
Curse of Dimensionality,
Dimensionality Reduction with PCA

Curse of Dimensionality: Overfitting
� If the number of features d is large, the number of

samples n, may be too small for accurate
parameter estimation.

� For example, covariance matrix has d2

parameters:

====∑∑∑∑
1

2
1 dσσσσσσσσ

MOM

L

====∑∑∑∑
2

1 dd σσσσσσσσ L

MOM

� For accurate estimation, n should be much bigger
than d2, otherwise model is too complicated for
the data, overfitting:

� Paradox: If n < d2 we are better off assuming that
features are uncorrelated, even if we know this
assumption is wrong

� In this case, the covariance matrix has only d
parameters:

====∑∑∑∑

2

2
1

0

0

dσσσσ

σσσσ

L

MOM

L

Curse of Dimensionality: Overfitting

� We are likely to avoid overfitting because we fit a
model with less parameters: model with more

parameters

model with less
parameters

Curse of Dimensionality: Number of Samples
� Suppose we want to use the nearest neighbor

approach with k = 1 (1NN)

� This feature is not discriminative, i.e. it does not

� Suppose we start with only one feature
0 1

� This feature is not discriminative, i.e. it does not
separate the classes well

� We decide to use 2 features. For the 1NN method
to work well, need a lot of samples, i.e. samples
have to be dense

� To maintain the same density as in 1D (9 samples
per unit length), how many samples do we need?

Curse of Dimensionality: Number of Samples

� We need 92 samples to maintain the same
density as in 1D

1

0

1

� Of course, when we go from 1 feature to 2, no
one gives us more samples, we still have 9

1

Curse of Dimensionality: Number of Samples

0 1

� This is way too sparse for 1NN to work well

� Things go from bad to worse if we decide to use 3
features:

1

Curse of Dimensionality: Number of Samples

0 1

� If 9 was dense enough in 1D, in 3D we need
93=729 samples!

� In general, if n samples is dense enough in 1D

� Then in d dimensions we need nd samples!

� And nd grows really really fast as a function of d

� Common pitfall:

Curse of Dimensionality: Number of Samples

� Common pitfall:
� If we can’t solve a problem with a few features, adding

more features seems like a good idea
� However the number of samples usually stays the same
� The method with more features is likely to perform

worse instead of expected better

� For a fixed number of samples, as we add
features, the graph of classification error:

classification
error

Curse of Dimensionality: Number of Samples

features1
optimal # features

� Thus for each fixed sample size n, there is the
optimal number of features to use

� We should try to avoid creating lot of features

The Curse of Dimensionality

� Often no choice, problem starts with many features
� Example: Face Detection

� One sample point is k by m array of pixels

====

====

� Feature extraction is not trivial, usually every
pixel is taken as a feature

� Typical dimension is 20 by 20 = 400
� Suppose 10 samples are dense enough for 1

dimension. Need only 10400 samples

The Curse of Dimensionality
� Face Detection, dimension of one sample point is km

====

� The fact that we set up the problem with km
dimensions (features) does not mean it is really
a km-dimensional problem

� Space of all k by m images has km dimensions

� Most likely we are not setting the problem up with
the right features

� If we used better features, we are likely need much
less than km-dimensions

� Space of all k by m images has km dimensions
� Space of all k by m faces must be much smaller,

since faces form a tiny fraction of all possible images

Dimensionality Reduction

� High dimensionality is challenging and redundant
� It is natural to try to reduce dimensionality
� Reduce dimensionality by feature combination:

combine old features x to create new features y

dkwithy
y

x
x

fx
x

x <<<<====

====

→→→→

==== M
1

2

1

2

1

yxx
xx

x
x
x
x

x
43

21

4

3

2

1

====

++++
++++

→→→→

====

dkwithy
y

x

xf

x

xx
k

dd

<<<<====

====

→→→→

==== M
MM
22

� For example,

� Ideally, the new vector y should retain from x all
information important for classification

Dimensionality Reduction

� The best f(x) is most likely a non-linear function

� Linear functions are easier to find though

� Thus it can be represented by a matrix W:

� For now, assume that f(x) is a linear mapping

dkwith
y

y

x

x
x

ww

ww

x

x
x

W

x

x
x

k
d

kdk

d

dd

<<<<

====

====

⇒⇒⇒⇒

M
M

L

MM

L

MM

1
2

1

1

111
2

1

2

1

� We will look at 2 methods for feature
combination
� Principle Component Analysis (PCA)
� Fischer Linear Discriminant (next lecture)

Feature Combination

� Main idea: seek most accurate data representation in
a lower dimensional space

Principle Component Analysis (PCA)

� Example in 2-D
� Project data to 1-D subspace (a line) which minimize the

projection error

d
im

en
si

o
n

 2

d
im

en
si

o
n

 2

large projection errors,
bad line to project to

small projection errors,
good line to project to

dimension 1d
im

en
si

o
n

dimension 1d
im

en
si

o
n

� Notice that the good line to use for projection lies in
the direction of largest variance

PCA

y

� After the data is projected on the best line, need to
transform the coordinate system to get 1D
representation for vector y

y

� Note that new data y has the same variance as old
data x in the direction of the green line

� PCA preserves largest variances in the data. We will
prove this statement, for now it is just an intuition of
what PCA will do

PCA: Approximation of Elliptical Cloud in 3D

best 2D approximation best 1D approximation

PCA: Linear Algebra for Derivation

� Let V be a d dimensional linear space, and W be a k
dimensional linear subspace of V

� We can always find a set of d dimensional vectors
{e1,e2,…,ek} which forms an orthonormal basis for W
� <ei,ej> = 0 if i is not equal to j and <ei,ei> = 1

� Thus any vector in W can be written as � Thus any vector in W can be written as

k

k

i
iikk scalarsforeeee αααααααααααααααααααααααα ,...,... 1

1
2211 ∑∑∑∑

====

====++++++++++++

PCA: Linear Algebra for Derivation

� Recall that subspace W contains the zero vector, i.e.
it goes through the origin

this line is not a
subspace of R2

� For derivation, it will be convenient to project to
subspace W: thus we need to shift everything

this line is a
subspace of R2

PCA Derivation: Shift by the Mean Vector

� Before PCA, subtract sample mean from the data
µµµµ̂

1

1

−−−−====−−−− ∑∑∑∑
====

xx
n

x
n

i
i

� The new data has zero mean.

1x ′′′′

2x ′′′′

1x ′′′′′′′′

2x ′′′′′′′′

µµµµ̂
µµµµ̂

� All we did is change the coordinate system

PCA: Derivation
� We want to find the most accurate representation of

data D={x1,x2,…,xn} in some subspace W which has
dimension k < d

� Let {e1,e2,…,ek} be the orthonormal basis for W. Any

vector in W can be written as ∑∑∑∑
====

k

i
iie

1

αααα

� Thus x will be represented by some vector in W� Thus x1 will be represented by some vector in W

∑∑∑∑
====

k

i
iie

1
1αααα

� Error of this representation:
2

1
11 ∑∑∑∑

====

−−−−====
k

i
iiexerror αααα

W

x1

∑∑∑∑ iie1αααα

PCA: Derivation

� Any xj can be written as ∑∑∑∑
====

k

i
ijie

1

αααα

� To find the total error, we need to sum over all xj’s

� Thus the total error for representation of all data D is:
sum over all data points

error at one point

(((()))) ∑∑∑∑ ∑∑∑∑
==== ====

−−−−====
n

j

k

i
ijijnkk exeeJ

1

2

1
111 ,...,,..., αααααααααααα

unknowns

PCA: Derivation

� To minimize J, need to take partial derivatives and
also enforce constraint that {e1,e2,…,ek} are
orthogonal

(((()))) ∑∑∑∑ ∑∑∑∑
==== ====

−−−−====
n

j

k

i
ijijnkk exeeJ

1

2

1
111 ,...,,..., αααααααααααα

� Let us simplify J first:

(((()))) ∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
==== ======== ========

++++−−−−====
n

1j

k

1i

2
ji

n

1j

k

1i
i

t
jji

n

1j

2

jnk11k1 ex2x,...,e,...,eJ αααααααααααααααα

PCA: Derivation

(((()))) ∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
==== ======== ========

++++−−−−====
n

1j

k

1i

2
ji

n

1j

k

1i
i

t
jji

n

1j

2

jnk11k1 ex2x,...,e,...,eJ αααααααααααααααα

� First take partial derivatives with respect to ααααml

(((()))) mll
t
mnkk

ml

exeeJ αααααααααααα
αααα

22,...,,..., 111 ++++−−−−====
∂∂∂∂
∂∂∂∂

mlαααα∂∂∂∂

� Thus the optimal value for ααααml is

l
t
mmlmll

t
m exex ====⇒⇒⇒⇒====++++−−−− αααααααα 022

PCA: Derivation

� Plug the optimal value for ααααml = xt
mel back into J

(((()))) (((()))) (((())))∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑ ++++−−−−====
n k

2
i

t
j

n k

i
t
ji

t
j

n 2

jk1 exexex2xe,...,eJ

(((()))) ∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
==== ======== ========

++++−−−−====
n

1j

k

1i

2
ji

n

1j

k

1i
i

t
jji

n

1j

2

jnk11k1 ex2x,...,e,...,eJ αααααααααααααααα

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
==== ======== ======== 1j 1i

ij
1j 1i

ijij
1j

jk1

� Can simplify J

(((()))) (((())))∑∑∑∑∑∑∑∑∑∑∑∑
==== ========

−−−−====
n

1j

k

1i

2
i

t
j

n

1j

2

jk1 exxe,...,eJ

PCA: Derivation

� Rewrite J using (atb)2= (atb)(atb)=(bta)(atb)=bt(aat)b

(((()))) (((()))) i

n

j

k

i

n

j

t
jj

t
ijk exxexeeJ ∑∑∑∑ ∑∑∑∑ ∑∑∑∑

==== ==== ====

−−−−====

1 1 1

2

1,...,

∑∑∑∑ ∑∑∑∑−−−−====
n k

i
t
ij eSex

2

(((()))) (((())))∑∑∑∑∑∑∑∑∑∑∑∑
==== ========

−−−−====
n

1j

k

1i

2
i

t
j

n

1j

2

jk1 exxe,...,eJ

∑∑∑∑ ∑∑∑∑
==== ====

−−−−====
j i

iij eSex
1 1

� Where ∑∑∑∑
====

====
n

j

t
jj xxS

1

� S is called the scatter matrix, it is just n-1 times the
sample covariance matrix we have seen before

(((())))(((())))∑∑∑∑
====

−−−−−−−−
−−−−

====∑∑∑∑
n

j

t
jj xx

n 1

ˆˆ
1

1ˆ µµµµµµµµ

PCA: Derivation

� We should also enforce constraints ei
tei = 1 for all i

(((()))) ∑∑∑∑ ∑∑∑∑
==== ====

−−−−====
n

j

k

i
i

t
ijk eSexeeJ

1 1

2

1,...,

� Use the method of Lagrange multipliers, incorporate

� Minimizing J is equivalent to maximizing ∑∑∑∑
====

k

i
i

t
i eSe

1

constant

� Use the method of Lagrange multipliers, incorporate
the constraints with undetermined λλλλ1 ,…, λλλλk

� Need to maximize new function u

(((()))) (((())))∑∑∑∑∑∑∑∑
========

−−−−−−−−====
k

j
j

t
jj

k

i
i

t
ik eeeSeeeu

11
1 1,..., λλλλ

PCA: Derivation

(((()))) (((())))∑∑∑∑∑∑∑∑
========

−−−−−−−−====
k

j
j

t
jj

k

i
i

t
ik eeeSeeeu

11
1 1,..., λλλλ

� Compute the partial derivatives with respect to em

(((()))) 022,...,1 ====−−−−====
∂∂∂∂
∂∂∂∂

mmmk
m

eSeeeu
e

λλλλ

Note: em is a vector, what we are really doing here is

� Thus λλλλm and em are eigenvalues and eigenvectors of
scatter matrix S

mmm eSe λλλλ====

Note: em is a vector, what we are really doing here is
taking partial derivatives with respect to each
element of em and then arranging them up in a
linear equation

PCA: Derivation

� Let’s plug em back into J and use mmm eSe λλλλ====

(((()))) ∑∑∑∑ ∑∑∑∑
==== ====

−−−−====
n

j

k

i
i

t
ijk eSexeeJ

1 1

2

1,...,

(((()))) ∑∑∑∑ ∑∑∑∑∑∑∑∑ ∑∑∑∑
==== ======== ====

−−−−====−−−−====
n

1j

k

1i
i

2

j

n

1j

k

1i

2
ii

2

jk1 xexe,...,eJ λλλλλλλλ

constant
==== ======== ==== 1j 1i1j 1i

constant

� Thus to minimize J take for the basis of W the k
eigenvectors of S corresponding to the k largest
eigenvalues

PCA

� The larger the eigenvalue of S, the larger is the
variance in the direction of corresponding eigenvector

301 ====λλλλ

8.02 ====λλλλ

� This result is exactly what we expected: project x into
subspace of dimension k which has the largest
variance

� This is very intuitive: restrict attention to directions
where the scatter is the greatest

8.02 ====λλλλ

PCA

� Thus PCA can be thought of as finding new
orthogonal basis by rotating the old axis until the
directions of maximum variance are found

PCA as Data Approximation
� Let {e1,e2,…,ed } be all d eigenvectors of the scatter

matrix S, sorted in order of decreasing corresponding
eigenvalue

� Without any approximation, for any sample xi:

dd1k1kkk11

d

jji e...eeeex αααααααααααααααααααα ++++++++++++++++======== ++++++++
====
∑∑∑∑ K

error of approximation

1j====
∑∑∑∑

approximation of xi

� coefficients ααααm =xt
iem are called principle components

� The larger k, the better is the approximation
� Components are arranged in order of importance, more

important components come first

� Thus PCA takes the first k most important
components of xi as an approximation to xi

PCA: Last Step
� Now we know how to project the data

y

� Last step is to change the coordinates to get final
k-dimensional vector y

� Let matrix [[[[]]]]keeE L1====

� Then the coordinate transformation is xEy t====

� Under Et, the eigenvectors
become the standard basis:

====

====

0

1

01

M

M

M

M

i

k

ii
t e

e

e

e

eE

Recipe for Dimension Reduction with PCA
Data D={x1,x2,…,xn}. Each xi is a d-dimensional
vector. Wish to use PCA to reduce dimension to k

1. Find the sample mean ∑∑∑∑
====

====
n

i
ix

n 1

1
µ̂µµµ

2. Subtract sample mean from the data µµµµ̂−−−−==== ii xz

3. Compute the scatter matrix ∑∑∑∑====
n

tzzS3. Compute the scatter matrix ∑∑∑∑
====

====
i

iizzS
1

4. Compute eigenvectors e1,e2,…,ek corresponding to
the k largest eigenvalues of S

5. Let e1,e2,…,ek be the columns of matrix [[[[]]]]keeE L1====

6. The desired y which is the closest approximation
to x is zEy t====

PCA Example Using Matlab
� Let D = {(1,2),(2,3),(3,2),(4,4),(5,4),(6,7),(7,6),(9,7)}

� Convenient to arrange data in array

====

====

8

1

x

x

79

21
X MMM

� Mean (((()))) [[[[]]]]4.46.4Xmean ========µµµµ� Mean

� Subtract mean from data to get new data array Z

(((())))

 −−−−−−−−
====−−−−====

−−−−====

6.24.4

4.46.3
1,8,repmatXXZ MMM µµµµ

µµµµ

µµµµ

� Compute the scatter matrix S
(((()))) [[[[]]]] [[[[]]]]

====

++++++++

−−−−
−−−−−−−−−−−−====∗∗∗∗==== 3440

4057
6.2
4.46.24.4...4.4

6.34.46.3Zcov7S

matlab uses unbiased estimate for covariance, so S=(n-1)*cov(Z)

PCA Example Using Matlab

� Use [V,D] =eig(S) to get eigenvalues and
eigenvectors of S

−−−−
−−−−======== 6.0

8.0eand87 11λλλλ

−−−−======== 8.0

6.0eand8.3 22λλλλ

� Projection to 1D space in the direction of e1

[[[[]]]] [[[[]]]]1.53.46.24.4
4.46.36.08.0ZeY tt

1 −−−−====

−−−−
−−−−−−−−−−−−======== L

L
L

[[[[]]]]81 yy L====

