Curse of Dimensionality, Dimensionality Reduction

Curse of Dimensionality: Overfitting

- If the number of features *d* is large, the number of samples *n*, may be too small for accurate parameter estimation.
- For example, covariance matrix has d² parameters:

$$\Sigma = \begin{bmatrix} \sigma_1^2 \cdots \sigma_{1d} \\ \vdots & \ddots & \vdots \\ \sigma_{d1} \cdots & \sigma_d^2 \end{bmatrix}$$

 For accurate estimation, *n* should be much bigger than *d*², otherwise model is too complicated for the data, *overfitting*:

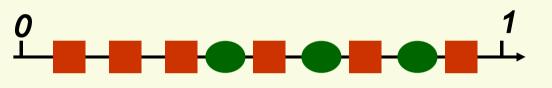
Curse of Dimensionality: Overfitting

- Paradox: If *n* < *d*² we are better off assuming that features are uncorrelated, even if we know this assumption is wrong
- In this case, the covariance matrix has only **d** parameters: $\sum_{\Sigma = \begin{bmatrix} \sigma_1^2 \cdots \mathbf{0} \\ \vdots & \vdots & \vdots \end{bmatrix}$

$$\Sigma = \begin{bmatrix} \sigma_1^2 \cdots \mathbf{0} \\ \vdots & \ddots & \vdots \\ \mathbf{0} & \cdots & \sigma_d^2 \end{bmatrix}$$

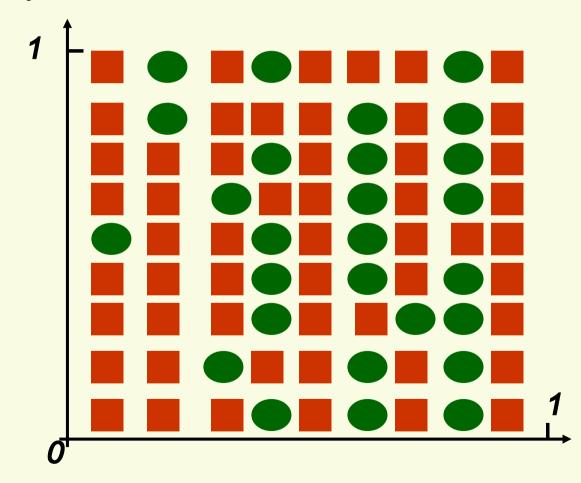
We are likely to avoid overfitting because we fit a model with less parameters:
 model with less parameters

- Suppose we want to use the nearest neighbor approach with *k* = 1 (*1NN*)
- Suppose we start with only one feature

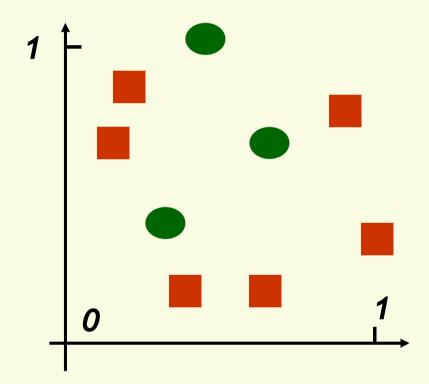


- This feature is not discriminative, i.e. it does not separate the classes well
- We decide to use 2 features. For the 1NN method to work well, need a lot of samples, i.e. samples have to be dense
- To maintain the same density as in 1D (9 samples per unit length), how many samples do we need?

We need 9² samples to maintain the same density as in 1D

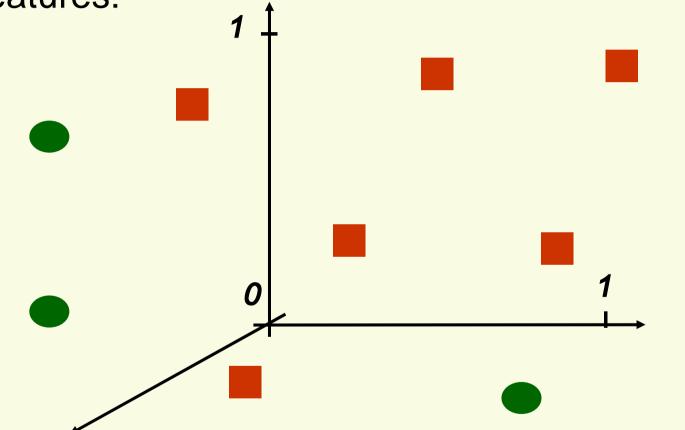


 Of course, when we go from 1 feature to 2, no one gives us more samples, we still have 9



This is way too sparse for **1NN** to work well

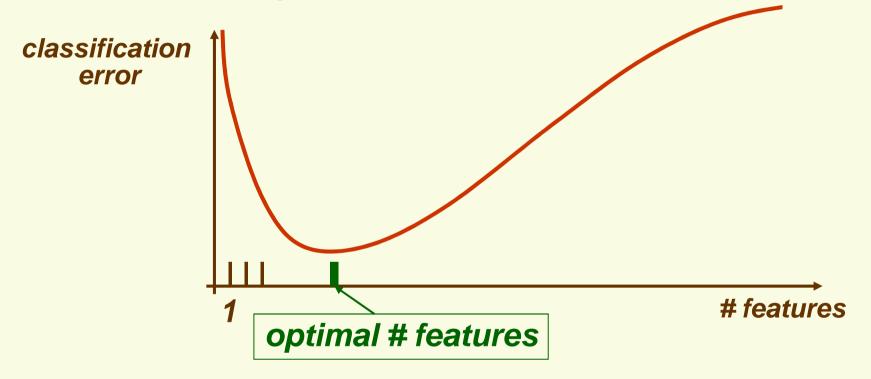
Things go from bad to worse if we decide to use 3 features:



If 9 was dense enough in 1D, in 3D we need 9³=729 samples!

- In general, if *n* samples is dense enough in *1D*
- Then in *d* dimensions we need *n^d* samples!
- And *n^d* grows really really fast as a function of *d*
- Common pitfall:
 - If we can't solve a problem with a few features, adding more features seems like a good idea
 - However the number of samples usually stays the same
 - The method with more features is likely to perform worse instead of expected better

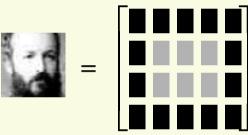
For a fixed number of samples, as we add features, the graph of classification error:



Thus for each fixed sample size n, there is the optimal number of features to use

The Curse of Dimensionality

- We should try to avoid creating lot of features
- Often no choice, problem starts with many features
- Example: Face Detection
 - One sample point is **k** by **m** array of pixels



- Feature extraction is not trivial, usually every pixel is taken as a feature
- Typical dimension is 20 by 20 = 400
- Suppose 10 samples are dense enough for 1 dimension. Need only 10⁴⁰⁰ samples

The Curse of Dimensionality

- Face Detection, dimension of one sample point is km
- The fact that we set up the problem with *km* dimensions (features) does not mean it is really a *km*-dimensional problem
- Space of all k by m images has km dimensions
- Space of all k by m faces must be much smaller, since faces form a tiny fraction of all possible images
- Most likely we are not setting the problem up with the right features
- If we used better features, we are likely need much less than *km*-dimensions

Dimensionality Reduction

- High dimensionality is challenging and redundant
- It is natural to try to reduce dimensionality
- Reduce dimensionality by feature combination: combine old features *x* to create new features *y*

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_d \end{bmatrix} \to f\left(\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_d \end{bmatrix} \right) = \begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_k \end{bmatrix} = \mathbf{y} \quad \text{with } \mathbf{k} < \mathbf{d}$$

- For example, $\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{x}_1 + \mathbf{x}_2 \\ \mathbf{x}_3 + \mathbf{x}_4 \end{bmatrix} = \mathbf{y}$
- Ideally, the new vector y should retain from x all information important for classification

Dimensionality Reduction

- The best f(x) is most likely a non-linear function
- Linear functions are easier to find though
- For now, assume that f(x) is a linear mapping
- Thus it can be represented by a matrix **W**:

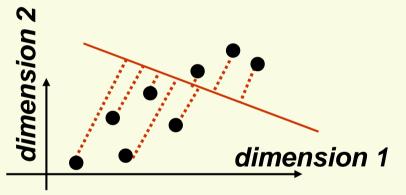
$$\begin{bmatrix} \mathbf{X}_{1} \\ \mathbf{X}_{2} \\ \vdots \\ \mathbf{X}_{d} \end{bmatrix} \Rightarrow \mathbf{W} \begin{bmatrix} \mathbf{X}_{1} \\ \mathbf{X}_{2} \\ \vdots \\ \mathbf{X}_{d} \end{bmatrix} = \begin{bmatrix} \mathbf{W}_{11} & \cdots & \mathbf{W}_{1d} \\ \vdots & & \vdots \\ \mathbf{W}_{k1} & \cdots & \mathbf{W}_{kd} \end{bmatrix} \begin{bmatrix} \mathbf{X}_{1} \\ \mathbf{X}_{2} \\ \vdots \\ \mathbf{X}_{d} \end{bmatrix} = \begin{bmatrix} \mathbf{y}_{1} \\ \vdots \\ \mathbf{y}_{k} \end{bmatrix} \quad \text{with } \mathbf{k} < \mathbf{d}$$

Feature Combination

- We will look at 2 methods for feature combination
 - Principle Component Analysis (PCA)
 - Fischer Linear Discriminant (next lecture)

Principle Component Analysis (PCA)

- Main idea: seek most accurate data representation in a lower dimensional space
- Example in 2-D
 - Project data to 1-D subspace (a line) which minimize the projection error



large projection errors, bad line to project to

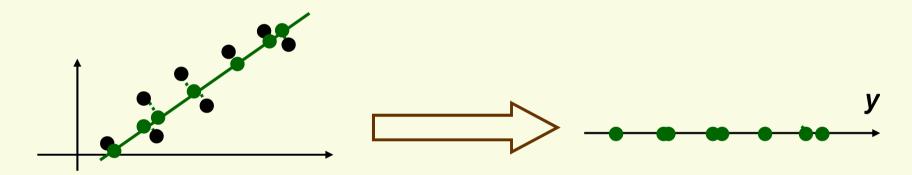
dimension 1

small projection errors, good line to project to

 Notice that the the good line to use for projection lies in the direction of largest variance

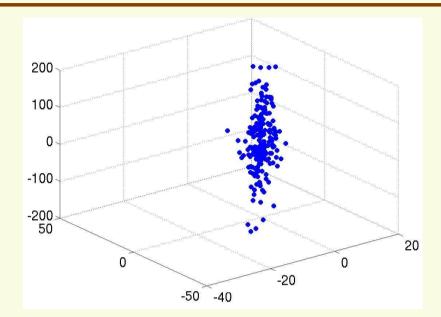
PCA

 After the data is projected on the best line, need to transform the coordinate system to get 1D representation for vector y

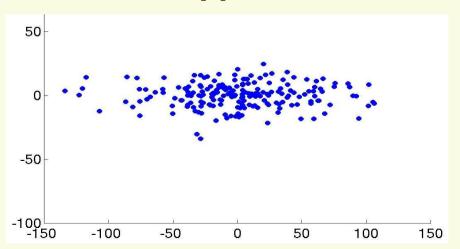


- Note that new data y has the same variance as old data x in the direction of the green line
- PCA preserves largest variances in the data. We will prove this statement, for now it is just an intuition of what PCA will do

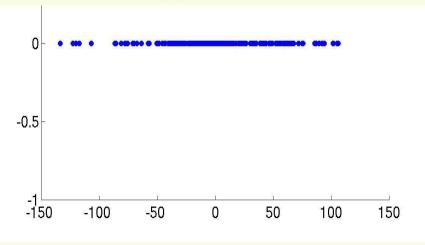
PCA: Approximation of Elliptical Cloud in 3D



best 2D approximation



best 1D approximation



PCA: Linear Algebra for Derivation

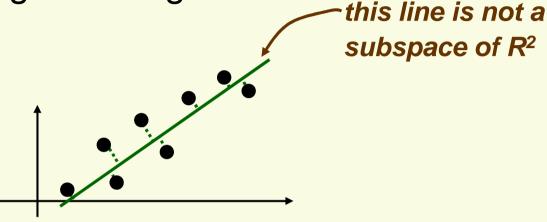
- Let V be a d dimensional linear space, and W be a k dimensional linear subspace of V
- We can always find a set of *d* dimensional vectors {*e*₁, *e*₂,..., *e*_k} which forms an orthonormal basis for *W*

• $\langle \mathbf{e}_i, \mathbf{e}_j \rangle = 0$ if **i** is not equal to **j** and $\langle \mathbf{e}_i, \mathbf{e}_j \rangle = 1$

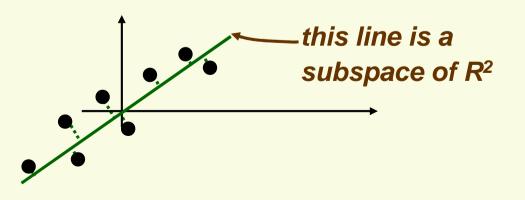
• Thus any vector in W can be written as $\alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \dots + \alpha_k \mathbf{e}_k = \sum_{i=1}^k \alpha_i \mathbf{e}_i$ for scalars $\alpha_1, \dots, \alpha_k$

PCA: Linear Algebra for Derivation

 Recall that subspace W contains the zero vector, i.e. it goes through the origin

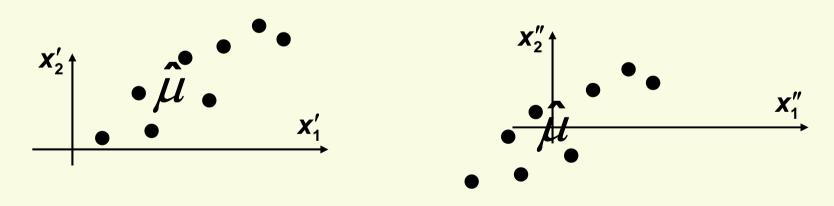


 For derivation, it will be convenient to project to subspace W: thus we need to shift everything



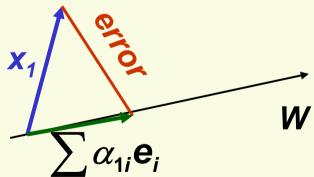
PCA Derivation: Shift by the Mean Vector

- Before PCA, subtract sample mean from the data $x \frac{1}{n} \sum_{i=1}^{n} x_i = x \hat{\mu}$
- The new data has zero mean.
- All we did is change the coordinate system



- We want to find the most accurate representation of data *D*={*x*₁, *x*₂,..., *x_n*} in some subspace *W* which has dimension *k* < *d*
- Let $\{e_1, e_2, ..., e_k\}$ be the orthonormal basis for **W**. Any vector in **W** can be written as $\sum_{i=1}^{k} \alpha_i e_i$
- Thus x_1 will be represented by some vector in W
- $\sum_{i=1}^{N} \alpha_{1i} \mathbf{e}_i$ Error of this representation:

$$error = \left\| \boldsymbol{x}_1 - \sum_{i=1}^k \alpha_{1i} \boldsymbol{e}_i \right\|^2$$



- To find the total error, we need to sum over all x_i 's
- Any \mathbf{x}_{j} can be written as $\sum_{i=1}^{\kappa} \alpha_{ji} \mathbf{e}_{i}$
- Thus the total error for representation of all data *D* is: sum over all data points

$$J(\mathbf{e}_{1},...,\mathbf{e}_{k},\alpha_{11},...\alpha_{nk}) = \sum_{j=1}^{n} \left\| \mathbf{x}_{j} - \sum_{i=1}^{k} \alpha_{ji} \mathbf{e}_{i} \right\|^{2}$$

unknowns error at one poin

To minimize J, need to take partial derivatives and also enforce constraint that {e₁, e₂,..., e_k} are orthogonal

$$J(\mathbf{e}_1,\ldots,\mathbf{e}_k,\alpha_{11},\ldots,\alpha_{nk}) = \sum_{j=1}^n \left\| \mathbf{x}_j - \sum_{i=1}^k \alpha_{ji} \mathbf{e}_i \right\|^2$$

Let us simplify J first:

$$J(\mathbf{e}_{1},...,\mathbf{e}_{k},\alpha_{11},...\alpha_{nk}) = \sum_{j=1}^{n} \|\mathbf{x}_{j}\|^{2} - 2\sum_{j=1}^{n} \sum_{i=1}^{k} \alpha_{ji} \mathbf{x}_{j}^{t} \mathbf{e}_{i} + \sum_{j=1}^{n} \sum_{i=1}^{k} \alpha_{ji}^{2}$$

$$J(\mathbf{e}_{1},...,\mathbf{e}_{k},\alpha_{11},...\alpha_{nk}) = \sum_{j=1}^{n} \|\mathbf{x}_{j}\|^{2} - 2\sum_{j=1}^{n} \sum_{i=1}^{k} \alpha_{ji} \mathbf{x}_{j}^{t} \mathbf{e}_{i} + \sum_{j=1}^{n} \sum_{i=1}^{k} \alpha_{ji}^{2}$$

• First take partial derivatives with respect to α_{ml}

$$\frac{\partial}{\partial \alpha_{ml}} J(\mathbf{e}_1, \dots, \mathbf{e}_k, \alpha_{11}, \dots, \alpha_{nk}) = -2 \mathbf{x}_m^t \mathbf{e}_l + 2 \alpha_{ml}$$

• Thus the optimal value for α_{ml} is

$$-2\mathbf{x}_{m}^{t}\mathbf{e}_{l}+2\alpha_{ml}=\mathbf{0} \implies \alpha_{ml}=\mathbf{x}_{m}^{t}\mathbf{e}_{l}$$

$$J(\mathbf{e}_{1},...,\mathbf{e}_{k},\alpha_{11},...\alpha_{nk}) = \sum_{j=1}^{n} \|\mathbf{x}_{j}\|^{2} - 2\sum_{j=1}^{n} \sum_{i=1}^{k} \alpha_{ji} \mathbf{x}_{j}^{t} \mathbf{e}_{i} + \sum_{j=1}^{n} \sum_{i=1}^{k} \alpha_{ji}^{2}$$

• Plug the optimal value for $\alpha_{ml} = \mathbf{x}^t_m \mathbf{e}_l$ back into \mathbf{J}

$$J(\mathbf{e}_{1},...,\mathbf{e}_{k}) = \sum_{j=1}^{n} \|\mathbf{x}_{j}\|^{2} - 2\sum_{j=1}^{n} \sum_{i=1}^{k} (\mathbf{x}_{j}^{t} \mathbf{e}_{i}) \mathbf{x}_{j}^{t} \mathbf{e}_{i} + \sum_{j=1}^{n} \sum_{i=1}^{k} (\mathbf{x}_{j}^{t} \mathbf{e}_{i})^{2}$$

Can simplify J

$$J(\mathbf{e}_{1},...,\mathbf{e}_{k}) = \sum_{j=1}^{n} ||\mathbf{x}_{j}||^{2} - \sum_{j=1}^{n} \sum_{i=1}^{k} (\mathbf{x}_{j}^{t}\mathbf{e}_{i})^{2}$$

$$J(\mathbf{e}_{1},...,\mathbf{e}_{k}) = \sum_{j=1}^{n} ||\mathbf{x}_{j}||^{2} - \sum_{j=1}^{n} \sum_{i=1}^{k} (\mathbf{x}_{j}^{t}\mathbf{e}_{i})^{2}$$

• Rewrite J using $(a^tb)^2 = (a^tb)(a^tb) = (b^ta)(a^tb) = b^t(aa^t)b$

$$J(\mathbf{e}_{1},...,\mathbf{e}_{k}) = \sum_{j=1}^{n} \left\| \mathbf{x}_{j} \right\|^{2} - \sum_{i=1}^{k} \mathbf{e}_{i}^{t} \left(\sum_{j=1}^{n} \left(\mathbf{x}_{j} \mathbf{x}_{j}^{t} \right) \right) \mathbf{e}_{i}$$
$$= \sum_{j=1}^{n} \left\| \mathbf{x}_{j} \right\|^{2} - \sum_{i=1}^{k} \mathbf{e}_{i}^{t} \mathbf{S} \mathbf{e}_{i}$$

• Where
$$\mathbf{S} = \sum_{j=1}^{n} \mathbf{x}_j \mathbf{x}_j^t$$

S is called the scatter matrix, it is just n-1 times the sample covariance matrix we have seen before

$$\hat{\Sigma} = \frac{1}{n-1} \sum_{j=1}^{n} (\boldsymbol{x}_{j} - \hat{\mu}) (\boldsymbol{x}_{j} - \hat{\mu})^{t}$$

$$J(\mathbf{e}_{1},...,\mathbf{e}_{k}) = \sum_{\substack{j=1\\ \text{constant}}}^{n} \left\| \mathbf{x}_{j} \right\|^{2} - \sum_{\substack{i=1\\ i=1}}^{k} \mathbf{e}_{i}^{t} \mathbf{S} \mathbf{e}_{i}$$

- Minimizing **J** is equivalent to maximizing $\sum e_i^t S e_i$
- We should also enforce constraints $e_i^t e_i = 1$ for all *i*
- Use the method of Lagrange multipliers, incorporate the constraints with undetermined $\lambda_1, ..., \lambda_k$
- Need to maximize new function u

$$\boldsymbol{u}(\boldsymbol{e}_1,\ldots,\boldsymbol{e}_k) = \sum_{i=1}^k \boldsymbol{e}_i^t \boldsymbol{S} \boldsymbol{e}_i - \sum_{j=1}^k \lambda_j \left(\boldsymbol{e}_j^t \boldsymbol{e}_j - 1 \right)$$

$$\boldsymbol{u}(\mathbf{e}_1,\ldots,\mathbf{e}_k) = \sum_{i=1}^k \mathbf{e}_i^t \mathbf{S} \mathbf{e}_i - \sum_{j=1}^k \lambda_j \left(\mathbf{e}_j^t \mathbf{e}_j - \mathbf{1}\right)$$

- Compute the partial derivatives with respect to \mathbf{e}_m $\frac{\partial}{\partial \mathbf{e}_m} \mathbf{u}(\mathbf{e}_1, \dots, \mathbf{e}_k) = 2\mathbf{S}\mathbf{e}_m - 2\lambda_m \mathbf{e}_m = \mathbf{0}$
 - **Note:** \mathbf{e}_m is a vector, what we are really doing here is taking partial derivatives with respect to each element of \mathbf{e}_m and then arranging them up in a linear equation
- Thus λ_m and e_m are eigenvalues and eigenvectors of scatter matrix S

$$\mathbf{Se}_m = \lambda_m \mathbf{e}_m$$

$$J(\mathbf{e}_{1},...,\mathbf{e}_{k}) = \sum_{j=1}^{n} \|\mathbf{x}_{j}\|^{2} - \sum_{i=1}^{k} \mathbf{e}_{i}^{t} \mathbf{S} \mathbf{e}_{i}$$

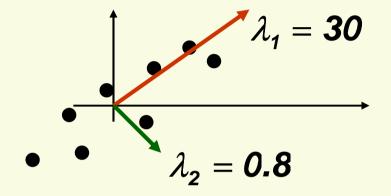
• Let's plug e_m back into J and use $Se_m = \lambda_m e_m$

$$J(\mathbf{e}_{1},...,\mathbf{e}_{k}) = \sum_{j=1}^{n} \|\mathbf{x}_{j}\|^{2} - \sum_{i=1}^{k} \lambda_{i} \|\mathbf{e}_{i}\|^{2} = \sum_{\substack{j=1\\ \text{constant}}}^{n} \|\mathbf{x}_{j}\|^{2} - \sum_{i=1}^{k} \lambda_{i}$$

Thus to minimize J take for the basis of W the k eigenvectors of S corresponding to the k largest eigenvalues

PCA

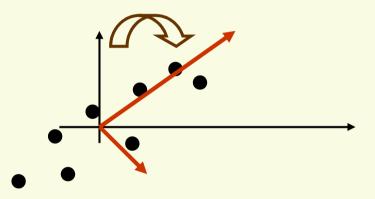
The larger the eigenvalue of S, the larger is the variance in the direction of corresponding eigenvector



- This result is exactly what we expected: project x into subspace of dimension k which has the largest variance
- This is very intuitive: restrict attention to directions where the scatter is the greatest

PCA

 Thus PCA can be thought of as finding new orthogonal basis by rotating the old axis until the directions of maximum variance are found



PCA as Data Approximation

- Let {*e*₁, *e*₂,..., *e*_d} be all *d* eigenvectors of the scatter matrix *S*, sorted in order of decreasing corresponding eigenvalue
- Without any approximation, for any sample x_i:
 error of approximation

$$\mathbf{x}_{i} = \sum_{j=1}^{d} \alpha_{j} \mathbf{e}_{j} = \underbrace{\alpha_{1} \mathbf{e}_{1} + \ldots + \alpha_{k} \mathbf{e}_{k}}_{approximation of \mathbf{x}_{i}} + \underbrace{\alpha_{k+1} \mathbf{e}_{k+1} \ldots + \alpha_{d} \mathbf{e}_{d}}_{approximation of \mathbf{x}_{i}}$$

- coefficients $\alpha_m = \mathbf{x}^t_i \mathbf{e}_m$ are called *principle components*
 - The larger **k**, the better is the approximation
 - Components are arranged in order of importance, more important components come first
- Thus PCA takes the first k most important components of x_i as an approximation to x_i

PCA: Last Step

- Now we know how to project the data
- Last step is to change the coordinates to get final k-dimensional vector y



- Let matrix $\boldsymbol{E} = [\boldsymbol{e}_1 \cdots \boldsymbol{e}_k]$
- Then the coordinate transformation is $y = E^t x$
- Under *E^t*, the eigenvectors become the standard basis:

$$\boldsymbol{E}^{t}\boldsymbol{e}_{i} = \begin{bmatrix} \boldsymbol{e}_{1} \\ \vdots \\ \boldsymbol{e}_{i} \\ \vdots \\ \boldsymbol{e}_{k} \end{bmatrix} \boldsymbol{e}_{i} = \begin{bmatrix} \boldsymbol{0} \\ \vdots \\ \boldsymbol{1} \\ \vdots \\ \boldsymbol{0} \end{bmatrix}$$

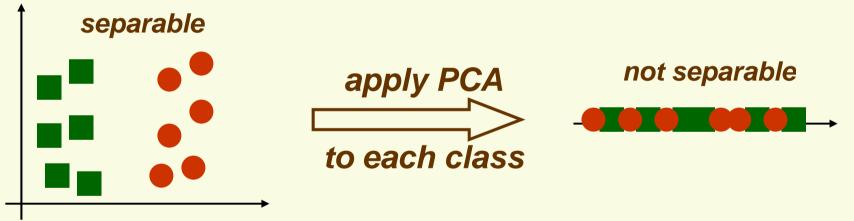
Recipe for Dimension Reduction with PCA

Data $D = \{x_1, x_2, ..., x_n\}$. Each x_i is a *d*-dimensional vector. Wish to use PCA to reduce dimension to *k*

- 1. Find the sample mean $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- 2. Subtract sample mean from the data $z_i = x_i \hat{\mu}$
- **3.** Compute the scatter matrix $\mathbf{S} = \sum_{i=1}^{n} \mathbf{z}_i \mathbf{z}_i^t$
- Compute eigenvectors e₁, e₂,..., e_k corresponding to the k largest eigenvalues of S
- 5. Let $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_k$ be the columns of matrix $\mathbf{E} = [\mathbf{e}_1 \cdots \mathbf{e}_k]$
- 6. The desired y which is the closest approximation to x is $y = E^t z$

Data Representation vs. Data Classification

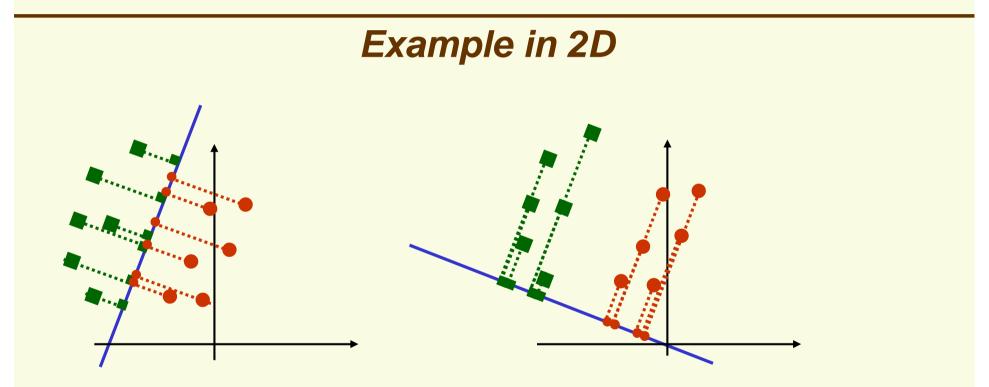
- PCA finds the most accurate data representation in a lower dimensional space
 - Project data in the directions of maximum variance
- However the directions of maximum variance may be useless for classification



 Fisher Linear Discriminant projects to a line which preserves direction useful for *data classification*

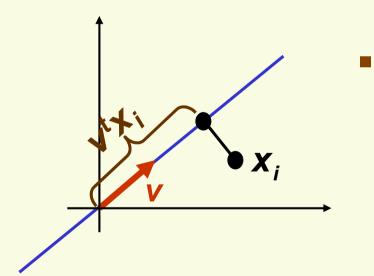
Fisher Linear Discriminant

 Main idea: find projection to a line s.t. samples from different classes are well separated



bad line to project to, classes are mixed up good line to project to, classes are well separated

- Suppose we have 2 classes and *d*-dimensional samples *x*₁,...,*x*_n where
 - n_1 samples come from the first class
 - n_2 samples come from the second class
- consider projection on a line
- Let the line direction be given by unit vector **v**



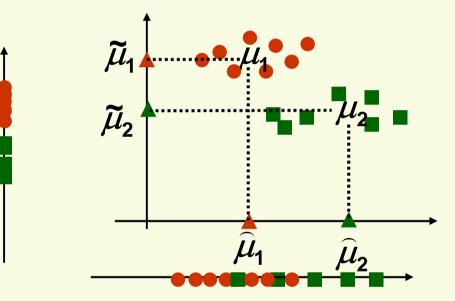
Thus the projection of sample x_i onto a line in direction v is given by $v^t x_i$

- How to measure separation between projections of different classes?
- Let $\tilde{\mu}_1$ and $\tilde{\mu}_2$ be the means of projections of classes 1 and 2
- Let μ_1 and μ_2 be the means of classes 1 and 2
- $|\tilde{\mu}_1 \tilde{\mu}_2|$ seems like a good measure

$$\widetilde{\mu}_1 = \frac{1}{n_1} \sum_{x_i \in C_1}^{n_1} \mathbf{v}^t \mathbf{x}_i = \mathbf{v}^t \left(\frac{1}{n_1} \sum_{x_i \in C_1}^{n_1} \mathbf{x}_i \right) = \mathbf{v}^t \mu_1$$

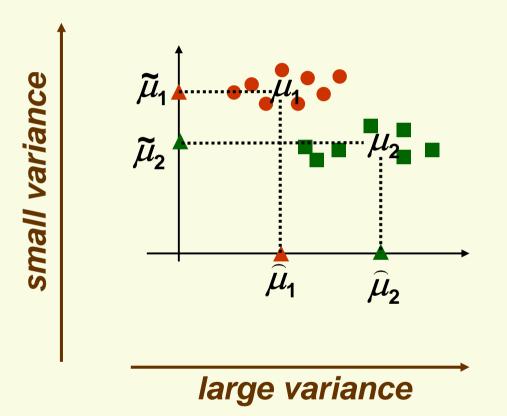
similarly, $\tilde{\mu}_2 = \mathbf{v}^t \mu_2$

- How good is $|\tilde{\mu}_1 \tilde{\mu}_2|$ as a measure of separation?
 - The larger $|\tilde{\mu}_1 \tilde{\mu}_2|$, the better is the expected separation



- the vertical axes is a better line than the horizontal axes to project to for class separability
- however $|\hat{\mu}_1 \hat{\mu}_2| > |\tilde{\mu}_1 \tilde{\mu}_2|$

• The problem with $|\tilde{\mu}_1 - \tilde{\mu}_2|$ is that it does not consider the variance of the classes



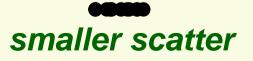
- We need to normalize $|\tilde{\mu}_1 \tilde{\mu}_2|$ by a factor which is proportional to variance
- 1D samples z_1, \dots, z_n . Sample mean is

$$\mu_z = \frac{1}{n} \sum_{i=1}^n \mathbf{Z}_i$$

Define their scatter as

$$\mathbf{S} = \sum_{i=1}^{n} \left(\mathbf{Z}_{i} - \boldsymbol{\mu}_{z} \right)^{2}$$

- Thus scatter is just sample variance multiplied by n
 - scatter measures the same thing as variance, the spread of data around the mean
 - scatter is just on different scale than variance



- Fisher Solution: normalize $|\tilde{\mu}_1 \tilde{\mu}_2|$ by scatter
- Let $y_i = v^t x_i$, i.e. y_i 's are the projected samples
- Scatter for projected samples of class 1 is

$$\widetilde{\mathbf{S}}_{1}^{2} = \sum_{\mathbf{y}_{i} \in Class \ 1} \left(\mathbf{y}_{i} - \widetilde{\mu}_{1} \right)^{2}$$

• Scatter for projected samples of class 2 is \sim^2

$$\widetilde{S}_{2}^{2} = \sum_{\boldsymbol{y}_{i} \in Class \ 2} (\boldsymbol{y}_{i} - \widetilde{\boldsymbol{\mu}}_{2})^{2}$$

- We need to normalize by both scatter of class 1 and scatter of class 2
- Thus Fisher linear discriminant is to project on line in the direction v which maximizes

want projected means are far from each other

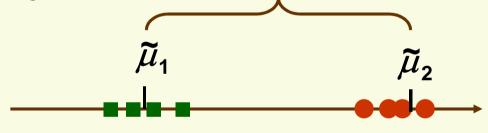
$$\boldsymbol{J}(\boldsymbol{v}) = \frac{\left(\tilde{\mu}_1 - \tilde{\mu}_2\right)^2}{\tilde{\boldsymbol{s}}_1^2 + \tilde{\boldsymbol{s}}_2^2}$$

want scatter in class 1 to be as small as possible, i.e. samples of class 1 cluster around the projected mean $\tilde{\mu}_1$ want scatter in class 2 to be as small as possible, i.e. samples of class 2 cluster around the projected mean $\tilde{\mu}_2$

$$\boldsymbol{J}(\boldsymbol{v}) = \frac{\left(\widetilde{\mu}_1 - \widetilde{\mu}_2\right)^2}{\widetilde{\boldsymbol{S}}_1^2 + \widetilde{\boldsymbol{S}}_2^2}$$

If we find v which makes J(v) large, we are guaranteed that the classes are well separated

projected means are far from each other



small \mathfrak{F}_1 implies that projected samples of class 1 are clustered around projected mean small **S**₂ implies that projected samples of class 2 are clustered around projected mean

Fisher Linear Discriminant Derivation

$$J(\mathbf{v}) = \frac{\left(\widetilde{\mu}_1 - \widetilde{\mu}_2\right)^2}{\widetilde{\mathbf{S}}_1^2 + \widetilde{\mathbf{S}}_2^2}$$

- All we need to do now is to express J explicitly as a function of v and maximize it
 - straightforward but need linear algebra and Calculus (the derivation is shown in the next few slides.)
 - The solution is found by **generalized eigenvalue problem** $\Rightarrow \mathbf{S}_{B}\mathbf{v} = \lambda \mathbf{S}_{W}\mathbf{v}$

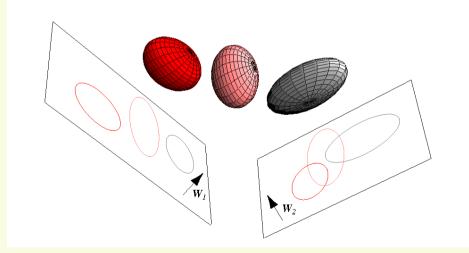
between class scatter matrix $\mathbf{S}_{B} = (\mu_{1} - \mu_{2})(\mu_{1} - \mu_{2})^{t}$

within the class scatter matrix $S_w = S_1 + S_2$

$$\mathbf{S}_1 = \sum_{\mathbf{x}_i \in Class \ 1} (\mathbf{x}_i - \mu_1) (\mathbf{x}_i - \mu_1)^t$$

$$\mathbf{S}_{2} = \sum_{\mathbf{x}_{i} \in Class \ 2} (\mathbf{x}_{i} - \mu_{2}) (\mathbf{x}_{i} - \mu_{2})^{t}$$

- Can generalize FLD to multiple classes
- In case of *c* classes, can reduce dimensionality to 1, 2, 3,..., *c*-1 dimensions
- Project sample x_i to a linear subspace $y_i = V^t x_i$
 - V is called projection matrix



- Let *n_i* by the number of samples of class *i*
 - and μ_i be the sample mean of class *i*
 - μ be the total mean of all samples

$$\mu_{i} = \frac{1}{n_{i}} \sum_{x \in class} x \qquad \mu = \frac{1}{n} \sum_{x_{i}} x_{i}$$
Objective function:
$$J(V) = \frac{\det(V^{t} S_{B} V)}{\det(V^{t} S_{W} V)}$$

• within the class scatter matrix S_W is

$$S_W = \sum_{i=1}^{c} S_i = \sum_{i=1}^{c} \sum_{x_k \in class \ i} (x_k - \mu_i) (x_k - \mu_i)^t$$

between the class scatter matrix S_B is

$$\mathbf{S}_{B} = \sum_{i=1}^{c} \mathbf{n}_{i} (\mu_{i} - \mu) (\mu_{i} - \mu)^{i}$$

maximum rank is c -1

Objective function:

$$J(V) = \frac{\det \left(V^{t} S_{B} V \right)}{\det \left(V^{t} S_{W} V \right)}$$

- It can be shown that "scatter" of the samples is directly proportional to the determinant of the scatter matrix
 - the larger **det**(S), the more scattered samples are
 - *det*(S) is the product of eigenvalues of S
- Thus we are seeking transformation V which maximizes the between class scatter and minimizes the within-class scatter

$$J(V) = \frac{\det(V^{t}S_{B}V)}{\det(V^{t}S_{W}V)}$$

- First solve the *generalized eigenvalue* problem: $S_B v = \lambda S_w v$
- At most *c*-1 distinct solution eigenvalues
- Let $v_1, v_2, ..., v_{c-1}$ be the corresponding eigenvectors
- The optimal projection matrix V to a subspace of dimension k is given by the eigenvectors corresponding to the largest k eigenvalues
- Thus can project to a subspace of dimension at most *c*-1