Normal Random Variable and its discriminant functions

1

Outline

- Normal Random Variable
 - Properties
 - Discriminant functions

Why Normal Random Variables?

- Analytically tractable
- Works well when observation comes form a corrupted single prototype (μ)

The Univariate Normal Density

• **x** is a scalar (has dimension 1)

$$p(\mathbf{x}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{\mathbf{x}-\mu}{\sigma}\right)^2\right],$$

Where:

 μ = mean (or expected value) of x σ^2 = variance

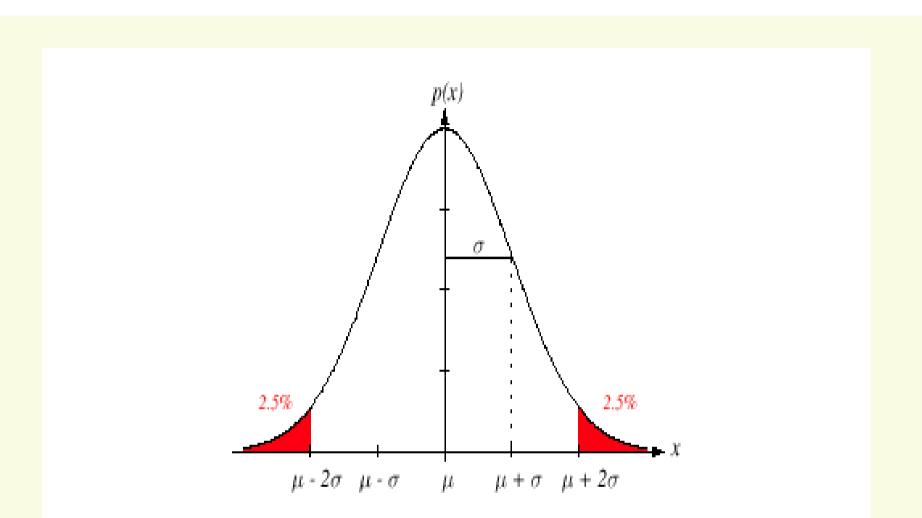


FIGURE 2.7. A univariate normal distribution has roughly 95% of its area in the range $|x - \mu| \le 2\sigma$, as shown. The peak of the distribution has value $p(\mu) = 1/\sqrt{2\pi\sigma}$. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

Several Features

- What if we have several features x₁, x₂, ..., x_d
 - each normally distributed
 - may have different means
 - may have different variances
 - may be dependent or independent of each other
- How do we model their joint distribution?

The Multivariate Normal Density

Multivariate normal density in *d* dimensions is:

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \mu)^{t} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \mu) \right]$$

determinant of $\boldsymbol{\Sigma}$
$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_{1}^{2} \cdots \sigma_{1d} \\ \vdots & \ddots & \vdots \\ \sigma_{d1} \cdots & \sigma_{d}^{2} \end{bmatrix}$$
$$\mathbf{x} = [x_{1}, x_{2}, \dots, x_{d}]^{t}$$

$$\mu = [\mu_{1}, \mu_{2}, \dots, \mu_{d}]^{t}$$

covariance of x_1 and x_d

• Each \mathbf{x}_i is $N(\mu_i, \sigma_i^2)$

More on Σ

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \cdots & \sigma_{1d} \\ \vdots & \ddots & \vdots \\ \sigma_{d1} & \cdots & \sigma_d^2 \end{bmatrix}$$
 plays role similar to the role that σ^2 plays in one dimension

- From Σ we can find out
 - The individual variances of features
 X₁, X₂, ..., X_d
 - 2. If features x_i and x_j are
 - independent $\sigma_{ii}=0$
 - have positive correlation $\sigma_{ii} > 0$
 - have negative correlation $\sigma_{ii} < 0$

The Multivariate Normal Density

• If Σ is diagonal $\begin{bmatrix} \sigma_1^2 & 0 & 0 \\ 0 & \sigma_2^2 & 0 \\ 0 & 0 & \sigma_3^2 \end{bmatrix}$ then the features X_i, \ldots, X_j are independent, and

$$p(\mathbf{x}) = \prod_{i=1}^{d} \frac{1}{\sigma_i \sqrt{2\pi}} \exp\left[-\frac{(\mathbf{x}_i - \mu_i)^2}{2\sigma_i^2}\right]$$

The Multivariate Normal Density

$$p(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2} (x-\mu)^{t} \Sigma^{-1} (x-\mu)\right]$$

$$p(\mathbf{x}) = \mathbf{c} \cdot \exp \left[-\frac{1}{2} \begin{bmatrix} \mathbf{x}_1 - \mu_1 & \mathbf{x}_2 - \mu_2 & \mathbf{x}_3 - \mu_3 \end{bmatrix} \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_2^2 & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_3^2 \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{x}_1 - \mu_1 \\ \mathbf{x}_2 - \mu_2 \\ \mathbf{x}_3 - \mu_3 \end{bmatrix} \right]$$
normalizing

constant scalar s (single number), the closer s to 0 the larger is p(x)

• Thus P(x) is larger for smaller $(x - \mu)^t \Sigma^{-1} (x - \mu)$

$(\mathbf{X} - \mu)^t \Sigma^{-1} (\mathbf{X} - \mu)$

- Σ is positive semi definite ($\mathbf{x}^t \Sigma \mathbf{x} > = 0$)
- If x^tΣ x=0 for nonzero x then det(Σ)=0. This case is not interesting, p(x) is not defined
 - 1. one feature vector is a constant (has zero variance)
 - 2. or two components are multiples of each other
- so we will assume Σ is positive definite $(\mathbf{x}^t \Sigma \mathbf{x} > 0)$
- If Σ is positive definite then so is Σ^{-1}

Eigenvalues/eigenvectors (from Wiki)

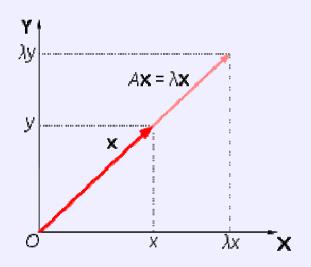
 Given a linear transformation A, a non-zero vector x is defined to be an eigenvector of the transformation if it satisfies the eigenvalue equation

Ax = λx for some scalar λ .

where λ is called an eigenvalue of A, corresponding to the eigenvector x.

Eigenvalues/eigenvectors (from Wiki)

 Geometrically, it means that under the transformation A, eigenvectors only change in magnitude and sign—the direction of Ax is the same as that of x. The eigenvalue λ is simply the amount of "stretch" or "shrink" to which a vector is subjected when transformed by A.



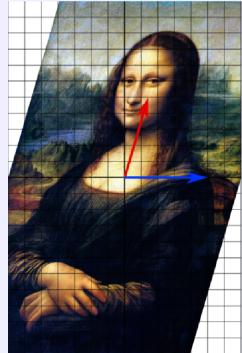
 For example, an eigenvalue of +2 means that the eigenvector is doubled in length and points in the same direction. An eigenvalue of +1 means that the eigenvector is unchanged, while an eigenvalue of

-1 means that the eigenvector is reversed in sense.

Eigenvalues/eigenvectors (from Wiki)

- In this shear mapping the red arrow changes direction but the blue arrow does not.
- Therefore the blue arrow is an eigenvector, with eigenvalue 1 as its length is unchanged.





$(\mathbf{X} - \boldsymbol{\mu})^{t} \boldsymbol{\Sigma}^{-1} (\mathbf{X} - \boldsymbol{\mu})$

- Positive definite matrix of size *d* by *d* has *d* distinct real eigenvalues and its *d* eigenvectors are orthogonal
- Thus if Φ is a matrix whose columns are normalized eigenvectors of Σ , then $\Phi^{-1} = \Phi^{t}$
- $\Sigma \Phi = \Phi \Lambda$ where Λ is a diagonal matrix with corresponding eigenvalues on the diagonal
- Thus $\Sigma = \Phi \Lambda \Phi^{-1}$ and $\Sigma^{-1} = \Phi \Lambda^{-1} \Phi^{-1}$
- Thus if $\Lambda^{-1/2}$ denotes matrix s.t. $\Lambda^{-1/2} \Lambda^{-1/2} = \Lambda^{-1}$

$$\Sigma^{-1} = \left(\Phi \Lambda^{-\frac{1}{2}} \right) \left(\Phi \Lambda^{-\frac{1}{2}} \right)^{t} = M M^{t}$$

$$(\mathbf{X} - \mu)^{t} \Sigma^{-1} (\mathbf{X} - \mu)$$

Thus

$$(\mathbf{x} - \mu)^{t} \Sigma^{-1} (\mathbf{x} - \mu) = (\mathbf{x} - \mu)^{t} \mathbf{M} \mathbf{M}^{t} (\mathbf{x} - \mu) = \\ = (\mathbf{M}^{t} (\mathbf{x} - \mu))^{t} (\mathbf{M}^{t} (\mathbf{x} - \mu)) = |\mathbf{M}^{t} (\mathbf{x} - \mu)|^{2}$$

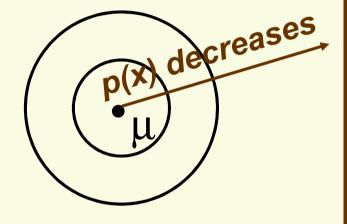
• Thus
$$(\mathbf{x} - \mu)^t \Sigma^{-1} (\mathbf{x} - \mu) = |\mathbf{M}^t (\mathbf{x} - \mu)|^2$$

where $\mathbf{M}^t = \Lambda^{-\frac{1}{2}} \Phi^{-1}$
scaling rotation
matrix matrix

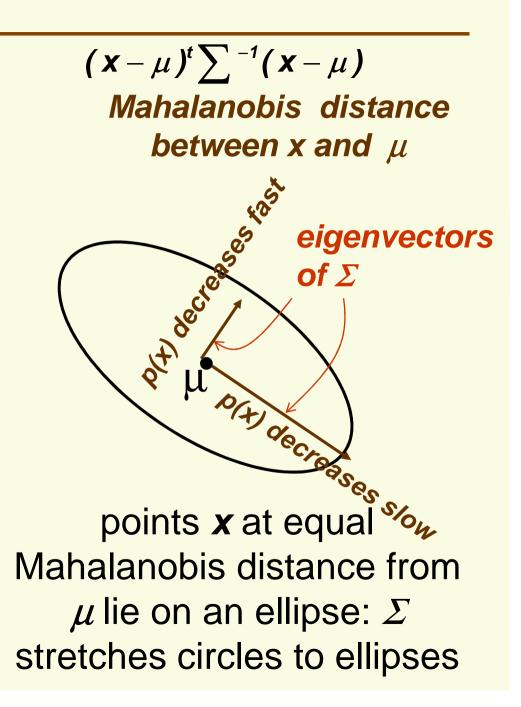
• Points x which satisfy $|M^t(x - \mu)|^2 = const$ lie on an ellipse

 $(\mathbf{X} - \mu)^t \Sigma^{-1} (\mathbf{X} - \mu)$

(x – μ)^t(x – μ) usual (Eucledian) distance between x and μ

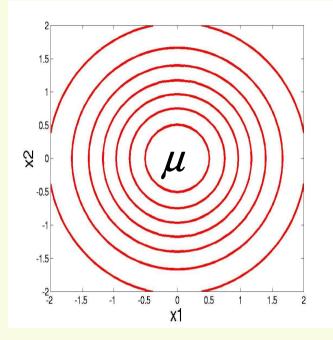


points \boldsymbol{x} at equal Eucledian distance from $\boldsymbol{\mu}$ lie on a circle



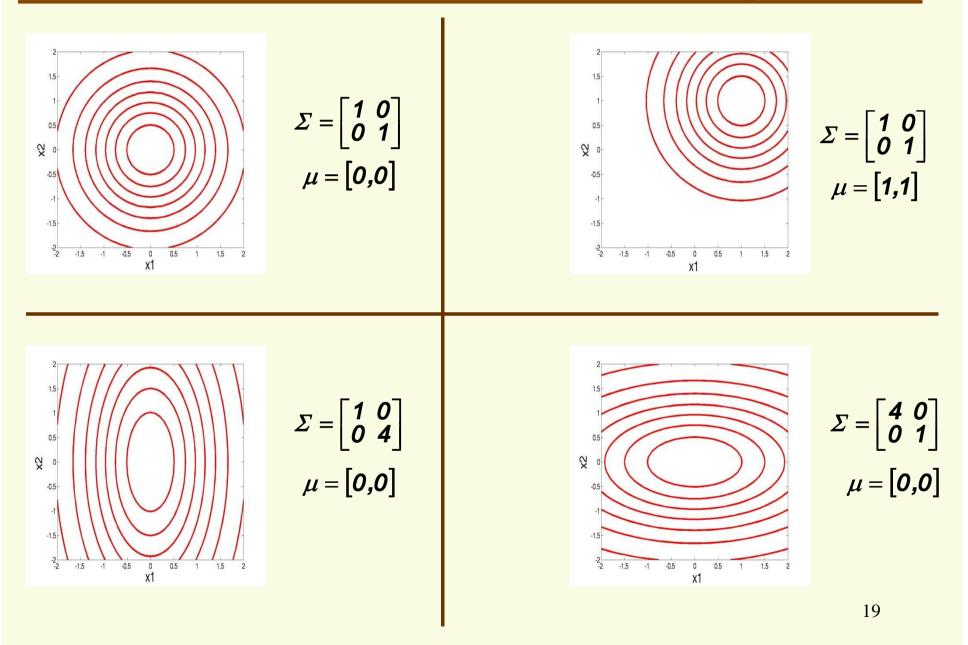
2-d Multivariate Normal Density

- Level curves graph
 - *p*(*x*) is constant along each contour
 - topological map of 3-d surface

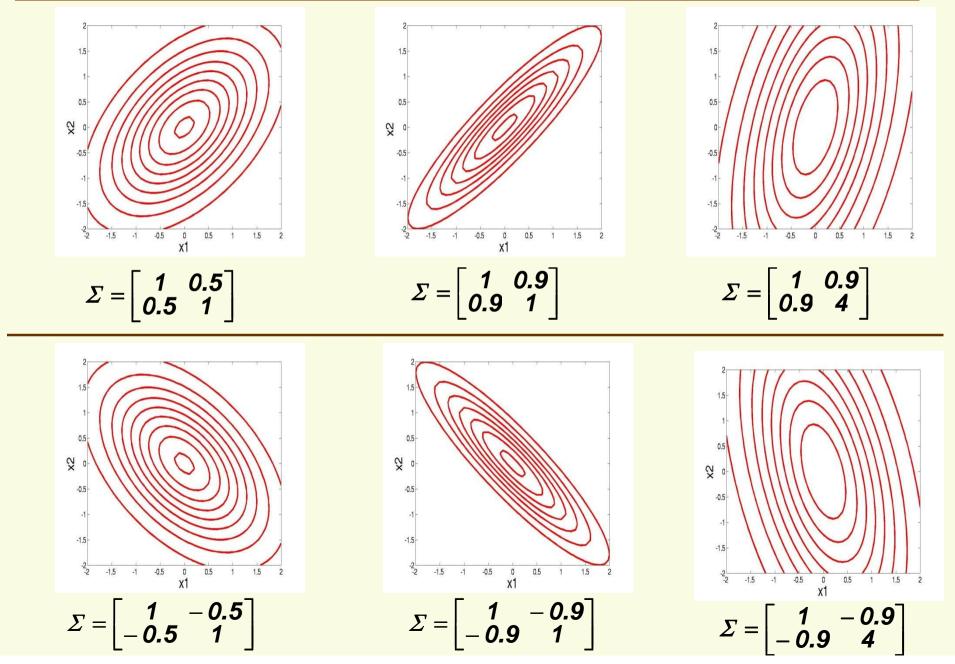


- x_1 and x_2 are independent
- σ_1^2 and σ_2^2 are equal

2-d Multivariate Normal Density

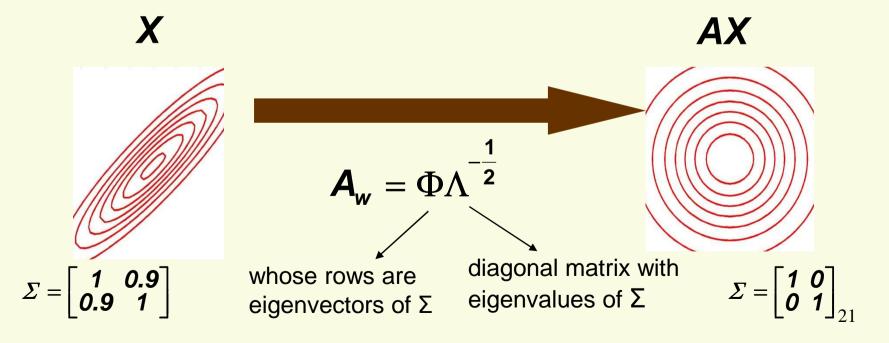


2-d Multivariate Normal Density $\mu = [0,0]$



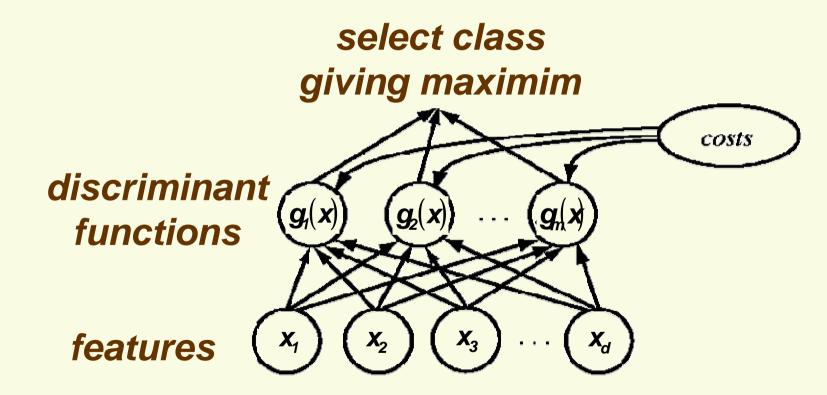
The Multivariate Normal Density

- If **X** has density $N(\mu, \Sigma)$ then **AX** has density $N(A^t \mu, A^t \Sigma A)$
 - Thus X can be transformed into a spherical normal variable (covariance of spherical density is the identity matrix I) with whitening transform



Discriminant Functions

 Classifier can be viewed as network which computes *m* discriminant functions and selects category corresponding to the largest discriminant



 g_i(x) can be replaced with any monotonically increasing function of g, the results will be unchanged

Discriminant Functions

 The minimum error-rate classification is achieved by the discriminant function

$$g_i(x) = P(c_i | x) = P(x | c_i) P(c_i) / P(x)$$

- Since the observation x is independent of the class, the equivalent discriminant function is $g_i(x) = P(x|c_i)P(c_i)$
- For normal density, convinient to take logarithms.
 Since logarithm is a monotonically increasing function, the equivalent discriminant function is

$$g_i(x) = \ln P(x|c_i) + \ln P(c_i)$$

Discriminant Functions for the Normal Density

 Suppose for class c_i its class conditional density p(x|c_i) is N(μ_i,Σ_i)

$$p(x \mid c_i) = \frac{1}{(2\pi)^{d/2} |\Sigma_i|^{1/2}} \exp \left[-\frac{1}{2} (x - \mu_i)^t \Sigma_i^{-1} (x - \mu_i)\right]$$

- Discriminant function $g_i(x) = \ln P(x|c_i) + \ln P(c_i)$
- Plug in $p(x|c_i)$ and $P(c_i)$ get $g_i(x) = -\frac{1}{2}(x - \mu_i)^t \Sigma_i^{-1}(x - \mu_i) + \frac{d}{2}\ln 2\pi - \frac{1}{2}\ln|\Sigma_i| + \ln P(c_i)$ $g_i(x) = -\frac{1}{2}(x - \mu_i)^t \Sigma_i^{-1}(x - \mu_i) - \frac{1}{2}\ln|\Sigma_i| + \ln P(c_i)$

Case $\Sigma_i = \sigma^2 I$

• That is
$$\sum_{i} = \begin{bmatrix} \sigma^{2} & 0 & 0 \\ 0 & \sigma^{2} & 0 \\ 0 & 0 & \sigma^{2} \end{bmatrix} = \sigma^{2} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 In this case, features x₁, x₂, ..., x_d are independent with different means and equal variances σ²



Case $\Sigma_i = \sigma^2 I$

Discriminant function

$$\boldsymbol{g}_{i}(\boldsymbol{x}) = -\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu}_{i})^{t} \sum_{i=1}^{-1} (\boldsymbol{x}-\boldsymbol{\mu}_{i}) - \frac{1}{2} \ln |\boldsymbol{\Sigma}_{i}| + \ln \boldsymbol{P}(\boldsymbol{c}_{i})$$

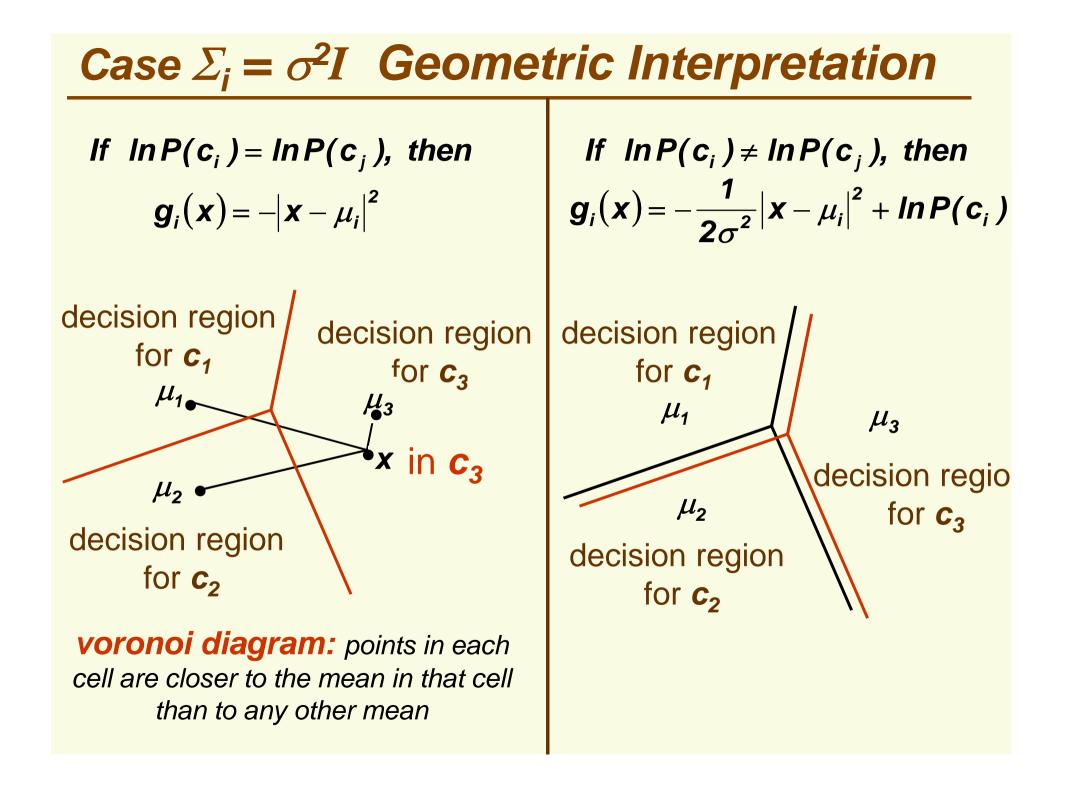
•
$$\operatorname{Det}(\Sigma_{i}) = \sigma^{2d}$$
 and $\Sigma_{i}^{-1} = (1/\sigma^{2})I = \begin{bmatrix} \frac{1}{\sigma^{2}} & 0 & 0\\ 0 & \frac{1}{\sigma^{2}} & 0\\ 0 & 0 & \frac{1}{\sigma^{2}} \end{bmatrix}$

• Can simplify discriminant function $g_i(x) = -\frac{1}{2}(x - \mu_i)^t \frac{1}{\sigma^2}(x - \mu_i) - \frac{1}{2}\ln(\sigma^{2\sigma}) + \ln P(c_i)$ constant for all i

$$\boldsymbol{g}_i(\boldsymbol{x}) = -\frac{1}{2\sigma^2}(\boldsymbol{x}-\mu_i)^t(\boldsymbol{x}-\mu_i) + \ln \boldsymbol{P}(\boldsymbol{c}_i) =$$

$$=-\frac{1}{2\sigma^{2}}|\boldsymbol{x}-\boldsymbol{\mu}_{i}|^{2}+\ln \boldsymbol{P}(\boldsymbol{c}_{i})$$

26



$$Case \Sigma_{i} = \sigma^{2}I$$

$$g_{i}(x) = -\frac{1}{2\sigma^{2}}(x - \mu_{i})^{t}(x - \mu_{i}) + \ln P(c_{i}) =$$

$$= -\frac{1}{2\sigma^{2}}(x - \mu_{i}^{t}x - x^{t}\mu_{i} + \mu_{i}^{t}\mu_{i}) + \ln P(c_{i})$$

$$constant$$
for all classes
$$g_{i}(x) = -\frac{1}{2\sigma^{2}}(-2\mu_{i}^{t}x + \mu_{i}^{t}\mu_{i}) + \ln P(c_{i}) = \frac{\mu_{i}^{t}}{\sigma^{2}}x + (-\frac{\mu_{i}^{t}\mu_{i}}{2\sigma^{2}} + \ln P(c_{i}))$$

$$g_{i}(x) = w_{i}^{t}x + w_{i0}$$

discriminant function is linear

Case $\Sigma_i = \sigma^2 I$

$$g_{i}(x) = w_{i}^{t} x + w_{i0}$$

linear in x:

$$w_{i}^{t} x = \sum_{i=1}^{d} w_{i} x_{i}$$

- Thus discriminant function is linear,
- Therefore the decision boundaries
 g_i(x)=g_j(x) are linear
 - lines if x has dimension 2
 - planes if x has dimension 3
 - hyper-planes if x has dimension larger than 3

3 classes, each 2-dimensional Gaussian with

$$\mu_1 = \begin{bmatrix} \mathbf{1} \\ \mathbf{2} \end{bmatrix} \qquad \mu_2 = \begin{bmatrix} \mathbf{4} \\ \mathbf{6} \end{bmatrix} \qquad \mu_3 = \begin{bmatrix} -\mathbf{2} \\ \mathbf{4} \end{bmatrix} \qquad \Sigma_1 = \Sigma_2 = \Sigma_3 = \begin{bmatrix} \mathbf{3} & \mathbf{0} \\ \mathbf{0} & \mathbf{3} \end{bmatrix}$$

- Priors $P(c_1) = P(c_2) = \frac{1}{4}$ and $P(c_3) = \frac{1}{2}$
- Discriminant function is $g_i(x) = \frac{\mu_i^t}{\sigma^2} x + \left(-\frac{\mu_i^t \mu_i}{2\sigma^2} + \ln P(c_i)\right)$
- Plug in parameters for each class $g_1(x) = \frac{[12]}{3}x + (-\frac{5}{6} - 1.38)$ $g_2(x) = \frac{[46]}{3}x + (-\frac{52}{6} - 1.38)$ $g_3(x) = \frac{[-24]}{3}x + (-\frac{20}{6} - 0.69)$

- Need to find out when $g_i(x) < g_j(x)$ for i, j=1, 2, 3
- Can be done by solving $\mathbf{g}_i(\mathbf{x}) = \mathbf{g}_j(\mathbf{x})$ for i, j=1, 2, 3
- Let's take $g_1(x) = g_2(x)$ first

$$\frac{[12]}{3}x + (-\frac{5}{6} - 1.38) = \frac{[46]}{3}x + (-\frac{52}{6} - 1.38)$$
• Simplifying, $\frac{[-3-4]}{3} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = -\frac{47}{6}$

$$-x_1 - \frac{4}{3}x_2 = -\frac{47}{6}$$

line equation

• Next solve $g_2(x) = g_3(x)$

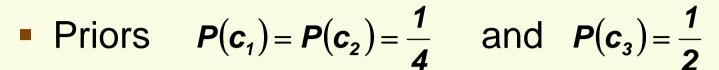
$$2x_1 + \frac{2}{3}x_2 = 6.02$$

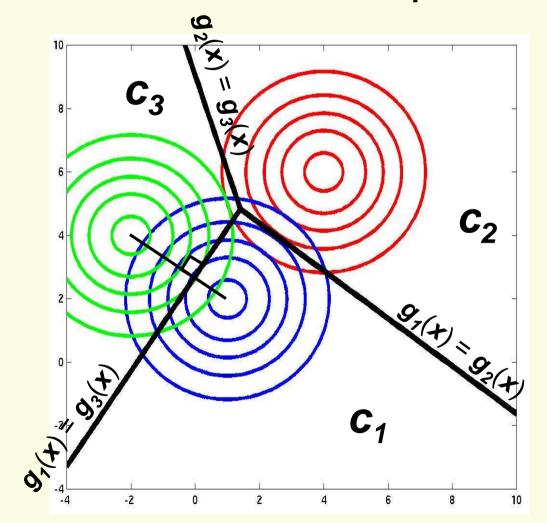
• Almost finally solve $g_1(x) = g_3(x)$

$$x_1 - \frac{2}{3}x_2 = -1.81$$

• And finally solve $g_1(x) = g_2(x) = g_3(x)$

$$x_1 = 1.4$$
 and $x_2 = 4.82$

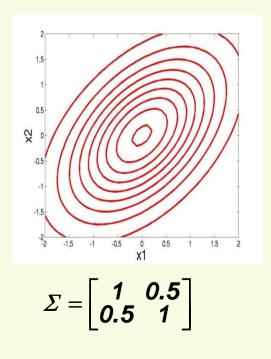




lines connecting means are perpendicular to decision boundaries

Case $\Sigma_i = \Sigma$

- Covariance matrices are equal but arbitrary
- In this case, features x₁, x₂, ..., x_d are not necessarily independent



Case $\Sigma_i = \Sigma$

Discriminant function $g_i(x) = -\frac{1}{2}(x - \mu_i)^t \sum_{i=1}^{-1} (x - \mu_i) - \frac{1}{2} \ln \sum_{i=1}^{-1} |H| P(c_i)$

for all classes

Discriminant function becomes

$$g_{i}(x) = -\frac{1}{2}(x - \mu_{i})^{t} \sum_{i=1}^{-1} (x - \mu_{i}) + \ln P(c_{i})$$

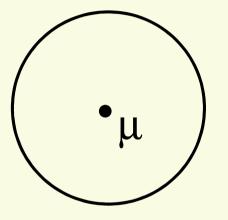
squared Mahalanobis Distance

- Mahalanobis Distance $\|\mathbf{x} \mathbf{y}\|_{\Sigma^{-1}}^2 = (\mathbf{x} \mathbf{y})^t \sum_{x y}^{-1} (\mathbf{x} \mathbf{y})$
- If *S*=*I*, Mahalanobis Distance becomes usual Eucledian distance

$$\|\mathbf{x}-\mathbf{y}\|_{l^{-1}}^{2} = (\mathbf{x}-\mathbf{y})^{t}(\mathbf{x}-\mathbf{y})$$

Eucledian vs. Mahalanobis Distances

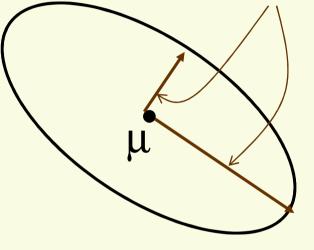
$$\left|\boldsymbol{X}-\boldsymbol{\mu}\right|^{2}=(\boldsymbol{X}-\boldsymbol{\mu})^{t}(\boldsymbol{X}-\boldsymbol{\mu})$$



points \boldsymbol{x} at equal Eucledian distance from $\boldsymbol{\mu}$ lie on a circle

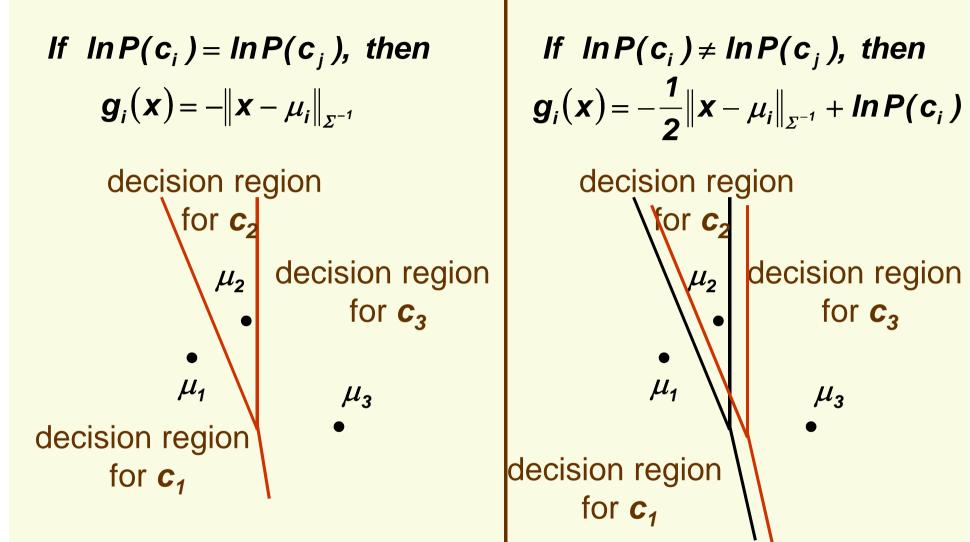
$$\left\|\boldsymbol{X}-\boldsymbol{\mu}\right\|_{\boldsymbol{\Sigma}^{-1}}^{2}=(\boldsymbol{X}-\boldsymbol{\mu})^{t}\sum_{\boldsymbol{\lambda}^{-1}}(\boldsymbol{X}-\boldsymbol{\mu})$$

eigenvectors of Σ



points \boldsymbol{x} at equal Mahalanobis distance from μ lie on an ellipse: $\boldsymbol{\Sigma}$ stretches cirles to ellipses

Case $\Sigma_i = \Sigma$ Geometric Interpretation



points in each cell are closer to the mean in that cell than to any other mean under Mahalanobis distance

Case $\Sigma_i = \Sigma$

Can simplify discriminant function:

$$g_{i}(x) = -\frac{1}{2}(x - \mu_{i})^{t}\sum^{-1}(x - \mu_{i}) + \ln P(c_{i}) =$$

$$= -\frac{1}{2}(x^{t}\sum^{-1}x - \mu_{i}^{t}\sum^{-1}x - x^{t}\sum^{-1}\mu_{i} + \mu_{i}^{t}\sum^{-1}\mu_{i}) + \ln P(c_{i}) =$$

$$= -\frac{1}{2}(x^{t}\sum^{-1}x - 2\mu_{i}^{t}\sum^{-1}x + \mu_{i}^{t}\sum^{-1}\mu_{i}) + \ln P(c_{i}) =$$
constant for all classes
$$= -\frac{1}{2}(-2\mu_{i}^{t}\sum^{-1}x + \mu_{i}^{t}\sum^{-1}\mu_{i}) + \ln P(c_{i})$$

$$= \mu_{i}^{t}\sum^{-1}x + \left(\ln P(c_{i}) - \frac{1}{2}\mu_{i}^{t}\sum^{-1}\mu_{i}\right) = w_{i}^{t}x + w_{i0}$$

Thus in this case discriminant is also linear

Case $\Sigma_i = \Sigma$: Example

• 3 classes, each 2-dimensional Gaussian with $\mu_{1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad \mu_{2} = \begin{bmatrix} -1 \\ 5 \end{bmatrix} \quad \mu_{3} = \begin{bmatrix} -2 \\ 4 \end{bmatrix} \quad \Sigma_{1} = \Sigma_{2} = \Sigma_{3} = \begin{bmatrix} 1 & -1.5 \\ -1.5 & 4 \end{bmatrix}$ $P(c_{1}) = P(c_{2}) = \frac{1}{4} \qquad P(c_{3}) = \frac{1}{2}$

• Again can be done by solving $g_i(x) = g_j(x)$ for i,j=1,2,3

Case $\Sigma_i = \Sigma$: Example

• Let's solve in general first

$$g_{j}(x) = g_{i}(x)$$

$$\mu_{j}^{t} \Sigma^{-1} x + \left(InP(c_{j}) - \frac{1}{2} \mu_{j}^{t} \Sigma^{-1} \mu_{j} \right) = \mu_{i}^{t} \Sigma^{-1} x + \left(InP(c_{i}) - \frac{1}{2} \mu_{i}^{t} \Sigma^{-1} \mu_{i} \right)$$
• Let's regroup the terms

$$\left(\mu_{j}^{t} \Sigma^{-1} - \mu_{i}^{t} \Sigma^{-1} \right) x = - \left(InP(c_{j}) - \frac{1}{2} \mu_{j}^{t} \Sigma^{-1} \mu_{j} \right) + \left(InP(c_{i}) - \frac{1}{2} \mu_{i}^{t} \Sigma^{-1} \mu_{i} \right)$$
• We get the line where $g_{j}(x) = g_{i}(x)$

$$\left(\mu_{j}^{t} - \mu_{i}^{t} \right) \Sigma^{-1} x = \left(In \frac{P(c_{i})}{P(c_{j})} + \frac{1}{2} \mu_{j}^{t} \Sigma^{-1} \mu_{j} - \frac{1}{2} \mu_{i}^{t} \Sigma^{-1} \mu_{i} \right)$$
row vector
scalar

Case
$$\Sigma_i = \Sigma$$
: Example
 $(\mu_j^t - \mu_i^t)\Sigma^{-1} \mathbf{x} = \left(In \frac{P(c_i)}{P(c_j)} + \frac{1}{2} \mu_j^t \Sigma^{-1} \mu_j - \frac{1}{2} \mu_i^t \Sigma^{-1} \mu_i \right)$

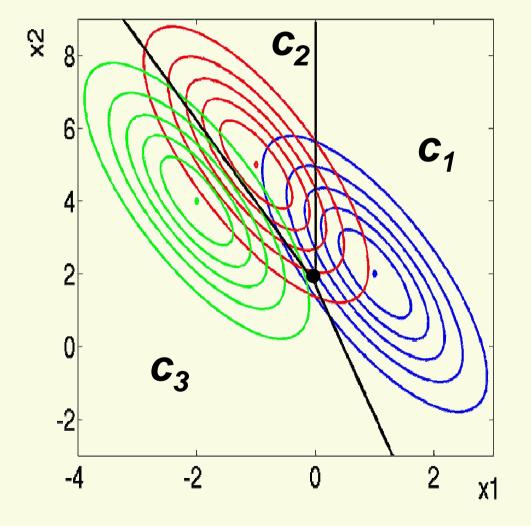
• Now substitute for i,j=1,2 $\begin{bmatrix} -2 & 0 \end{bmatrix} x =$

$$\begin{bmatrix} -2 & 0 \end{bmatrix} \mathbf{x} = \mathbf{0}$$
$$\mathbf{x}_1 = \mathbf{0}$$

- Now substitute for i,j=2,3 [-3.14 - 1.4]x = -2.41 $3.14x_1 + 1.4x_2 = 2.41$
- Now substitute for i,j=1,3 [-5.14 - 1.43]x = -2.41 $5.14x_1 + 1.43x_2 = 2.41$

Case $\Sigma_i = \Sigma$: Example

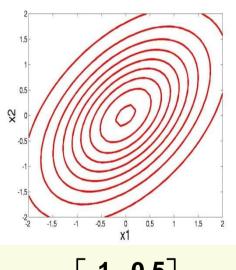
• Priors
$$P(c_1) = P(c_2) = \frac{1}{4}$$
 and $P(c_3) = \frac{1}{2}$



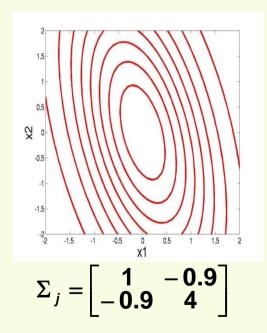
lines connecting means are **not** in general perpendicular to decision boundaries

General Case Σ_i are arbitrary

- Covariance matrices for each class are arbitrary
- In this case, features x₁, x₂, ..., x_d are not necessarily independent



$$\Sigma_i = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$$



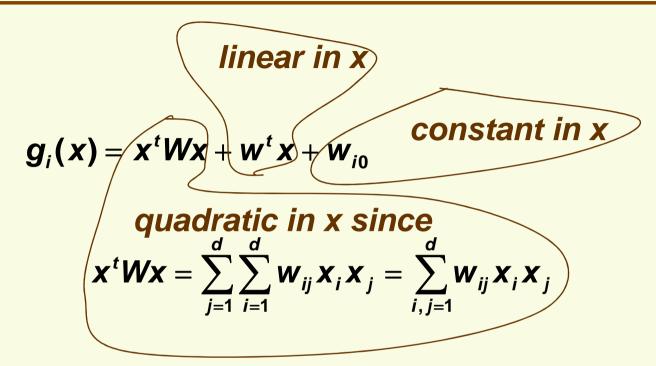
General Case Σ_i are arbitrary

From previous discussion,

$$\boldsymbol{g}_i(\boldsymbol{x}) = -\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}_i^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_i) - \frac{1}{2} \ln |\boldsymbol{\Sigma}_i| + \ln \boldsymbol{P}(\boldsymbol{c}_i)$$

• This can't be simplified, but we can rearrange it: $g_{i}(x) = -\frac{1}{2} \left(x^{t} \Sigma_{i}^{-1} x - 2 \mu_{i}^{t} \Sigma_{i}^{-1} x + \mu_{i}^{t} \Sigma_{i}^{-1} \mu_{i} \right) - \frac{1}{2} \ln |\Sigma_{i}| + \ln P(c_{i})$ $g_{i}(x) = x^{t} \left(-\frac{1}{2} \Sigma_{i}^{-1} \right) x + \frac{\mu_{i}^{t} \Sigma_{i}^{-1} x}{2} + \left(-\frac{1}{2} \mu_{i}^{t} \Sigma_{i}^{-1} \mu_{i} - \frac{1}{2} \ln |\Sigma_{i}| + \ln P(c_{i}) \right)$ $g_{i}(x) = x^{t} W x + w^{t} x + w_{i0}$

General Case Σ_i are arbitrary



- Thus the discriminant function is quadratic
- Therefore the decision boundaries are quadratic (ellipses and parabolloids)

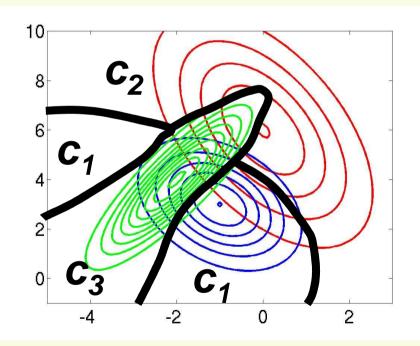
General Case Σ_i are arbitrary: Example

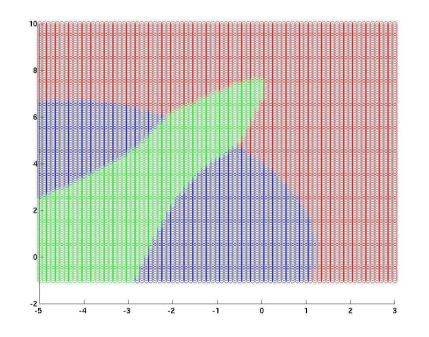
• 3 classes, each 2-dimensional Gaussian with $\mu_1 = \begin{bmatrix} -1 \\ 3 \end{bmatrix} \quad \mu_2 = \begin{bmatrix} 0 \\ 6 \end{bmatrix} \quad \mu_3 = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$

$$\Sigma_1 = \begin{bmatrix} 1 & -0.5 \\ -0.5 & 2 \end{bmatrix} \qquad \Sigma_2 = \begin{bmatrix} 2 & -2 \\ -2 & 7 \end{bmatrix} \qquad \Sigma_3 = \begin{bmatrix} 1 & 1.5 \\ 1.5 & 3 \end{bmatrix}$$

• Priors:
$$P(c_1) = P(c_2) = \frac{1}{4}$$
 and $P(c_3) = \frac{1}{2}$

- Again can be done by solving $\boldsymbol{g}_i(\boldsymbol{x}) = \boldsymbol{g}_j(\boldsymbol{x})$ for i,j=1,2,3 $\boldsymbol{g}_i(\boldsymbol{x}) = \boldsymbol{x}^t \left(-\frac{1}{2}\boldsymbol{\Sigma}_i^{-1}\right) \boldsymbol{x} + \mu_i^t \boldsymbol{\Sigma}_i^{-1} \boldsymbol{x} + \left(-\frac{1}{2}\mu_i^t \boldsymbol{\Sigma}_i^{-1}\mu_i - \frac{1}{2}\ln|\boldsymbol{\Sigma}_i| + \ln \boldsymbol{P}(\boldsymbol{c}_i)\right)$
- Need to solve a bunch of quadratic inequalities of 2 variables





Important Points

- The Bayes classifier when classes are normally distributed is in general quadratic
 - If covariance matrices are equal and proportional to identity matrix, the Bayes classifier is linear
 - If, in addition the priors on classes are equal, the Bayes classifier is the minimum Eucledian distance classifier
 - If covariance matrices are equal, the Bayes classifier is linear
 - If, in addition the priors on classes are equal, the Bayes classifier is the minimum Mahalanobis distance classifier
- Popular classifiers (Euclidean and Mahalanobis distance) are optimal only if distribution of data is appropriate (normal)