Multilayer Neural Networks



Brain vs. Computer

Designed to solve logic and -
arithmetic problems

Can solve a gazillion -
arithmetic and logic problems
In an hour 0

absolute precision
Usually one very fast procesor
high reliability

Evolved (in a large part)
for pattern recognition

Can solve a gazillion of
PR problems in an hour

Huge number of parallel
but relatively slow and
unreliable processors

not perfectly precise
not perfectly reliable

Seek an inspiration from human brain for PR?



Neuron: Basic Brain Processor

Neurons are nerve cells that transmit signals to and from
brains at the speed of around 200mph

Each neuron cell communicates to anywhere from 1000 to
10,000 other neurons, muscle cells, glands, so on

Have around 10'° neurons in our brain (network of
neurons)

Most neurons a person is ever going to have are already
present at birth



Neuron: Basic Brain Processor

}5\5
Wn/ucleus

cell body

axon

N
\\/

dendrites

= Main components of a neuron

Cell body which holds DNA information in nucleus
Dendrites may have thousands of dendrites, usually short

axon long structure, which splits in possibly thousands branches at
the end. May be up to 1 meter long



Neuron in Action (simplified )

T

__———_| neuron
—— " axon

‘>

dendrites

= Input : neuron collects signals from other neurons
through dendrites, may have thousands of dendrites

= Processor: Signals are accumulated and
processed by the cell body

= Qutput: If the strength of incoming signals is large
enough, the cell body sends a signal (a spike of
electrical activity) to the axon



Neural Network

i




ANN History: Birth

= 1943, famous paper by W. McCulloch
(neurophysiologist) and W. Pitts (mathematician)

Using only math and algorithms, constructed a model
of how neural network may work

Showed it is possible to construct any computable
function with their network

Was it possible to make a model of thoughts of a
human being?

Considered to be the birth of Al

= 1949, D. Hebb, introduced the first (purely
pshychological) theory of learning

Brain learns at tasks through life, thereby it goes
through tremendous changes

If two neurons fire together, they strengthen each
other’s responses and are likely to fire together in the
future



ANN History: First Successes

= 1958, F. Rosenblatt,

= perceptron, oldest neural network still in use today

= Algorithm to train the perceptron network (training is
still the most actively researched area today)

= Built in hardware

= Proved convergence In linearly separable case
= 1959, B. Widrow and M. Hoff
= Madaline

= First ANN applied to real problem (eliminate echoes in
phone lines)

= Still In commercial use



ANN History: Stagnation

= Early success lead to a lot of claims which were not
fulfilled

= 1969, M. Minsky and S. Pappert

= Book “Perceptrons”

= Proved that perceptrons can learn only linearly
separable classes

= |n particular cannot learn very simple XOR function
= Conjectured that multilayer neural networks also
limited by linearly separable functions
= No funding and almost no research (at least In
North America) in 1970’s as the result of 2 things
above



ANN History: Revival

= Revival of ANN in 1980’s

= 1982, J. Hopfield
= New kind of networks (Hopfield’'s networks)
= Bidirectional connections between neurons
= |Implements associative memory

= 1982 joint US-Japanese conference on ANN
= US worries that it will stay behind

= Many examples of mulitlayer NN appear

= 1982, discovery of backpropagation algorithm

= Allows a network to learn not linearly separable
classes

= Discovered independently by
1. Y. Lecunn
2. D. Parker
3. Rumelhart, Hinton, Williams



ANN: Perceptron

Mgis unit

Ll wiils

= |nput and output layers
= g(X) =wiXx + wy
= Limitation: can learn only linearly separable classes



MNN: Feed Forward Operation

Input layer hidden layer ou%pu% Iayer:]c
m outpyts, one for
d features egcl:% SRS

bias unit



MNN: Notation for Weights

= Use w; to denote the weight between input unit |
and hidden unit |

Input unit | hidden unit |
- >
() w0 Y; >

= Use v, to denote the weight between hidden unit |
and output unit k

hidden unit | output unit Kk

DD
— > >
Yi ViiYj “k




MNN: Notation for Activation

= Use net; to denote the activation and hidden unit |

1. hiddenunit
“ XDy,
net; :ZX(I)WjiJijo W
=1 / yJ
{L

= Use net*, to denote the activation at output unit k

Ny output unit Kk

net, =D Y .V +Vio Vi

j=1
ye—=> Z

O



Discriminant Function

= Discriminant function for class k (the output of the
kK th output unit)

g, (x)=2, = ‘activation at.
ith hidden unit

Ny, |
=f(2vkjf( WjiX(')+Wj j+vko)
' =1

— _
~

activation at kth output unit




Discriminant Function

e laver




Expressive Power of MNN

= |t can be shown that every continuous function
from Input to output can be implemented with
enough hidden units, 1 hidden layer, and proper
nonlinear activation functions

= This is more of theoretical than practical interest

= The proof Is not constructive (does not tell us exactly
how to construct the MNN)

= Even If it were constructive, would be of no use since
we do not know the desired function anyway, our goal
IS to learn it through the samples

= But this result does give us confidence that we are on
the right track

= MNN is general enough to construct the correct
decision boundaries, unlike the Perceptron



MNN Activation function

= Must be nonlinear for expressive power larger than
that of perceptron

= |f use linear activation function at hidden layer, can
only deal with linearly separable classes

= Suppose at hidden unit |, h(u)=a,u

g, (x [kajh(Zw X(')+W,oj+Vkoj
Ny, |
[ ijaj(ZWjiX(')Jeronkaoj

=1 =1

ih
W new W new

N

5 ()
kajajw +(kajajwJO +ka)}
j=1

|=1

N

(3

(1)

1j=1

Mgh

I
|



MNN Activation function

= could use a discontinuous activation function

f(net, ) ={_1 if net, >0 :':

1 if net, <O

= However, we will use sigmoid function
gradient descent for

learning, so we need to
use a continuous
activation function

= From now on, assume f Is a differentiable function




MNN: Modes of Operation

= Network have two modes of operation:

= Feedforward

The feedforward operations consists of presenting a
pattern to the input units and passing (or feeding) the
signals through the network in order to get outputs
units (no cycles!)

= Learning

The supervised learning consists of presenting an
iInput pattern and modifying the network parameters
(weights) to reduce distances between the computed
output and the desired output



MNN

= Can vary
= number of hidden layers
= Nonlinear activation function

= (Can use different function for hidden and
output layers

= (Can use different function at each hidden
and output node



MNN: Class Representation

= Training samples x, ,..., X,, each of class 1,...,m

= Let network output z represent class c as target t (¢

%1 0]
|, |2t@ 2|

25| % =t 1 T———cth row

z 0

m .

Our Ultimate Goal For FeedForward Operation

sample of class c MNN with weights t(c)

> w;; and v, >

MNN training to achieve the Ultimate Goal

Modify (learn) MNN parameters w; and v,; so that for
each training sample of class ¢ MNN output z = t(©)



Network Training (learning)

1. Initialize weights w; and v,; randomly but not to 0
2. lterate until a stopping criterion Is reached

choose p

Input sample x

| >

P | MNN with weights

w;; and v,

output z =

\Y

Compare output z with the
desired target t; adjust w;;
and v,; to move closer to the
goal t (by backpropagation )




BackPropagation

Learn w; and v,; by minimizing the training error
What Is the training error?

Suppose the output of MNN for sample x is z and
the target (desired output for x ) is t

Error on one sample: J(w,v)= %i(tc -z ¥

Training error: J(w,v)= %Zn:Z(tS) -z0f

v® w® = random

Use gradient descent: | repeat until convergence:
WD —w® _pv, 3w ®)
v =y O _py 3y )




BackPropagation

= For simplicity, first take training error for one

sample X; : (W,V)z %i(’tc - Z;C)szmon of w,v
\

c=1

fixed constant

Ny d |
Z, =f(zvkjf(ZWjiX(l)+Wj0j+vk0]
j=1

=1

= Need to compute
1. partial derivative w.r.t. hidden-to-output weights

83
vy,

J

2. partial derivative w.r.t. input-to-hidden weights

Ji




BackPropagation: Layered Model

activation at
hidden unit |

output at
hidden unit |

activation at
output unit k

activation at
output unit k

objective function

d
net, = Zx
=1

Y

= f

J=1

(‘)vvji +W g
4
(net )
L

net, = Yy \Vy +Vq

chain rule

0J

o))
<
=

chain rule




BackPropagation

* S & 1
net; =J_Z=;ijkj +vk0|:> Z, =f(netk) I:> J(W,V)=§Z(tc -z, f

c=1

0J
OV

= First compute hidden-to-output derivatives

OV 26530V c=1 Vi
-2, —2,) =~ -2)-2(z,)
=(t, y 8ij c K K k 5ij Kk

_ —(tk B Zk) Ozk 8netk




BackPropagation

Gradient Descent Single Sample Update Rule for

hidden-to-output weights v,

j>0: v =y Lt -z, )f (net, )y,

|

j = 0 (bias weight): vV =v) 4 pt, -z, )f (net;)




BackPropagation

= Now compute input-to-hidden o

83 oW .
N o
= (tk _Zk)aw—(tk _Zk)

ji
j
= _i(tk _Zk) %, = —i(’[k —Zk) 0z, _onet,
k=1

k=1 oW ; onet oW ;
c .\onet, Oy .
=-) (t, =z, )f'\net k
Zi(k k) ( k) dy, ow,
C . oy . onet.
= — 't — f’ t . J J
Zi(k Zk) (ne k)ij anetj 8Wji

(—i(tk —~z, ) (net; v, f'(net, Jx® if i %0
k=1

i(tk _Zk)f'(net;)ijf'(netj) if i =0




BackPropagation

0J r_1”('“etj)X(i)g(t -Z )f'(net;)vkj if i 20

OW | —'(net )i( z,)t'(net; v, if i =0

k=1

Gradient Descent Single Sample Update Rule for

Input-to-hidden weights ~ w;

i>0: wi=wl gt (net ) (')i(tk —zk)f’(net;)v(z.

| = 0 (bias weight): w&) =w ) 4 pf (net )i t, —z,)f'(net; 0




BackPropagation of Errors

63\‘/] (net )X(I i( 2,)f (net;)vkj v,

i k=1

unit i -
unit

b@zl

Zm

>

= Name “backpropagation” because during training,
errors propagated back from output to hidden layer



BackPropagation

Consider update rule for hidden-to-output weights:
Vi =vi it - 2,)f (nety )y,

Suppose t, -z >0

Then output of the kth hidden unit is too small: t, > z,

Typically activation functionfis s.t. f* >0

Thus (t, —zk)f'(net;) >0 Yj @ Z,
There are 2 cases: —

1. y,>0, then to increase z,, should increase weight Vi
which is exactly what we do since #(t, - zk)f'(net;)y,- >0

2. y; <0, then to increase z,, should decrease weight v,
which is exactly what we do since n(t, - Zk)f'(neti)yj <0



BackPropagation

= The case t, -z, <0 is analogous

= Similarly, can show that input-to-hidden weights
make sense

= Important: weights should be Initialized to random
nonzero numbers

0J

O _ ¢ ’(net j )x(i)Z(tk - Zk)f'(”et;)vki

m

= If vi; = 0, Input-to-hidden weights w; never updated



Training Protocols

= How to present samples in training set and update
the weights?

= Three major training protocols:

1. Stochastic

= Patterns are chosen randomly from the training set,
and network weights are updated after every sample

presentation

2. Batch

= weights are update based on all samples; iterate
weight update

3. Online

= each sample is presented only once, weight update
after each sample presentation



Stochastic Back Propagation

1. Initialize
= number of hidden layers n,
= weights w, v
= convergence criterion #and learning rate 7
= timet=0
2. do

~ X < randomly chosen training pattern
forall o<i<d, 0<j<n,, 0<k<m

Vig =V +77(tk _Zk)f'(net;)yj
Vio =Vk0+77(tk _Zk)f'(netﬁ)
W, =W, +77f'(netj)x(i)2(tk —zk)f'(net:)vkj

m k=1

Wi =W +77f’(netj)Z(tk —zk)f’(net;)vkj

k=1

t=t+1
until || J ||<@

3. return v, w




Batch Back Propagation

This is the true gradient descent, (unlike stochastic
propagation)

For simplicity, derived backpropagation for a
single sample objective function:

m

J(W,V)z%Z(’[C -z ¥

c=1

The full objective function

20~ 2

i=1 c=1

Derivative of full objective function Is just a sum
of derivatives for each sample:

%J(w,v)%gﬁg(t@-zs>)2j

already derived this



Batch Back Propagation

=  For example,
8 & ., ()N (het :
—— =) —f (netj)xIO Z(tk -2, )f (”etk)ij

p=1 k=

6NVﬁ 1



Batch Back Propagation

1. Initialize ng,w,v,8,n,t=0
2. do
AV =AV,, =Aw; =Aw,, =0

(forall 1<p<n
forall o<i<d, 0<j<n,,0<k<m
: 1 *
9 v, =av, +7t, -z, ) (net; )y,
Q. .
(D< AV, , = AV, +n(t, -z, )f' (net )
q) ! |
= AW = AW + 7t (netj)xf)) ( z,)t'(net; v,
AW o = AW +77f'(netj)2(tk —z,)t'(net; v,
k=1
\-
Vig =V T AV Vg =V FAV, i W =W, + AW ;[ W, =W + AW,
t=t+1
until_ [[J |[<@

3. return v,w




Training Protocols

1. Batch
= True gradient descent

2. Stochastic

= Faster than batch method
= Usually the recommended way

3. Online

= Used when number of samples is so large it does not
fit In the memory

= Dependent on the order of sample presentation
= Should be avoided when possible



MNN Training

| training time >
| |

X X0 g X XOo [Xx XO g

xC; O O xC; O O xC; O O
O .00 0,00 ©0._00

x Ox X x |x Ox X x |x Ox X
X y 0O X xy 00 X ¢y 0O

Large training Small training Zero training

error: in the error. decision error. decision

beginning random regions improve regions separate

decision regions with time training data

perfectly, but we
overfited the
network



MNN Learning Curves

Training data : data on which learning (gradient descent for
MNN) is performed

Validation data : used to assess network generalization
capabilities

Training error typically
goes down, since with
enough hidden units, can
find discriminant function
which classifies training
patterns exactly

classification error

training time

Validation error first goes down, but then goes up since at
some point we start to overfit the network to the validation
data



Learning Curves

classification error

f =
J training time

= this is a good time to stop training, since after this time we
start to overfit

= Stopping criterion is part of training phase, thus validation
data is part of the training data

= To assess how the network will work on the unseen
examples, we still need test data



Learning Curves

Jim stop training
= validation data is used to

determine “parameters”, in
this case when learning
should stop

/

verlideation

T T T T T F'I'?.I'I'.'I:'IFF.':-
{2 3 4 5 0 7 8 9 Il

= Stop training after the first local minimum on validation data

= We are assuming performance on test data will be similar to
performance on validation data



Data Sets

Training data
= data on which learning is performed
Validation data

= validation data is used to determine any free
parameters of the classifier

= k inthe knn neighbor classifier
= h for parzen windows

= number of hidden layers in the MNN
= elc

Test data
= used to assess network generalization capabilities



MNN as Nonlinear Mapping

this module implements this module implements
nonlinear input mapping @ linear classifier (Perceptron)




MNN as Nonlinear Mapping

= Thus MNN can be thought as learning 2 things at
the same time

= the nonlinear mapping of the inputs
= |inear classifier of the nonlinearly mapped inputs



MNN as Nonlinear Mapping

Y2
f 5

A
) -] R
n g .
3 o 7
) n ¢ n -y
iy - I i
O L7 @
! - ‘
®
- X;

rd
-
-~
P2 5 45 “.;

original feature space  MNN finds nonlinear

: _ MNN finds nonlinear
X; patterns are not  mgpping y=g(x) to 2 mapping y=¢(x) to 3

inearly separable i ansions (2 hidden  dimensions (3 hidden

units); patterns are units) that; patterns are
almost Iinearly linearly separable

separable



Concluding Remarks

= Advantages

= MNN can learn complex mappings from inputs to
outputs, based only on the training samples

= [Easytouse
= Easy to incorporate a lot of heuristics

= Disadvantages

= Jtis a “black box”, that is difficult to analyze and predict
its behavior

= May take a long time to train
= May get trapped in a bad local minima
= Aot of “tricks” to implement for the best performance



