Multilayer Neural Networks
Brain vs. Computer

- Designed to solve logic and arithmetic problems
- Can solve a gazillion arithmetic and logic problems in an hour
- Absolute precision
- Usually one very fast processor
- High reliability

- Evolved (in a large part) for pattern recognition
- Can solve a gazillion of PR problems in an hour
- Huge number of parallel but relatively slow and unreliable processors
- Not perfectly precise
- Not perfectly reliable

Seek an inspiration from human brain for PR?
Neuron: Basic Brain Processor

- Neurons are nerve cells that transmit signals to and from brains at the speed of around 200mph.
- Each neuron cell communicates to anywhere from 1000 to 10,000 other neurons, muscle cells, glands, so on.
- Have around 10^{10} neurons in our brain (network of neurons).
- Most neurons a person is ever going to have are already present at birth.
Main components of a neuron

- **Cell body** which holds DNA information in nucleus
- **Dendrites** may have thousands of dendrites, usually short
- **axon** long structure, which splits in possibly thousands branches at the end. May be up to 1 meter long
Input: neuron collects signals from other neurons through dendrites, may have thousands of dendrites

Processor: Signals are accumulated and processed by the cell body

Output: If the strength of incoming signals is large enough, the cell body sends a signal (a spike of electrical activity) to the axon
Neural Network
ANN History: Birth

- 1943, famous paper by W. McCulloch (neurophysiologist) and W. Pitts (mathematician)
 - Using only math and algorithms, constructed a model of how neural network may work
 - Showed it is possible to construct any computable function with their network
 - Was it possible to make a model of thoughts of a human being?
 - Considered to be the birth of AI

- 1949, D. Hebb, introduced the first (purely psychological) theory of learning
 - Brain learns at tasks through life, thereby it goes through tremendous changes
 - If two neurons fire together, they strengthen each other’s responses and are likely to fire together in the future
ANN History: First Successes

- 1958, F. Rosenblatt,
 - perceptron, oldest neural network still in use today
 - Algorithm to train the perceptron network (training is still the most actively researched area today)
 - Built in hardware
 - Proved convergence in linearly separable case
- 1959, B. Widrow and M. Hoff
 - Madaline
 - First ANN applied to real problem (eliminate echoes in phone lines)
 - Still in commercial use
Early success lead to a lot of claims which were not fulfilled

1969, M. Minsky and S. Pappert
- Book “Perceptrons”
- Proved that perceptrons can learn only linearly separable classes
- In particular cannot learn very simple XOR function
- Conjectured that multilayer neural networks also limited by linearly separable functions

No funding and almost no research (at least in North America) in 1970’s as the result of 2 things above
ANN History: Revival

- Revival of ANN in 1980’s
- 1982, J. Hopfield
 - New kind of networks (Hopfield’s networks)
 - Bidirectional connections between neurons
 - Implements associative memory
- 1982 joint US-Japanese conference on ANN
 - US worries that it will stay behind
- Many examples of multilayer NN appear
- 1982, discovery of backpropagation algorithm
 - Allows a network to learn not linearly separable classes
 - Discovered independently by
 1. Y. Lecun
 2. D. Parker
 3. Rumelhart, Hinton, Williams
ANN: Perceptron

- Input and output layers
- \(g(x) = w^t x + w_0 \)
- Limitation: can learn only linearly separable classes
MNN: Feed Forward Operation

input layer: \(d\) features

hidden layer: \(m\) outputs, one for each class

output layer:

\[\begin{align*}
\mathbf{x}^{(1)} &\rightarrow \\
\mathbf{x}^{(2)} &\rightarrow \\
\mathbf{x}^{(d)} &\rightarrow \\
\text{bias unit} &\rightarrow
\end{align*}\]

\[\begin{align*}
\mathbf{w}_{ji} &\rightarrow \\
\mathbf{v}_{kj} &\rightarrow \\
&\rightarrow \mathbf{z}_1 \\
&\rightarrow \mathbf{z}_m
\end{align*}\]
MNN: Notation for Weights

- Use \(w_{ji} \) to denote the weight between input unit \(i \) and hidden unit \(j \)

 ![Diagram](image1)

- Use \(v_{kj} \) to denote the weight between hidden unit \(j \) and output unit \(k \)

 ![Diagram](image2)
MNN: Notation for Activation

- Use net_i to denote the activation and hidden unit j

$$net_j = \sum_{i=1}^{d} x^{(i)} w_{ji} + w_{j0}$$

- Use net^*_k to denote the activation at output unit k

$$net^*_k = \sum_{j=1}^{N_H} y_j v_{kj} + v_{k0}$$
Discriminant Function

- Discriminant function for class \(k \) (the output of the \(k \)th output unit)

\[
g_k(x) = z_k = f \left(\sum_{j=1}^{N_H} v_{kj} f \left(\sum_{i=1}^{d} w_{ji} x^{(i)} + w_{j0} \right) + v_{k0} \right)
\]
Discriminant Function

Two layer

Three layer

R_1

R_2
It can be shown that every continuous function from input to output can be implemented with enough hidden units, 1 hidden layer, and proper nonlinear activation functions.

This is more of theoretical than practical interest.

- The proof is not constructive (does not tell us exactly how to construct the MNN).
- Even if it were constructive, would be of no use since we do not know the desired function anyway, our goal is to learn it through the samples.
- But this result does give us confidence that we are on the right track.
 - MNN is general enough to construct the correct decision boundaries, unlike the Perceptron.
MNN Activation function

- Must be nonlinear for expressive power larger than that of perceptron
 - If use linear activation function at hidden layer, can only deal with linearly separable classes
 - Suppose at hidden unit j, $h(u) = a_j u$

\[
g_k(x) = f \left(\sum_{j=1}^{N_H} v_{kj} h \left(\sum_{i=1}^{d} w_{ji} x^{(i)} + w_{j0} \right) + v_{k0} \right)
\]

\[
= f \left(\sum_{j=1}^{N_H} v_{kj} a_j \left(\sum_{i=1}^{d} w_{ji} x^{(i)} + w_{j0} \right) + v_{k0} \right)
\]

\[
= f \left(\sum_{i=1}^{d} \sum_{j=1}^{N_H} v_{kj} a_j w_{ji} x^{(i)} + v_{kj} a_j w_{j0} + v_{k0} \right)
\]

\[
= f \left(\sum_{i=1}^{d} x^{(i)} \sum_{j=1}^{N_H} v_{kj} a_j w_{ji} + \left(\sum_{j=1}^{N_H} v_{kj} a_j w_{j0} + v_{k0} \right) \right)
\]
MNN Activation function

- could use a discontinuous activation function

\[f(\text{net}_k) = \begin{cases} 1 & \text{if } \text{net}_k \geq 0 \\ -1 & \text{if } \text{net}_k < 0 \end{cases} \]

- However, we will use gradient descent for learning, so we need to use a continuous activation function

 sigmoid function

- From now on, assume \(f \) is a differentiable function
Network have two modes of operation:

- **Feedforward**
 The feedforward operations consists of presenting a pattern to the input units and passing (or feeding) the signals through the network in order to get outputs units (no cycles!)

- **Learning**
 The supervised learning consists of presenting an input pattern and modifying the network parameters (weights) to reduce distances between the computed output and the desired output
MNN

- Can vary
 - number of hidden layers
 - Nonlinear activation function
 - Can use different function for hidden and output layers
 - Can use different function at each hidden and output node
MNN: Class Representation

- Training samples \(x_1, \ldots, x_n \) each of class \(1, \ldots, m \)
- Let network output \(z \) represent class \(c \) as target \(t^{(c)} \)

\[
\begin{bmatrix}
z_1 \\
\vdots \\
z_c \\
\vdots \\
z_m
\end{bmatrix} = t^{(c)} =
\begin{bmatrix}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{bmatrix}
\]

th row

Our Ultimate Goal For FeedForward Operation

sample of class \(c \) \hspace{1cm} \text{MNN with weights} \hspace{1cm} \text{target} \hspace{1cm} t^{(c)}

\(\text{MNN training to achieve the Ultimate Goal} \)

Modify (learn) MNN parameters \(w_{ji} \) and \(v_{kj} \) so that for each training sample of class \(c \) MNN output \(z = t^{(c)} \)
Network Training (learning)

1. Initialize weights w_{ji} and v_{kj} randomly but not to 0
2. Iterate until a stopping criterion is reached

Choose p input sample x_p MNN with weights w_{ji} and v_{kj}

Output $z = \begin{bmatrix} z_1 \\ \vdots \\ z_m \end{bmatrix}$

Compare output z with the desired target t; adjust w_{ji} and v_{kj} to move closer to the goal t (by backpropagation)
BackPropagation

- Learn w_{ji} and v_{kj} by minimizing the training error.
- What is the training error?
- Suppose the output of MNN for sample x is z and the target (desired output for x) is t.
- Error on one sample: $J(w,v) = \frac{1}{2} \sum_{c=1}^{m} (t_c - z_c)^2$
- Training error: $J(w,v) = \frac{1}{2} \sum_{i=1}^{n} \sum_{c=1}^{m} (t_c^{(i)} - z_c^{(i)})^2$
- Use gradient descent:

 $v^{(0)}, w^{(0)} = \text{random}$

 repeat until convergence:

 $w^{(t+1)} = w^{(t)} - \eta \nabla_w J(w^{(t)})$

 $v^{(t+1)} = v^{(t)} - \eta \nabla_v J(v^{(t)})$
BackPropagation

- For simplicity, first take training error for one sample x_i

$$J(w, v) = \frac{1}{2} \sum_{c=1}^{m} (t_c - z_c)^2$$

Need to compute

1. partial derivative w.r.t. hidden-to-output weights $\frac{\partial J}{\partial v_{kj}}$

2. partial derivative w.r.t. input-to-hidden weights $\frac{\partial J}{\partial w_{ji}}$
BackPropagation: Layered Model

activation at hidden unit j

$$net_j = \sum_{i=1}^{d} x^{(i)} w_{ji} + w_{j0}$$

output at hidden unit j

$$y_j = f(net_j)$$

activation at output unit k

$$net_k^* = \sum_{j=1}^{NH} y_j v_{kj} + v_{k0}$$

activation at output unit k

$$z_k = f(net_k^*)$$

objective function

$$J(w, v) = \frac{1}{2} \sum_{c=1}^{m} (t_c - z_c)^2$$

$$\frac{\partial J}{\partial v_{kj}}$$

$$\frac{\partial J}{\partial w_{ji}}$$
\[net_k^* = \sum_{j=1}^{N_H} y_j v_{kj} + v_{k0} \quad \Rightarrow \quad z_k = f(net_k^*) \quad \Rightarrow \quad J(w, v) = \frac{1}{2} \sum_{c=1}^{m} (t_c - z_c)^2 \]

- First compute hidden-to-output derivatives \(\frac{\partial J}{\partial v_{kj}} \)

\[
\frac{\partial J}{\partial v_{kj}} = \frac{1}{2} \sum_{c=1}^{m} \frac{\partial}{\partial v_{kj}} (t_c - z_c)^2 = \sum_{c=1}^{m} (t_c - z_c) \frac{\partial}{\partial v_{kj}} (t_c - z_c)
\]

\[= (t_k - z_k) \frac{\partial}{\partial v_{kj}} (t_k - z_k) = -(t_k - z_k) \frac{\partial}{\partial v_{kj}} (z_k) \]

\[= -(t_k - z_k) f'(net_k^*) y_j \quad \text{if} \quad j \neq 0 \]

\[= -(t_k - z_k) f'(net_k^*) f_{c_k} \quad \text{if} \quad j = 0 \]
Gradient Descent *Single Sample* Update Rule for hidden-to-output weights v_{kj}

\[
\begin{align*}
\text{j > 0: } & \quad v_{kj}^{(t+1)} = v_{kj}^{(t)} + \eta(t_k - z_k)f'(net_k^*)y_j \\
\text{j = 0 (bias weight): } & \quad v_{k0}^{(t+1)} = v_{k0}^{(t)} + \eta(t_k - z_k)f'(net_k^*)
\end{align*}
\]
BackPropagation

- Now compute input-to-hidden

\[
\frac{\partial J}{\partial w_{ji}} = \sum_{k=1}^{m} (t_k - z_k) \frac{\partial}{\partial w_{ji}} (t_k - z_k)
\]

\[
= -\sum_{k=1}^{m} (t_k - z_k) \frac{\partial z_k}{\partial w_{ji}} = -\sum_{k=1}^{m} (t_k - z_k) \frac{\partial z_k}{\partial net_{k}^*} \frac{\partial net_{k}^*}{\partial w_{ji}}
\]

\[
= -\sum_{k=1}^{m} (t_k - z_k) f'(net_{k}^*) v_{kj} \frac{\partial y_j}{\partial net_j} \frac{\partial net_j}{\partial w_{ji}}
\]

\[
= \begin{cases}
-\sum_{k=1}^{m} (t_k - z_k) f'(net_{k}^*) v_{kj} f'(net_j) x^{(i)} & \text{if } i \neq 0 \\
-\sum_{k=1}^{m} (t_k - z_k) f'(net_{k}^*) v_{kj} f'(net_j) & \text{if } i = 0
\end{cases}
\]

\[
net_h = \sum_{h=1}^{d} x^{(i)} w_{hi} + w_{h0}
\]

\[
y_j = f(net_j)
\]

\[
net_{k}^* = \sum_{s=1}^{N_h} y_s v_{ks} + v_{k0}
\]

\[
z_k = f(net_{k}^*)
\]

\[
J(w, v) = \frac{1}{2} \sum_{c=1}^{m} (t_c - z_c)^2
\]
BackPropagation

\[
\frac{\partial J}{\partial w_{ji}} = \begin{cases}
- f'(net_j) x^{(i)} \sum_{k=1}^{m} (t_k - z_k) f'(net^*_k) v_{kj} & \text{if } i \neq 0 \\
- f'(net_j) \sum_{k=1}^{m} (t_k - z_k) f'(net^*_k) v_{kj} & \text{if } i = 0
\end{cases}
\]

Gradient Descent \textbf{Single Sample} Update Rule for input-to-hidden weights \(w_{ji} \)

\[
i > 0: \quad w_{ji}^{(t+1)} = w_{ji}^{(t)} + \eta f'(net_j) x^{(i)} \sum_{k=1}^{m} (t_k - z_k) f'(net^*_k) v_{kj}^{(t)}
\]

\[
i = 0 \text{ (bias weight):} \quad w_{j0}^{(t+1)} = w_{j0}^{(t)} + \eta f'(net_j) \sum_{k=1}^{m} (t_k - z_k) f'(net^*_k) v_{kj}^{(t)}
\]
Name “backpropagation” because during training, errors propagated back from output to hidden layer.
Consider update rule for hidden-to-output weights:

\[v_{kj}^{(t+1)} = v_{kj}^{(t)} + \eta(t_k - z_k)f'(net_k^*)y_j \]

Suppose \(t_k - z_k > 0 \)

Then output of the \(k \)th hidden unit is too small: \(t_k > z_k \)

Typically activation function \(f \) is s.t. \(f' > 0 \)

Thus \((t_k - z_k)f'(net_k^*) > 0 \)

There are 2 cases:

1. \(y_j > 0 \), then to increase \(z_k \), should increase weight \(v_{kj} \)
 which is exactly what we do since \(\eta(t_k - z_k)f'(net_k^*)y_j > 0 \)

2. \(y_j < 0 \), then to increase \(z_k \), should decrease weight \(v_{kj} \)
 which is exactly what we do since \(\eta(t_k - z_k)f'(net_k^*)y_j < 0 \)
BackPropagation

- The case \(t_k - z_k < 0 \) is analogous.

- Similarly, can show that input-to-hidden weights make sense.

- Important: weights should be initialized to random nonzero numbers.

\[
\frac{\partial J}{\partial w_{ji}} = -f'(net_j)x^{(i)} \sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) v_{kj}
\]

- If \(v_{kj} = 0 \), input-to-hidden weights \(w_{ji} \) never updated.
Training Protocols

- How to present samples in training set and update the weights?

- Three major training protocols:
 1. Stochastic
 - Patterns are chosen randomly from the training set, and network weights are updated after every sample presentation
 2. Batch
 - weights are updated based on all samples; iterate weight update
 3. Online
 - each sample is presented only once, weight update after each sample presentation
Stochastic Back Propagation

1. Initialize
 - number of hidden layers \(n_H \)
 - weights \(w, v \)
 - convergence criterion \(\theta \) and learning rate \(\eta \)
 - time \(t = 0 \)

2. do
 \(x \leftarrow \) randomly chosen training pattern
 for all \(0 \leq i \leq d, 0 \leq j \leq n_H, 0 \leq k \leq m \)
 \[
 v_{kj} = v_{kj} + \eta (t_k - z_k) f'(net_k^*) y_j
 \]
 \[
 v_{k0} = v_{k0} + \eta (t_k - z_k) f'(net_k^*)
 \]
 \[
 w_{ji} = w_{ji} + \eta f'(net_j) x^{(i)} \sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) v_{kj}
 \]
 \[
 w_{j0} = w_{j0} + \eta f'(net_j) \sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) v_{kj}
 \]
 \(t = t + 1 \)
 until \(\| J \| < \theta \)

3. return \(v, w \)
Batch Back Propagation

- This is the *true* gradient descent, (unlike stochastic propagation)
- For simplicity, derived backpropagation for a single sample objective function:
 \[J(w, v) = \frac{1}{2} \sum_{c=1}^{m} (t_c - z_c)^2 \]
- The full objective function:
 \[J(w, v) = \frac{1}{2} \sum_{i=1}^{n} \sum_{c=1}^{m} (t_c^{(i)} - z_c^{(i)})^2 \]
- Derivative of full objective function is just a sum of derivatives for each sample:
 \[\frac{\partial}{\partial w} J(w, v) = \frac{1}{2} \sum_{i=1}^{n} \left(\frac{\partial}{\partial w} \left(\sum_{c=1}^{m} (t_c^{(i)} - z_c^{(i)})^2 \right) \right) \]
For example,

\[
\frac{\partial J}{\partial w_{ji}} = \sum_{p=1}^{n} - f'(\text{net}_j) x_p^{(i)} \sum_{k=1}^{m} (t_k - z_k) f'(\text{net}_k^*) v_{kj}
\]
Batch Back Propagation

1. Initialize n_H, w, v, θ, η, $t = 0$

2. do

 $\Delta v_{kj} = \Delta v_{k0} = \Delta w_{ji} = \Delta w_{j0} = 0$

 for all $1 \leq p \leq n$

 for all $0 \leq i \leq d$, $0 \leq j \leq n_H$, $0 \leq k \leq m$

 $\Delta v_{kj} = \Delta v_{kj} + \eta(t_k - z_k)f'(net_k^*)y_j$

 $\Delta v_{k0} = \Delta v_{k0} + \eta(t_k - z_k)f'(net_k^*)$

 $\Delta w_{ji} = \Delta w_{ji} + \eta f'(net_j)x_p^{(i)} \sum_{k=1}^{m} (t_k - z_k)f'(net_k^*)v_{kj}$

 $\Delta w_{j0} = \Delta w_{j0} + \eta f'(net_j) \sum_{k=1}^{m} (t_k - z_k)f'(net_k^*)v_{kj}$

 $v_{kj} = v_{kj} + \Delta v_{kj}$; $v_{k0} = v_{k0} + \Delta v_{k0}$; $w_{ji} = w_{ji} + \Delta w_{ji}$; $w_{j0} = w_{j0} + \Delta w_{j0}$

 $t = t + 1$

 until $\|J\| < \theta$

3. return v, w
Training Protocols

1. Batch
 - True gradient descent

2. Stochastic
 - Faster than batch method
 - Usually the recommended way

3. Online
 - Used when number of samples is so large it does not fit in the memory
 - Dependent on the order of sample presentation
 - Should be avoided when possible
Large training error: in the beginning random decision regions

Small training error: decision regions improve with time

Zero training error: decision regions separate training data perfectly, but we overfitted the network
MNN Learning Curves

- **Training data**: data on which learning (gradient descent for MNN) is performed
- **Validation data**: used to assess network generalization capabilities
- Training error typically goes down, since with enough hidden units, can find discriminant function which classifies training patterns exactly
- Validation error first goes down, but then goes up since at some point we start to **overfit** the network to the validation data
Learning Curves

- this is a good time to stop training, since after this time we start to overfit
- Stopping criterion is part of training phase, thus validation data is part of the training data
- To assess how the network will work on the unseen examples, we still need test data
Learning Curves

- Validation data is used to determine “parameters”, in this case when learning should stop.

 - Stop training after the first local minimum on validation data.
 - We are assuming performance on test data will be similar to performance on validation data.
Data Sets

- **Training data**
 - data on which learning is performed

- **Validation data**
 - validation data is used to determine any free parameters of the classifier
 - k in the knn neighbor classifier
 - h for parzen windows
 - number of hidden layers in the MNN
 - etc

- **Test data**
 - used to assess network generalization capabilities
MNN as Nonlinear Mapping

...this module implements nonlinear input mapping φ...
Thus MNN can be thought as learning 2 things at the same time
- the nonlinear mapping of the inputs
- linear classifier of the nonlinearly mapped inputs
MNN as Nonlinear Mapping

original feature space \(\mathbf{x} \); patterns are not linearly separable

MNN finds nonlinear mapping \(\mathbf{y} = \varphi(\mathbf{x}) \) to 2 dimensions (2 hidden units); patterns are almost linearly separable

MNN finds nonlinear mapping \(\mathbf{y} = \varphi(\mathbf{x}) \) to 3 dimensions (3 hidden units) that; patterns are linearly separable
Concluding Remarks

- **Advantages**
 - MNN can learn complex mappings from inputs to outputs, based only on the training samples
 - Easy to use
 - Easy to incorporate a lot of heuristics

- **Disadvantages**
 - It is a “black box”, that is difficult to analyze and predict its behavior
 - May take a long time to train
 - May get trapped in a bad local minima
 - A lot of “tricks” to implement for the best performance