedures can be used with arbitrary distributions and without any assumption about the forms of the underlying densities
- There are two types of nonparametric methods:
- Parzen windows
- Estimate likelihood $\boldsymbol{p}\left(\boldsymbol{x} / \boldsymbol{c}_{\boldsymbol{j}}\right)$
- Nearest Neighbors
- Bypass likelihood and go directly to posterior estimation $P\left(c_{j} \mid x\right)$

NonParametric Techniques: Introduction

- Nonparametric techniques attempt to estimate the underlying density functions from the training data
- Idea: the more data in a region, the larger is the density function

$$
\operatorname{Pr}[X \in \mathfrak{R}]=\int_{\Re} f(x) d x
$$

salmon length \boldsymbol{x}

NonParametric Techniques: Introduction

$$
\operatorname{Pr}[X \in \mathfrak{R}]=\int_{\mathfrak{K}_{-}} f(x) d x
$$

- How can we approximate $\operatorname{Pr}\left[\boldsymbol{X} \in \Re_{1}\right]$ and $\operatorname{Pr}\left[\boldsymbol{X} \in \mathfrak{R}_{2}\right]$?
- $\operatorname{Pr}\left[X \in \Re_{1}\right] \approx \frac{6}{20}$ and $\operatorname{Pr}\left[X \in \Re_{2}\right] \approx \frac{6}{20}$
- Should the density curves above \mathcal{R}_{1} and \mathcal{R}_{2} be equally high?
- No, since R_{1} is smaller than R_{2}

$$
\operatorname{Pr}\left[X \in \mathfrak{R}_{1}\right]=\int_{\mathcal{R}_{1} .} f(x) d X \approx \int_{\mathscr{R}_{2}} f(x) d x=\operatorname{Pr}\left[X \in \mathfrak{R}_{2}\right]
$$

- To get density, normalize by region size

salmon length \boldsymbol{x}

NonParametric Techniques: Introduction

- Assuming $f(x)$ is basically flat inside R

$$
\frac{\text { \# of samples in } \Re}{\text { total \# of samples }} \approx \operatorname{Pr}[X \in \mathfrak{R}]=\int_{\Re} f(y) d y \approx f(x) * \operatorname{Volume}(\Re)
$$

- Thus, density at a point \boldsymbol{x} inside \mathbb{R} can be approximated

$$
f(x) \approx \frac{\text { \# of samples in } \Re}{\text { total \# of samples }} \frac{1}{\operatorname{Volume}(\Re)}
$$

- Now let's derive this formula more formally

Binomial Random Variable

- Let us flip a coin \boldsymbol{n} times (each one is called "trial")
- Probability of head ρ, probability of tail is $1-\rho$
- Binomial random variable \boldsymbol{K} counts the number of heads in \boldsymbol{n} trials

$$
\begin{aligned}
& P(K=k)=\binom{n}{\boldsymbol{k}} \rho^{\boldsymbol{k}}(1-\rho)^{n-k} \\
& \text { where } \quad\binom{\boldsymbol{n}}{\boldsymbol{k}}=\frac{\boldsymbol{n}!}{\boldsymbol{k}!(\boldsymbol{n}-\boldsymbol{k})!}
\end{aligned}
$$

- Mean is $\quad E(K)=\boldsymbol{n} \rho$
- Variance is $\operatorname{var}(K)=\boldsymbol{n} \rho(\mathbf{1}-\rho)$

Density Estimation: Basic Issues

- From the definition of a density function, probability ρ that a vector \boldsymbol{x} will fall in region \mathbb{R} is:

$$
\rho=\operatorname{Pr}[x \in \mathfrak{R}]=\int_{\mathfrak{R}} p\left(x^{\prime}\right) d x^{\prime}
$$

- Suppose we have samples $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$ drawn from the distribution $\boldsymbol{p}(\boldsymbol{x})$. The probability that \boldsymbol{k} points fall in \mathcal{R} is then given by binomial distribution:

$$
\operatorname{Pr}[K=k]=\binom{n}{\boldsymbol{k}} \rho^{k}(1-\rho)^{n-k}
$$

- Suppose that \boldsymbol{k} points fall in \mathcal{R} we can use MLE to estimate the value of ρ. The likelihood function is

$$
p\left(x_{1}, \ldots, x_{n} \mid \rho\right)=\binom{\boldsymbol{n}}{\boldsymbol{k}} \rho^{k}(1-\rho)^{n-k}
$$

Density Estimation: Basic Issues

$$
p\left(x_{1}, \ldots, x_{n} \mid \rho\right)=\binom{\boldsymbol{n}}{\boldsymbol{k}} \rho^{k}(1-\rho)^{n-k}
$$

- This likelihood function is maximized at $\rho=\frac{\boldsymbol{k}}{\boldsymbol{n}}$
- Thus the MLE is $\hat{\rho}=\frac{k}{\boldsymbol{n}}$
- Assume that $\boldsymbol{p}(\boldsymbol{x})$ is continuous and that the region \mathbb{R} is so small that $\boldsymbol{p}(\boldsymbol{x})$ is approximately constant in \mathcal{R}

$$
\int_{\Re} p\left(x^{\prime}\right) d x^{\prime} \cong p(x) V
$$

- \boldsymbol{x} is in \mathcal{R} and \boldsymbol{V} is the volume of \mathcal{R}

- Recall from the previous slide: $\rho=\int_{\Re} p\left(x^{\prime}\right) d x^{\prime}$
- Thus $\boldsymbol{p}(\boldsymbol{x})$ can be approximated: $\boldsymbol{p}(\boldsymbol{x}) \approx \frac{\boldsymbol{k} / \boldsymbol{n}}{\boldsymbol{V}}$

Density Estimation: Basic Issues

- This is exactly what we had before:

$$
p(x) \approx \frac{k / n}{V} \quad \begin{aligned}
& x \text { is inside some region } \mathcal{R} \\
& k=\text { number of samples inside } R
\end{aligned}
$$

n=total number of samples
$V=$ volume of R

- Our estimate will always be the average of true density over R

$$
p(x) \approx \frac{k / n}{V}=\frac{\hat{\rho}}{V} \approx \frac{\int_{\mathfrak{R}} p\left(x^{\prime}\right) d x^{\prime}}{V}
$$

- Ideally, $\boldsymbol{p}(\boldsymbol{x})$ should be constant inside \mathcal{R}

Density Estimation: Histogram

- If regions \mathcal{R}_{i} 's do not overlap, we have a histogram

Density Estimation: Accuracy

- How accurate is density approximation $p(x) \approx \frac{k / n}{v}$?
- We have made two approximations

1. $\hat{\rho}=\frac{k}{n}$

- as n increases, this estimate becomes more accurate

- As we shrink \mathbb{R} we have to make sure it contains samples, otherwise our estimated $\boldsymbol{p}(\boldsymbol{x})=0$ for all \boldsymbol{x} in \mathbb{R}
- Thus in theory, if we have an unlimited number of samples, we get convergence as we simultaneously increase the number of samples n, and shrink region \mathcal{R}, but not too much so that \mathcal{R} still contains a lot of samples

Density Estimation: Accuracy

$$
p(x) \approx \frac{k / n}{v}
$$

- In practice, the number of samples is always fixed
- Thus the only available option to increase the accuracy is by decreasing the size of $\mathcal{R}(\boldsymbol{V}$ gets smaller)
- If \boldsymbol{V} is too small, $\boldsymbol{p}(\boldsymbol{x})=0$ for most \mathbf{x}, because most regions will have no samples
- Thus have to find a compromise for V
- not too small so that it has enough samples
- but also not too large so that $\boldsymbol{p}(\boldsymbol{x})$ is approximately constant inside V

Density Estimation: Two Approaches

$$
p(x) \approx \frac{k / n}{V}
$$

1. Parzen Windows:

- Choose a fixed value for volume V and determine the corresponding \boldsymbol{k} from the data

2. k-Nearest Neighbors

- Choose a fixed value for \boldsymbol{k} and determine the corresponding volume \boldsymbol{V} from the data

- Under appropriate conditions and as number of samples goes to infinity, both methods can be shown to converge to the true $\boldsymbol{p}(\boldsymbol{x})$

Parzen Windows

$$
p(x) \approx \frac{k / n}{V} \quad \begin{aligned}
& x \text { is inside some region } \mathcal{R} \\
& k=\text { number of samples inside } R \\
& n=\text { total number of samples } \\
& V=\text { volume of } \mathcal{R}
\end{aligned}
$$

- To estimate the density at point \boldsymbol{x}, simply center the region \mathbb{R} at \boldsymbol{x}, count the number of samples in \mathbb{R}, and substitute everything in our formula

$$
p(x) \approx \frac{3 / 6}{10}
$$

Parzen Windows

- In Parzen-window approach to estimate densities we fix the size and shape of region \mathbb{R}
- Let us assume that the region R is a d-dimensional hypercube with side length \boldsymbol{h} thus it's volume is $\boldsymbol{h}^{\boldsymbol{d}}$

Parzen Windows

- Let $u=\left[u_{1}, u_{2}, \ldots, u_{d}\right]$ and define a window function

$$
\varphi(u)= \begin{cases}1 & \left|u_{j}\right| \leq \frac{1}{2} \quad j=1, \ldots, d \\ 0 & \text { otherwise }\end{cases}
$$

2 dimensions

Parzen Windows

- Recall we have d-dimensional samples $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$. Let $x_{i j}$ be the jth coordinate of sample x_{i}. Then

$$
\left.\begin{array}{rl}
\varphi\left(\frac{x-x_{i}}{\boldsymbol{h}}\right) & =\left\{\begin{array}{ll}
1 & \left|x_{j}-x_{i j}\right| \leq \frac{\boldsymbol{h}}{2} \\
0 & \text { otherwise }
\end{array} \quad j=1, \ldots, d\right. \\
u & \begin{array}{c}
u_{j} \left\lvert\, \leq \frac{1}{2}\right.
\end{array} \\
& \begin{array}{c}
R \\
\bullet \boldsymbol{x}_{i}
\end{array}
\end{array}\right\} \boldsymbol{h} \quad .
$$

Parzen Windows

- How do we count the total number of sample points $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$ which are inside the hypercube with side h and centered at \boldsymbol{x} ?

$$
\boldsymbol{k}=\sum_{i=1}^{i=n} \varphi\left(\frac{\boldsymbol{x}-\boldsymbol{x}_{i}}{\boldsymbol{h}}\right)
$$

- Recall $p(x) \approx \frac{k / \boldsymbol{n}}{\boldsymbol{v}} \quad, V=\boldsymbol{h}^{\boldsymbol{d}}$
- Thus we get the desired analytical expression for the estimate of density $\boldsymbol{p}_{\varphi}(\boldsymbol{x})$

$$
\boldsymbol{p}_{\varphi}(x)=\frac{\sum_{i=1}^{i=n} \varphi\left(\frac{x-x_{i}}{h}\right) / n}{h^{d}}=\frac{1}{n} \sum_{i=1}^{i=n} \frac{1}{h^{d}} \varphi\left(\frac{x-x_{i}}{h}\right)
$$

Parzen Windows

$$
p_{\varphi}(x)=\frac{1}{n} \sum_{i=1}^{i=n} \frac{1}{h^{d}} \varphi\left(\frac{x-x_{i}}{h}\right)
$$

- Let's make sure $\boldsymbol{p}_{\varphi}(\boldsymbol{x})$ is in fact a density
- $\boldsymbol{p}_{\varphi}(x) \geq 0 \quad \forall x$
- $\int p_{\varphi}(x) d x=\int \frac{1}{n} \sum_{i=1}^{i=n} \frac{1}{h^{d}} \varphi\left(\frac{x-x_{i}}{h}\right) d x=\frac{1}{h^{d} n} \sum_{i=1}^{i=n} \int_{\varphi\left(\frac{x-x_{i}}{h}\right) d x}$

$$
=\frac{1}{n} \frac{1}{h^{d}} \sum_{i=1}^{i=n} h^{d}=1
$$

Parzen Windows: Example in 1D

$$
p_{\varphi}(x)=\frac{1}{n} \sum_{i=1}^{i=n} \frac{1}{h^{d}} \varphi\left(\frac{x-x_{i}}{h}\right)
$$

- Suppose we have 7 samples $D=\{2,3,4,8,10,11,12\}$

- Let window width $h=3$, estimate density at $\mathrm{x}=1$

$$
\begin{array}{r}
p_{\varphi}(1)=\frac{1}{7} \sum_{i=1}^{i=7} \frac{1}{3} \varphi\left(\frac{1-x_{i}}{3}\right)=\frac{1}{21}\left[\varphi\left(\frac{1-2}{3}\right)+\varphi\left(\frac{1-3}{3}\right)+\varphi\left(\frac{1-4}{3}\right)+\ldots+\varphi\left(\frac{1-12}{3}\right)\right] \\
\left|-\frac{1}{3}\right| \leq 1 / 2\left|-\frac{2}{3}\right|>1 / 2 \quad|-1|>1 / 2\left|-\frac{11}{3}\right|>1 / 2
\end{array}
$$

$$
p_{\varphi}(1)=\frac{1}{7} \sum_{i=1}^{i=7} \frac{1}{3} \varphi\left(\frac{1-x_{i}}{3}\right)=\frac{1}{21}[1+0+0+\ldots+0]=\frac{1}{21}
$$

Parzen Windows: Sum of Functions

- Now let's look at our density estimate $\boldsymbol{p}_{\varphi}(\boldsymbol{x})$ again:

$$
\begin{aligned}
& p_{\varphi}(x)=\frac{1}{n} \sum_{i=1}^{i=n} \frac{1}{h^{d}} \varphi\left(\frac{x-x_{i}}{h}\right)=\sum_{i=1}^{i=n} \frac{1}{n h^{d}} \underbrace{1} \begin{array}{l}
1 \text { inside square centered at } x_{i} \\
0 \\
0
\end{array} \\
& \hline\left(\frac{x-x_{i}}{h}\right)
\end{aligned}
$$

- Thus $\boldsymbol{p}_{\varphi}(\boldsymbol{x})$ is just a sum of \boldsymbol{n} "box like" functions each of height $\frac{1}{n h^{d}}$

Parzen Windows: Example in 1D

- Let's come back to our example
- 7 samples $\boldsymbol{D}=\{2,3,4,8,10,11,12\}, \boldsymbol{h}=3$

- To see what the function looks like, we need to generate 7 boxes and add them up
- The width is $\boldsymbol{h}=3$ and the height is

$$
\frac{1}{n h^{d}}=\frac{1}{21}
$$

Parzen Windows: Interpolation

- In essence, window function φ is used for interpolation: each sample $\boldsymbol{x}_{\boldsymbol{i}}$ contributes to the resulting density at \boldsymbol{x} if \boldsymbol{x} is close enough to $\boldsymbol{x}_{\boldsymbol{i}}$

Parzen Windows: Drawbacks of Hypercube φ

- As long as sample point $\boldsymbol{x}_{\boldsymbol{i}}$ and \boldsymbol{x} are in the same hypercube, the contribution of $\boldsymbol{x}_{\boldsymbol{i}}$ to the density at \boldsymbol{x} is constant, regardless of how close $\boldsymbol{x}_{\boldsymbol{i}}$ is to \boldsymbol{x}

$$
\varphi\left(\frac{x-x_{1}}{h}\right)=\varphi\left(\frac{x-x_{2}}{h}\right)=1
$$

- The resulting density $\boldsymbol{p}_{\varphi}(\boldsymbol{x})$ is not smooth, it has discontinuities

Parzen Windows: general φ

$$
p_{\varphi}(x)=\frac{1}{n} \sum_{i=1}^{i=n} \frac{1}{h^{d}} \varphi\left(\frac{x-x_{i}}{h}\right)
$$

- We can use a general window φ as long as the resulting $\boldsymbol{p}_{\varphi}(\boldsymbol{x})$ is a legitimate density, i.e.

$$
\text { 1. } \boldsymbol{p}_{\varphi}(\boldsymbol{u}) \geq \mathbf{0}
$$

- satisfied if $\varphi(\boldsymbol{u}) \geq 0$

2. $\int \boldsymbol{p}_{\varphi}(\boldsymbol{x}) d \boldsymbol{x}=\mathbf{1}$

- satisfied if $\int \varphi(u) d u=1$

$$
\begin{gathered}
\int p_{\varphi}(x) d x=\frac{1}{n h^{d}} \sum_{i=1}^{i=n} \int \varphi\left(\frac{x-x_{i}}{h}\right) d x=\frac{1}{\boldsymbol{n} h^{d}} \sum_{i=1}^{n} \int h^{d} \varphi(u) d u=1 \\
\text { change coordinates to } u=\frac{x-x_{i}}{h} \text {, thus } d u=\frac{d x}{h}
\end{gathered}
$$

Parzen Windows: general φ

$$
p_{\varphi}(x)=\frac{1}{n} \sum_{i=1}^{i=n} \frac{1}{h^{d}} \varphi\left(\frac{x-x_{i}}{h}\right)
$$

- Notice that with the general window φ we are no longer counting the number of samples inside \mathbb{R}.
- We are counting the weighted average of potentially every single sample point (although only those within distance h have any significant weight)

- With infinite number of samples, and appropriate conditions, it can still be shown that

$$
p_{\varphi}^{n}(x) \rightarrow p(x)
$$

Parzen Windows: Gaussian φ

$$
p_{\varphi}(x)=\frac{1}{n} \sum_{i=1}^{i=n} \frac{1}{h^{d}} \varphi\left(\frac{x-x_{i}}{h}\right)
$$

- A popular choice for φ is $\mathbf{N}(\mathbf{0}, \mathbf{1})$ density

$$
\varphi(\boldsymbol{u})=\frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2}
$$

- Solves both drawbacks of the "box" window
- Points \boldsymbol{x} which are close to the sample point $\boldsymbol{x}_{\boldsymbol{i}}$ receive higher weight
- Resulting density $\boldsymbol{p}_{\varphi}(\boldsymbol{x})$ is smooth

Parzen Windows: Example with General φ

- Let's come back to our example
- 7 samples $D=\{2,3,4,8,10,11,12\}, \boldsymbol{h}=1$

$$
p_{\varphi}(x)=\frac{1}{7} \sum_{i=1}^{i=7} \varphi\left(x-x_{i}\right)
$$

- $\boldsymbol{p}_{\varphi}(\boldsymbol{x})$ is the sum of of 7 Gaussians, each centered at one of the sample points, and each scaled by $1 / 7$

Parzen Windows: Did We Solve the Problem?

- Let's test if we solved the problem

1. Draw samples from a known distribution
2. Use our density approximation method and compare with the true density

- We will vary the number of samples \boldsymbol{n} and the window size h
- We will play with 2 distributions

$N(0,1)$

triangle and uniform mixture

Parzen Windows: True Density $\mathbf{N}(0,1)$

Parzen Windows: True Density $\mathbf{N}(0,1)$

$n=\infty$
$h_{n}=h_{1} / \sqrt{n}$

FIGURE 4.5. Parzen-window estimates of a univariate normal density using different window widths and numbers of samples. The vertical axes have been scaled to best show the structure in each graph. Note particularly that the $n=\infty$ estimates are the same (and match the true density function), regardless of window width. From: Richard

Parzen Windows: True density is Mixture of Uniform and Triangle

$h_{1}=1$

$h_{1}=0.2$

Parzen Windows: True density is Mixture of Uniform and Triangle

$h_{1}=1$

$h_{1}=0.5$

FIGURE 4.7. Parzen-window estimates of a bimodal distribution using different window widths and numbers of samples. Note particularly that the $n=\infty$ estimates are the same (and match the true distribution), regardless of window width. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright (9) 2001 by John Wiley \& Sons, Inc.

Parzen Windows: Effect of Window Width h

- By choosing h we are guessing the region where density is approximately constant
- Without knowing anything about the distribution, it is really hard to guess were the density is approximately constant

Parzen Windows: Effect of Window Width h

- If \boldsymbol{h} is small, we superimpose \boldsymbol{n} sharp pulses centered at the data
- Each sample point $\boldsymbol{x}_{\boldsymbol{i}}$ influences too small range of \boldsymbol{x}
- Smoothed too little: the result will look noisy and not smooth enough
- If \boldsymbol{h} is large, we superimpose broad slowly changing functions,
- Each sample point $\boldsymbol{x}_{\boldsymbol{i}}$ influences too large range of \boldsymbol{x}
- Smoothed too much: the result looks oversmoothed or "out-of-focus"
- Finding the best \boldsymbol{h} is challenging, and indeed no single h may work well
- May need to adapt \boldsymbol{h} for different sample points
- However we can try to learn the best \boldsymbol{h} to use from our labeled data

Learning window width h From Labeled Data

- Divide labeled data into training set, validation set, test set
- For a range of different values of h (possibly using binary search), construct density estimate $p(x)$ using Parzen windows
- Test the classification performance on the validation set for each value of h you tried
- For the final density estimate, choose h giving the smallest error on the validation set
- Now you can test the performance of the classifier on the test set
- Notice we need validation set to find best parameter h, we can't use test set for this because test set cannot be used for training
- In general, need validation set if our classifier has some tunable parameters

Parzen Windows: Classification Example

- In classifiers based on Parzen-window estimation:
- We estimate the densities for each category and classify a test point by the label corresponding to the maximum posterior
- The decision region for a Parzen-window classifier depends upon the choice of window function as illustrated in the following figure

Parzen Windows: Classification Example

- For small enough window size h the classification on training data is perfect
- However decision boundaries are complex and this solution is not likely to generalize well to novel data

- For larger window size h, classification on training data is not perfect
- However decision boundaries are simpler and this solution is more likely to generalize well to novel data

Parzen Windows: Summary

- Advantages
- Can be applied to the data from any distribution
- In theory can be shown to converge as the number of samples goes to infinity
- Disadvantages
- Number of training data is limited in practice, and so choosing the appropriate window size \boldsymbol{h} is difficult
- May need large number of samples for accurate estimates
- Computationally heavy, to classify one point we have to compute a function which potentially depends on all samples

$$
p_{\varphi}(x)=\frac{1}{n} \sum_{i=1}^{i=n} \frac{1}{h^{d}} \varphi\left(\frac{x-x_{i}}{h}\right)
$$

- But we need a lot of samples for accurate density estimation!

