
Curse of Dimensionality, 
Dimensionality Reduction with PCA



Curse of Dimensionality: Overfitting
� If the number of features d is large, the number of 

samples n, may be too small for accurate 
parameter estimation.

� For example, covariance matrix has d2

parameters:
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� For accurate estimation, n should be much bigger 
than d2, otherwise model is too complicated for 
the data, overfitting:



� Paradox: If n < d2 we are better off assuming that 
features are uncorrelated, even if we know this 
assumption is wrong

� In this case, the covariance matrix has only d
parameters:
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Curse of Dimensionality: Overfitting



� We are likely to avoid overfitting because we fit a 
model with less parameters: model with more 

parameters

model with less
parameters



Curse of Dimensionality: Number of Samples
� Suppose we want to use the nearest neighbor 

approach with k = 1 (1NN)

� This feature is not discriminative, i.e. it does not 

� Suppose we start with only one feature
0 1

� This feature is not discriminative, i.e. it does not 
separate the classes well

� We decide to use 2 features. For the 1NN method 
to work well, need a lot of samples, i.e. samples 
have to be dense

� To maintain the same density as in 1D (9 samples 
per unit length), how many samples do we need?



Curse of Dimensionality: Number of Samples

� We need 92 samples to maintain the same 
density as in 1D
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� Of course, when we go from 1 feature to 2, no 
one gives us more samples, we still have 9

1

Curse of Dimensionality: Number of Samples

0 1

� This is way too sparse for 1NN to work well



� Things go from bad to worse if we decide to use 3 
features:

1

Curse of Dimensionality: Number of Samples

0 1

� If 9 was dense enough in 1D, in 3D we need 
93=729 samples!



� In general, if n samples is dense enough in 1D

� Then in d dimensions we need nd samples!

� And nd grows really really fast as a function of d

� Common pitfall:

Curse of Dimensionality: Number of Samples

� Common pitfall:
� If we can’t solve a problem with a few features, adding 

more features seems like a good idea
� However the number of samples usually stays the same
� The method with more features is likely to perform 

worse instead of expected better



� For a fixed number of samples, as we add 
features, the graph of classification error:

classification 
error

Curse of Dimensionality: Number of Samples

# features1
optimal # features

� Thus for each fixed sample size n, there is the 
optimal number of features to use



� We should try to avoid creating lot of features

The Curse of Dimensionality

� Often no choice, problem starts with many features
� Example: Face Detection

� One sample point is k by m array of pixels
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� Feature extraction is not trivial, usually every 
pixel is taken as a feature

� Typical dimension is 20 by 20 = 400
� Suppose 10 samples are dense enough for 1 

dimension.  Need only 10400 samples



The Curse of Dimensionality
� Face Detection, dimension of one sample point is km
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� The fact that we set up the problem with km
dimensions (features) does not mean it is really          
a km-dimensional problem

� Space of all k by m images has km dimensions

� Most likely we are not setting the problem up with 
the right features

� If we used better features, we are likely need much 
less than km-dimensions

� Space of all k by m images has km dimensions
� Space of all k by m faces must be much smaller, 

since faces form a tiny fraction of all possible images



Dimensionality Reduction

� High dimensionality is challenging and redundant
� It is natural to try to reduce dimensionality
� Reduce dimensionality by feature combination: 

combine old features x to create new features y
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� For example, 

� Ideally, the new vector y should retain from x all 
information important for classification



Dimensionality Reduction

� The best f(x) is most likely a non-linear function

� Linear functions are easier to find though

� Thus it can be represented by a matrix W:

� For now, assume that f(x) is a linear mapping

dkwith
y

y

x

x
x

ww

ww

x

x
x

W

x

x
x

k
d

kdk

d

dd

<<<<













====






























====

















⇒⇒⇒⇒
















M
M

L

MM

L

MM

1
2

1

1

111
2

1

2

1



� We will look at 2 methods for feature 
combination
� Principle Component Analysis  (PCA)
� Fischer Linear Discriminant (next lecture)

Feature Combination



� Main idea: seek most accurate data representation in 
a lower dimensional space

Principle Component Analysis (PCA)

� Example in 2-D
� Project data to 1-D subspace (a line) which minimize the 

projection error
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large projection errors,
bad line to project to

small projection errors,
good line to project to
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� Notice that the good line to use for projection lies in 
the direction of largest variance 



PCA

y

� After the data is projected on the best line, need to 
transform the coordinate system to get 1D 
representation for vector y

y

� Note that  new data y has the same variance as old 
data x in the direction of the green line

� PCA preserves largest variances in the data.  We will 
prove this statement, for now it is just an intuition of 
what PCA will do



PCA: Approximation of Elliptical Cloud in 3D

best 2D approximation best 1D approximation



PCA: Linear Algebra for Derivation 

� Let V be a d dimensional  linear space, and W be a k
dimensional linear subspace of V

� We can always find a set of d dimensional vectors     
{e1,e2,…,ek} which forms an orthonormal basis for W
� <ei,ej> = 0 if i is not equal to j and <ei,ei> = 1

� Thus any vector in W can be written as � Thus any vector in W can be written as 
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PCA: Linear Algebra for Derivation 

� Recall that subspace W contains the zero vector, i.e. 
it goes through the origin

this line is not a 
subspace of R2

� For derivation, it will be convenient to project to 
subspace W: thus we need to shift everything

this line is a 
subspace of R2



PCA  Derivation: Shift by the Mean Vector

� Before PCA, subtract sample mean from the data
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� The new data has zero mean.

1x ′′′′

2x ′′′′
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� All we did is change the coordinate system



PCA: Derivation
� We want to find the most accurate representation of 

data D={x1,x2,…,xn}  in some subspace W  which has 
dimension k < d

� Let {e1,e2,…,ek}  be the orthonormal basis for W. Any 

vector in W can be written as ∑∑∑∑
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� Thus x will be represented by some vector in W� Thus x1 will be represented by some vector in W
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PCA: Derivation

� Any xj can be written as ∑∑∑∑
====
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� To find the total error, we need to sum over all xj’s

� Thus the total error for representation of all data D is:
sum over all data points

error at one point
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PCA: Derivation

� To minimize J, need to take partial derivatives and 
also enforce constraint that {e1,e2,…,ek} are 
orthogonal
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� Let us simplify J first:
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PCA: Derivation
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� First take partial derivatives with respect to ααααml
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PCA: Derivation

� Plug the optimal value  for ααααml = xt
mel back into J

(((( )))) (((( )))) (((( ))))∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑ ++++−−−−====
n k

2
i

t
j

n k

i
t
ji

t
j

n 2

jk1 exexex2xe,...,eJ

(((( )))) ∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
==== ======== ========

++++−−−−====
n

1j

k

1i

2
ji

n

1j

k

1i
i

t
jji

n

1j

2

jnk11k1 ex2x,...,e,...,eJ αααααααααααααααα

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
==== ======== ======== 1j 1i

ij
1j 1i

ijij
1j

jk1

� Can simplify J

(((( )))) (((( ))))∑∑∑∑∑∑∑∑∑∑∑∑
==== ========

−−−−====
n

1j

k

1i

2
i

t
j

n

1j

2

jk1 exxe,...,eJ



PCA: Derivation

� Rewrite J using (atb)2= (atb)(atb)=(bta)(atb)=bt(aat )b
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� S is called the scatter matrix, it is just n-1 times the 
sample covariance matrix we have seen before
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PCA: Derivation

� We should also enforce constraints ei
tei = 1 for all i
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� Use the method of Lagrange multipliers, incorporate 

� Minimizing J is equivalent to maximizing ∑∑∑∑
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� Use the method of Lagrange multipliers, incorporate 
the constraints with undetermined λλλλ1 ,…, λλλλk

� Need to maximize new function u
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PCA: Derivation
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� Compute the partial derivatives with respect to em
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Note: em is a vector, what we are really doing here is  

� Thus λλλλm and em are eigenvalues and eigenvectors of 
scatter matrix S
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Note: em is a vector, what we are really doing here is  
taking partial derivatives with respect to each 
element of em and then arranging them up in a 
linear equation



PCA: Derivation

� Let’s plug  em back into J and use mmm eSe λλλλ====
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� Thus to minimize J take for the basis of  W the k
eigenvectors of S corresponding to the  k largest 
eigenvalues



PCA

� The larger the eigenvalue of S, the larger is the 
variance in the direction of corresponding eigenvector

301 ====λλλλ
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� This result is exactly what we expected: project x into 
subspace of dimension k which has the largest 
variance

� This is very intuitive: restrict attention to directions 
where the scatter is the greatest

8.02 ====λλλλ



PCA

� Thus PCA can be thought of as finding new 
orthogonal basis by rotating the old axis until the 
directions of maximum variance are found



PCA as Data Approximation
� Let  {e1,e2,…,ed }  be all d eigenvectors of the scatter 

matrix S, sorted in order of decreasing corresponding 
eigenvalue

� Without any approximation, for any sample xi:
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approximation of xi

� coefficients ααααm =xt
iem are called principle components

� The larger k, the better is the approximation
� Components are arranged in order of importance, more 

important components come first

� Thus PCA takes the first k most important 
components of xi as an approximation to xi



PCA: Last Step
� Now we know how to project the data

y

� Last step is to change the coordinates to get final       
k-dimensional vector  y

� Let matrix [[[[ ]]]]keeE L1====

� Then the coordinate transformation is xEy t====

� Under Et, the eigenvectors 
become the standard basis:
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Recipe for Dimension Reduction with PCA
Data D={x1,x2,…,xn}. Each xi is a d-dimensional 
vector.  Wish to use PCA to reduce dimension to k

1. Find the sample mean ∑∑∑∑
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n

i
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2. Subtract sample mean from the data µµµµ̂−−−−==== ii xz

3. Compute the scatter matrix ∑∑∑∑====
n
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4. Compute eigenvectors e1,e2,…,ek corresponding to 
the k largest eigenvalues of S

5. Let e1,e2,…,ek be the columns of matrix [[[[ ]]]]keeE L1====

6. The desired y which is the closest approximation 
to x is zEy t====



PCA Example Using Matlab
� Let D = {(1,2),(2,3),(3,2),(4,4),(5,4),(6,7),(7,6),(9,7)}

� Convenient to arrange data in array
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� Mean (((( )))) [[[[ ]]]]4.46.4Xmean ========µµµµ� Mean

� Subtract mean from data to get new data array Z
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� Compute the scatter matrix S
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matlab uses unbiased estimate for covariance, so S=(n-1)*cov(Z)



PCA Example Using Matlab 

� Use [V,D] =eig(S) to get eigenvalues and 
eigenvectors of S
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� Projection to 1D space in the direction of e1
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