
Curse of Dimensionality, 
Dimensionality Reduction



Curse of Dimensionality: Overfitting
� If the number of features d is large, the number of 

samples n, may be too small for accurate 
parameter estimation.

� For example, covariance matrix has d2

parameters:
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� For accurate estimation, n should be much bigger 
than d2, otherwise model is too complicated for 
the data, overfitting:



� Paradox: If n < d2 we are better off assuming that 
features are uncorrelated, even if we know this 
assumption is wrong

� In this case, the covariance matrix has only d
parameters:
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Curse of Dimensionality: Overfitting



� We are likely to avoid overfitting because we fit a 
model with less parameters: model with more 

parameters

model with less
parameters



Curse of Dimensionality: Number of Samples
� Suppose we want to use the nearest neighbor 

approach with k = 1 (1NN)

� This feature is not discriminative, i.e. it does not 

� Suppose we start with only one feature
0 1

� This feature is not discriminative, i.e. it does not 
separate the classes well

� We decide to use 2 features. For the 1NN method 
to work well, need a lot of samples, i.e. samples 
have to be dense

� To maintain the same density as in 1D (9 samples 
per unit length), how many samples do we need?



Curse of Dimensionality: Number of Samples

� We need 92 samples to maintain the same 
density as in 1D

1

0

1



� Of course, when we go from 1 feature to 2, no 
one gives us more samples, we still have 9

1

Curse of Dimensionality: Number of Samples

0 1

� This is way too sparse for 1NN to work well



� Things go from bad to worse if we decide to use 3 
features:

1

Curse of Dimensionality: Number of Samples

0 1

� If 9 was dense enough in 1D, in 3D we need 
93=729 samples!



� In general, if n samples is dense enough in 1D

� Then in d dimensions we need nd samples!

� And nd grows really really fast as a function of d

� Common pitfall:

Curse of Dimensionality: Number of Samples

� Common pitfall:
� If we can’t solve a problem with a few features, adding 

more features seems like a good idea
� However the number of samples usually stays the same
� The method with more features is likely to perform 

worse instead of expected better



� For a fixed number of samples, as we add 
features, the graph of classification error:

classification 
error

Curse of Dimensionality: Number of Samples

# features1
optimal # features

� Thus for each fixed sample size n, there is the 
optimal number of features to use



� We should try to avoid creating lot of features

The Curse of Dimensionality

� Often no choice, problem starts with many features
� Example: Face Detection

� One sample point is k by m array of pixels
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� Feature extraction is not trivial, usually every 
pixel is taken as a feature

� Typical dimension is 20 by 20 = 400
� Suppose 10 samples are dense enough for 1 

dimension.  Need only 10400 samples



The Curse of Dimensionality
� Face Detection, dimension of one sample point is km
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� The fact that we set up the problem with km
dimensions (features) does not mean it is really          
a km-dimensional problem

� Space of all k by m images has km dimensions

� Most likely we are not setting the problem up with 
the right features

� If we used better features, we are likely need much 
less than km-dimensions

� Space of all k by m images has km dimensions
� Space of all k by m faces must be much smaller, 

since faces form a tiny fraction of all possible images



Dimensionality Reduction

� High dimensionality is challenging and redundant
� It is natural to try to reduce dimensionality
� Reduce dimensionality by feature combination: 

combine old features x to create new features y
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� For example, 

� Ideally, the new vector y should retain from x all 
information important for classification



Dimensionality Reduction

� The best f(x) is most likely a non-linear function

� Linear functions are easier to find though

� Thus it can be represented by a matrix W:

� For now, assume that f(x) is a linear mapping
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� We will look at 2 methods for feature 
combination
� Principle Component Analysis  (PCA)
� Fischer Linear Discriminant (next lecture)

Feature Combination



� Main idea: seek most accurate data representation in 
a lower dimensional space

Principle Component Analysis (PCA)

� Example in 2-D
� Project data to 1-D subspace (a line) which minimize the 

projection error
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large projection errors,
bad line to project to

small projection errors,
good line to project to
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� Notice that the the good line to use for projection lies 
in the direction of largest variance 



PCA

y

� After the data is projected on the best line, need to 
transform the coordinate system to get 1D 
representation for vector y

y

� Note that  new data y has the same variance as old 
data x in the direction of the green line

� PCA preserves largest variances in the data.  We will 
prove this statement, for now it is just an intuition of 
what PCA will do



PCA: Approximation of Elliptical Cloud in 3D

best 2D approximation best 1D approximation



PCA: Linear Algebra for Derivation 

� Let V be a d dimensional  linear space, and W be a k
dimensional linear subspace of V

� We can always find a set of d dimensional vectors     
{e1,e2,…,ek} which forms an orthonormal basis for W
� <ei,ej> = 0 if i is not equal to j and <ei,ei> = 1

� Thus any vector in W can be written as � Thus any vector in W can be written as 
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PCA: Linear Algebra for Derivation 

� Recall that subspace W contains the zero vector, i.e. 
it goes through the origin

this line is not a 
subspace of R2

� For derivation, it will be convenient to project to 
subspace W: thus we need to shift everything

this line is a 
subspace of R2



PCA  Derivation: Shift by the Mean Vector

� Before PCA, subtract sample mean from the data
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� The new data has zero mean.

1x ′′′′
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� All we did is change the coordinate system



PCA: Derivation
� We want to find the most accurate representation of 

data D={x1,x2,…,xn}  in some subspace W  which has 
dimension k < d

� Let {e1,e2,…,ek}  be the orthonormal basis for W. Any 

vector in W can be written as ∑∑∑∑
====
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� Thus x will be represented by some vector in W� Thus x1 will be represented by some vector in W
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PCA: Derivation

� Any xj can be written as ∑∑∑∑
====
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� To find the total error, we need to sum over all xj’s

� Thus the total error for representation of all data D is:
sum over all data points

error at one point
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PCA: Derivation

� To minimize J, need to take partial derivatives and 
also enforce constraint that {e1,e2,…,ek} are 
orthogonal
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� Let us simplify J first:
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PCA: Derivation
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� First take partial derivatives with respect to ααααml

(((( )))) mll
t
mnkk

ml

exeeJ αααααααααααα
αααα

22,...,,..., 111 ++++−−−−====
∂∂∂∂
∂∂∂∂

mlαααα∂∂∂∂

� Thus the optimal value  for ααααml is

l
t
mmlmll

t
m exex ====⇒⇒⇒⇒====++++−−−− αααααααα 022



PCA: Derivation

� Plug the optimal value  for ααααml = xt
mel back into J
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� Can simplify J
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PCA: Derivation

� Rewrite J using (atb)2= (atb)(atb)=(bta)(atb)=bt(aat )b
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� S is called the scatter matrix, it is just n-1 times the 
sample covariance matrix we have seen before
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PCA: Derivation

� We should also enforce constraints ei
tei = 1 for all i

(((( )))) ∑∑∑∑ ∑∑∑∑
==== ====

−−−−====
n

j

k

i
i

t
ijk eSexeeJ

1 1

2

1,...,

� Use the method of Lagrange multipliers, incorporate 

� Minimizing J is equivalent to maximizing ∑∑∑∑
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� Use the method of Lagrange multipliers, incorporate 
the constraints with undetermined λλλλ1 ,…, λλλλk

� Need to maximize new function u
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PCA: Derivation
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� Compute the partial derivatives with respect to em
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Note: em is a vector, what we are really doing here is  

� Thus λλλλm and em are eigenvalues and eigenvectors of 
scatter matrix S

mmm eSe λλλλ====

Note: em is a vector, what we are really doing here is  
taking partial derivatives with respect to each 
element of em and then arranging them up in a 
linear equation



PCA: Derivation

� Let’s plug  em back into J and use mmm eSe λλλλ====
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� Thus to minimize J take for the basis of  W the k
eigenvectors of S corresponding to the  k largest 
eigenvalues



PCA

� The larger the eigenvalue of S, the larger is the 
variance in the direction of corresponding eigenvector

301 ====λλλλ

8.02 ====λλλλ

� This result is exactly what we expected: project x into 
subspace of dimension k which has the largest 
variance

� This is very intuitive: restrict attention to directions 
where the scatter is the greatest

8.02 ====λλλλ



PCA

� Thus PCA can be thought of as finding new 
orthogonal basis by rotating the old axis until the 
directions of maximum variance are found



PCA as Data Approximation
� Let  {e1,e2,…,ed }  be all d eigenvectors of the scatter 

matrix S, sorted in order of decreasing corresponding 
eigenvalue

� Without any approximation, for any sample xi:
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approximation of xi

� coefficients ααααm =xt
iem are called principle components

� The larger k, the better is the approximation
� Components are arranged in order of importance, more 

important components come first

� Thus PCA takes the first k most important 
components of xi as an approximation to xi



PCA: Last Step
� Now we know how to project the data

y

� Last step is to change the coordinates to get final       
k-dimensional vector  y

� Let matrix [[[[ ]]]]keeE L1====

� Then the coordinate transformation is xEy t====

� Under Et, the eigenvectors 
become the standard basis:
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Recipe for Dimension Reduction with PCA
Data D={x1,x2,…,xn}. Each xi is a d-dimensional 
vector.  Wish to use PCA to reduce dimension to k

1. Find the sample mean ∑∑∑∑
====

====
n

i
ix

n 1

1
µ̂µµµ

2. Subtract sample mean from the data µµµµ̂−−−−==== ii xz

3. Compute the scatter matrix ∑∑∑∑====
n

tzzS3. Compute the scatter matrix ∑∑∑∑
====

====
i

iizzS
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4. Compute eigenvectors e1,e2,…,ek corresponding to 
the k largest eigenvalues of S

5. Let e1,e2,…,ek be the columns of matrix [[[[ ]]]]keeE L1====

6. The desired y which is the closest approximation 
to x is zEy t====



� PCA finds the most accurate data representation
in a lower dimensional space
� Project data in the directions of maximum variance

Data Representation vs. Data Classification

� However  the directions of maximum variance may 
be  useless for classification

separable

not separable

� Fisher Linear Discriminant projects to a line which 
preserves direction useful for data classification

apply PCA

to each class

not separable



Fisher Linear Discriminant

� Main idea:  find projection to a line s.t. samples 
from different classes are well separated

Example in 2D

bad line to project to,
classes are mixed up

good line to project to,
classes are well separated



Fisher Linear Discriminant
� Suppose we have 2 classes and d-dimensional 

samples x1,…,xn where 
� n1 samples come from the first class
� n2 samples come from the second class

� consider projection on a line

� Let the line direction be given by unit vector v

v
ix

� Thus the projection of sample 
xi onto a line in direction v is 
given by vtxi 



Fisher Linear Discriminant

� How to measure separation between projections of 
different classes? 

� Let µµµµ1 and µµµµ2 be the means of classes 1 and 2

� Let       and       be the means of projections of 
classes 1 and 2

1
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Fisher Linear Discriminant

� How good is               as a measure of separation?
� The larger             , the better is the expected separation

21
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21
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� the vertical axes is a better line than the horizontal 
axes to project to for class separability 

� however 2121
~~ µµµµµµµµµµµµµµµµ −−−−>>>>−−−−
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Fisher Linear Discriminant

� The problem with                is that it does not 
consider the variance of the classes
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Fisher Linear Discriminant

� We need to normalize                by a factor which is 
proportional to variance

21
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� Define their scatter as 

� 1D samples z1,…,zn .  Sample mean is ∑∑∑∑
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� Thus scatter is just sample variance multiplied by n
� scatter measures the same thing as variance, the spread 

of data around the mean

� scatter is just on different scale than variance

larger scatter smaller scatter



Fisher Linear Discriminant

� Fisher Solution: normalize                 by scatter21
~~ µµµµµµµµ −−−−

� Scatter for projected samples of class 1 is 
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� Let yi = vtxi , i.e. yi ‘s  are the projected samples
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Fisher Linear Discriminant

� We need to normalize by both scatter of class 1 and 
scatter of class 2

� Thus Fisher linear discriminant is to project on line 
in the direction v which maximizes

want projected means are far from each other
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projected mean 1
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Fisher Linear Discriminant
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� If we find v which makes J(v) large, we are 
guaranteed that the classes are well separated
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projected means are far from each other
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around projected mean
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Fisher Linear Discriminant Derivation

� All we need to do now is to express J explicitly as a 
function of v and maximize it

� straightforward but need linear algebra and Calculus (the derivation is 
shown in the next few slides.)

� The solution is found by generalized eigenvalue
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� The solution is found by generalized eigenvalue
problem
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Multiple Discriminant Analysis (MDA)
� Can generalize FLD to multiple classes
� In case of c classes, can reduce dimensionality to 

1, 2, 3,…, c-1 dimensions
� Project sample xi to a linear subspace yi = V txi

� V is called projection matrix



Multiple Discriminant Analysis (MDA)

� Objective function: (((( )))) (((( ))))
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� ni by the number of samples of class i
� and µµµµi be the sample mean of class i
� µ µ µ µ be the total mean of all samples
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� between the class scatter matrix SB is
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Multiple Discriminant Analysis (MDA)

� Objective function:

(((( )))) (((( ))))
(((( ))))VSVdet

VSVdet
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� It can be shown that “scatter” of the samples is � It can be shown that “scatter” of the samples is 
directly proportional to the determinant of the scatter 
matrix
� the larger det(S), the more scattered samples are
� det(S) is the product of eigenvalues of S

� Thus we are seeking transformation V which maximizes the 
between class scatter and minimizes the within-class scatter



Multiple Discriminant Analysis (MDA)
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� First solve the generalized eigenvalue problem:
vSvS WB λλλλ====

� At most c-1 distinct solution eigenvalues

� The optimal projection matrix V to a subspace of 
dimension k is given by the eigenvectors 
corresponding to the largest k eigenvalues

� Let v1, v2 ,…, vc-1 be the corresponding eigenvectors

� Thus can project to a subspace of dimension at 
most c-1


