Normal Random Variable and its
discriminant functions
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= Normal Random Variable
* Properties
= Discriminant functions



Why Normal Random Variables?

= Analytically tractable

= Works well when observation comes
form a corrupted single prototype (L)



The Univariate Normal Density

= X Is a scalar (has dimension 1)

1 1(x-uY
p(X):\/go'exp_Z( > ) ,

Where:
L = mean (or expected value) of x

o2 = variance
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FIGURE 2.7. A univariate normal distribution has roughly 95% of its area in the range
X — 1| = 2a, as shown. The peak of the distribution has value p(u) = 1/ 2mo. From:

Richard O. Duda, Peter E. Hart, and David C. Stork, Fattern Classification. Copyright
© 2001 by John Wiley & Sons, Inc.



Several Features

= What if we have several features x4, X, ..., X4
= each normally distributed
= may have different means
= may have different variances
= may be dependent or independent of each other

= How do we model their joint distribution?




The Multivariate Normal Density

= Multivariate normal density in d dimensions Is:

p(x)=

2 =

covariance of x ; and x4
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= Each x; is N(u4,5?)



More on 2

y=| + . ¢ |plays role similar to the role
o4, - 04 | that @@ plays in one dimension

= From 2 we can find out

1. The Iindividual variances of features
X1y Xy very Xg4

2. If teatures x; and x; are
" Independent ;=0
= have positive correlation ;>0
= have negative correlation ¢;<0



The Multivariate Normal Density

|
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o9, o
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| |

= |f 2" Is diagonal then the features x;,..., x; are

independent, and

_ . 1 _(Xi_:ui)z
p(X)—gGi@exp 20




The Multivariate Normal Density

p(x) <-exp

normalizing
constant  scalar s (single number), the closer s to 0 the larger is p(x)

= Thus P(x) is larger for smaller (x — u)' 27 (x — u)
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(X —u) 27 (X — p)

= 5 is positive semi definite (xt2 x>=0)

= |f xt2x=0 for nonzero x then det(2)=0. This case is
not interesting, p(x) Is not defined

1. one feature vector Is a constant (has zero
variance)

2. or two components are multiples of each other
= so we will assume Sis positive definite (xtZ x >0)

= |If 2'is positive definite then so is 2



Eigenvalues/eigenvectors (from Wiki)

= Given a linear transformation A, a non-zero vector X Is
defined to be an eigenvector of the transformation Iif it
satisfies the eigenvalue equation

Ax = AX for some scalar A.

where A is called an eigenvalue of A, corresponding to the
eigenvector X.
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Eigenvalues/eigenvectors (from Wiki)

Geometrically, it means that under the transformation A, eigenvectors
only change in magnitude and sign—the direction of Ax is the same as
that of x. The eigenvalue A is simply the amount of "stretch" or "shrink"
to which a vector is subjected when transformed by A.

Y

AX = MK

) k ix w

For example, an eigenvalue of +2 means that the eigenvector is
doubled in length and points in the same direction. An eigenvalue of
+1 means that the eigenvector is unchanged, while an eigenvalue of

—1 means that the eigenvector is reversed in sense.
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Eigenvalues/eigenvectors (from Wiki)

= |n this shear mapping the red arrow changes
direction but the blue arrow does not.

= Therefore the blue arrow is an eigenvector, with
eigenvalue 1 as its length is unchanged.

k] B e
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(X —p)' T (X —p)

= Positive definite matrix of size d by d has d distinct
real eigenvalues and its d eigenvectors are
orthogonal

= Thus If @Is a matrix whose columns are normalized
eigenvectors of 2, then @-1= @t

= 2@=@A where Ais a diagonal matrix with
corresponding eigenvalues on the diagonal

* Thus 2=@NA@®21 and 2 1=@N1 @1

= Thus if A2 denotes matrix s.t. A 2AN22= N

1 1\!
>t = (@A 2)(@1 Zj = MM



(X —p)' T (X —p)

= Thus
(X —p) 2 (X —p)=(X—p) MM (X — u) =

= (MU (x =) (M (x = ) =M (x = )|

= Thus |(x —p)'Z7'(x—p)= ‘Mt(X —ﬂ)‘z

1

where M!= A2 @™
scaling rotation
matrix  matrix

= Points x which satisfy |M‘(x - x)" =const lie on an

ellipse



(X —u) 27 (X — p)

(X = p) (X —p)
usual (Eucledian)
distance between x and u

points x at equal
Eucledian
distance from u
lie on a circle

(X —p)' ). 7 (x—p)
Mahalanobis distance

between x and U

&

Q
6& eigenvectors
of 2

points x at equal e,
Mahalanobis distance from
Llie on an ellipse: 2
stretches circles to ellipses



2-d Multivariate Normal Density

= Level curves graph
= p(x) is constant along / ‘
each contour |
= topological map of 3-d
surface \ /

x01
= X, and x, are independent
= g,% and o,° are equal
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2-d Multivariate Normal Density
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2-d Multivariate Normal Density ~ #=[0.0]




The Multivariate Normal Density

= |f X has density N(z,2) then AX has density
N(A' 1, A 2A)

= Thus X can be transformed into a spherical normal
variable (covariance of spherical density Is the

identity matrix I) with whitening transform

AW/cDA_Z\

5 1 09 whose rows are diagonal matrix with 5 10
—109 1 eigenvectors of X elgenvalues of 2 —10




Discriminant Functions

= Classifier can be viewed as network which
computes m discriminant functions and selects
category corresponding to the largest discriminant

select class
giving maximim

discriminant
functions

features

= g;(x) can be replaced with any monotonically
Increasing function of g, the results will be unchanged



Discriminant Functions

= The minimum error-rate classification is achieved by
the discriminant function

gi(x) = P(c; [x)=P(x|c;)P(c)/P(X)

= Since the observation x Is independent of the class,
the equivalent discriminant function is

gi(x) = P(x|c)P(c)

= For normal density, convinient to take logarithms.
Since logarithm Is a monotonically increasing
function, the equivalent discriminant function is

gi(x) = In P(x|c;)+ In P(c))
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Discriminant Functions for the Normal Density

" Suppose for class ¢; its class conditional density
p(x[cy) is N(4,2)

p(x|c;)

B 1
(2r7)° “‘Z

= _
‘1/2 eXp _E(X — 1) % H(x — K )}

= Discriminant function g;(x) = In P(x|c)+ In P(c))

= Plug in p(x|c;) and P(c;) get
consta&nt f;)r all i

g;(X) = _%(X _:ui)tzi_l(x — 1) 9 2”‘%'”‘2"“ nP(c;)

g;(X)= _%(X — K )tzi_l(x _:ui)_%ln‘zi‘-l_lnp(ci)




Case J = &l

| 62 0 0 100
* Thatis Q.= 8 %2 0 |=0°- 010
(02

= |n this case, features x4, X, ,..., X4 are independent
with different means and equal variances ¢?

A\
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Case J = o

= Discriminant function
1 (N 1 1
gi(x)=_§(x_ﬂi) Z (X_/ui)_EIn‘Zi‘_i_lnP(Ci)

« Det(%)=c® and S1=(UA) - | 2

= Can simplify discriminant function

g,(X)= _%(X _ﬂi)t I_z(x _ﬂi)_%lnp(ci)
O

constant for all |

(X — ) (X — ) +InP(c,) =

1
gi(x)=_2

2
O

1
=-> x — [ +InP(c,)




Case X = 0’ Geometric Interpretation

If InP(c;)=InP(c;), then

decision region
for c,
H

Ho

decision region
for c,

voronoi diagram: points in each
cell are closer to the mean in that cell
than to any other mean

If InP(c;)=InP(c;), then

gi(x):_ 12 ‘X_ﬂi‘z +InP(c;)

20

decision region
for c,

H Hs

decision regio

H, for c,
decision region

for c,



Case J = &l

1
g;(x) =_20_2 (X =) (X — ) +InP(c;) =
1
=_20_2 (&t(_ﬂitx — X'+ pip)+InP(c;)
constant
for all classes
1 t t } ﬂtﬂ
0;(X)=—-—H (24 X+ )+InP(c,) X+ (-7 +InP(c;))
20 20

g (X) =W)X +

discriminant function is linear
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Case J = &l

= Thus discriminant function is linear,

= Therefore the decision boundaries
gi(X)=g;(x) are linear
= |ines If X has dimension 2
= planes If X has dimension 3
= hyper-planes if x has dimension larger than 3




Case 2 = ¢?l: Example

= 3 classes, each 2-dimensional Gaussian with

1 4 —2 30
i) wel] meli?] menen3e

)
2

lul lui
20°

[436] X +(—— —-1.38)

and P(c,)=

Il
U
(@)

N
~

= Priors P(c,)

= Discriminant function is gi(X)—g'

= Plug in parameters for each class

[12]

G(X)="3 X+(——138) 0,(X)=

24

0s(X) = x+(—— —0.69)
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Case 2 = ¢?l: Example

= Need to find out when g;(x) < g;(x) for I,j)=1,2,3

= Can be done by solving g;(x) = g;(x) for 1,J)=1,2,3
= |Let's take g,(X) = g,(x) first

[1 2] x+(—— -1.38)= [4 6] x+(—— —1.38)
3 3
« Simplifying, [-3 —4][x,] 47
3 [XJ__?
AT
3 6

line equation

31



Case 2 = ¢?l: Example

= Next solve g,(X) = g5(X)

2X, +%x2 =6.02

= Almost finally solve g,(x) = gs(X)

X4 —%xz =-1.81

= And finally solve g,(x) = g,(Xx) = gs(Xx)
X, =14 and x,=4.82
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Case X = o¢2l: Example

= Priors P(cl)=P(c:2)=% and p(cg)%

10

= (<P

, Cj

| - lines connecting
: Q Ca. means

¢ | are perpendicular to

-

R decision boundaries
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Case 2, =2

= Covariance matrices are equal but arbitrary

= |n this case, features x4, X, ,..., X4 are not
necessarily independent

0
X1

1 05
2=[o.5 1}
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Case 2, =2

= Discriminant function

1
gi(x)=_%(x_ﬂi)tz_l(x_ﬂi)__ i‘+|nP(Ci)
constant
for all classes
= Discriminant function becomes

1 _

gi(x)z_a(x_ﬂi )tz 1(X_ﬂi)+|n P(c,)
squared Mahalanobis Distance

= (X=y) Y H(x—y)

= |f 2=|, Mahalanobis Distance becomes usual
Eucledian distance

= Mahalanobis Distance ||x -y

2
|1

=(x-y)(x-y)

|x -y



Eucledian vs. Mahalanobis Distances

X =4 = (x = ) (x - )

points x at equal
Eucledian
distance from u
lie on a circle

= (X =) Y X - p)
eigenvectors of 2

|x = p

points x at equal
Mahalanobis distance from
K lie on an ellipse:
2 stretches cirles to ellipses



Case 2 = 2 Geometric Interpretation

If InP(c;)=InP(c;), then If InP(c;)=InP(c;), then
1
gi(x): _HX _/ui‘z—l gi(x): _EHX _/ui‘g—l +InP(c;)
decision region decision region
for c

decision region
for c,

decision region
for c,

Hs

Hs3

decision region

for c, decision region

for c,
points in each cell are closer to the

mean in that cell than to any other
mean under Mahalanobis distance




Case 2. =2

= Can simplify discriminant function:

0,00 == (=) B A=) +InPc,) =

- —%(XtZ_lx — WX =X+ )+ InP(c,) =

= —%(XXX —2U XX+ 4Tt )+In P(c,)=

constant for all classes

- (24T + 4T )+ NP ()

B (FEeE -4

= Thus In this case discriminant is also linear




Case 2 = 2. Example

= 3 classes, each 2-dimensional Gaussian with

1 -1 -2 1 -1.5
ﬂ1:|:2} /u2=|:5} ﬂ3:|:4i| 21:22:23:[—1.5 4 }

1

P(e,)=Ple) = Ples)=5

= Again can be done by solving g;(x) = g;(x) for I,j)=1,2,3



Case 2 = 2. Example

= Let’s solve in general first

4 +(In p(c, )-%y;z-lﬂij
AN

-
(,LIEZ_l —,uitZ‘l)X = —(In P(c, )—E,u})?_lluj]+(ln P(c. )—%,uit)?_l,ui]

= We get the line where g.(x)=g,(x)

_ P(c.) 1 _ 1 _
)t x = In oty =ty

. -
M2 +(In P(c, )_E'UEZ 1;1]):
_/

—

\- Let’s regrou

row vector
scalar



Case 2 = 2. Example

_ P(c.) 1 _ 1 _
g )P =] In | X -—u Xt
(ﬂ, ﬂ.) ( P(cj)+2”‘ Ky =5 H ﬂ.J
= Now substitute for I1,j=1,2
[-2 0]x =0
X, =0

= Now substitute for 1,j=2,3

[-3.14 -1.4]x =-2.41
3.14x, +1.4x, =2.41

= Now substitute for 1,j=1,3
[-5.14 -1.43]x =-2.41
5.14x, +1.43x, =2.41



Case 2. = 3. Example

Ple.)=7 and Ple))=>

= Priors P(c,) >

lines connecting
means
are not in general
perpendicular to
decision boundaries
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General Case 2; are arbitrary

= Covariance matrices for each class are arbitrary

= |n this case, features x4, X, ,..., X4 are not
necessarily independent
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General Case 2: are arbitrary

= From previous discussion,

0,(X) == (x = ) Z(x — ) =2 1n[z [+ InP (e,

= This can’t be simplified, but we can rearrange it:

g (x)= —%(thilx — 2T + )-%'n\ii\ﬂn P(c,)
f 1oz tal 1 (o 1
g, (X) =X —Ezi X + 27X + —Eyizi ,ui—EIn\Ei\HnP(ci)

g, (X)= XWX +W'X +W. 4



General Case 2: are arbitrary

constant in x
g,(X)= 0

quadratlc In X since

tWX_ZZWuXIXJ _ZWIJ i

j=1i=1 ,j=1

= Thus the discriminant function is quadratic

= Therefore the decision boundaries are quadratic
(ellipses and parabolloids)
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General Case 2; are arbitrary: Example

= 3 classes, each 2-dimensional Gaussian with

if3] wly wlF

1 -05 2 -2 1 15
21:[—0.5 2 } 22{—2 7 } 23{1.5 3}
— 1 1
= Priors: P(c:1)=F>(c2)=Z and P(cg)=E

= Again can be done by solving g;(x) = g;(x) for I,j)=1,2,3
t 1 -1 te-1 1 te -1 1
g;(X)=xX [_Ezi )X + 42X +(_§:uizi K, _Eln‘zi‘_"lnp(ci)]

= Need to solve a bunch of quadratic inequalities of 2
variables



General Case 2; are arbitrary: Example

3 Bl o7

P(Cz)=%

-

1 -05
_05 2 } 2

2

_2} s,

1%

115
=15 3

|



Important Points

= The Bayes classifier when classes are normally
distributed Is in general quadratic

= If covariance matrices are equal and proportional to
identity matrix, the Bayes classifier Is linear

= If, In addition the priors on classes are equal, the Bayes
classifier is the minimum Eucledian distance classifier

= If covariance matrices are equal, the Bayes
classifier is linear

= If, In addition the priors on classes are equal, the Bayes
classifier is the minimum Mahalanobis distance classifier

= Popular classifiers (Euclidean and Mahalanobis
distance) are optimal only if distribution of data
IS appropriate (normal)



