
Minimum Squared Error

LDF: Minimum Squared-Error Procedures

� Idea: convert to easier and better understood problem

atyi > 0 for all samples yi

solve system of linear inequalities

atyi = bi for all samples yi

solve system of linear equations

Perceptron

� MSE procedure
� Choose positive constants b1, b2,…, bn

� try to find weight vector a s.t. atyi = bi for all samples yi

� If we can find weight vector a such that atyi = bi for all
samples yi , then a is a solution because bi’s are positive

� consider all the samples (not just the misclassified ones)

solve system of linear equations

yig(y) = 0

LDF: MSE Margins

yk

� Since we want atyi = bi, we expect sample yi to be at distance
bi from the separating hyperplane (normalized by ||a||)

� Thus b1, b2,…, bn give relative expected distances or
“margins” of samples from the hyperplane

� Should make bi small if sample i is expected to be near
separating hyperplane, and make bi larger otherwise

� In the absence of any additional information, there are good
reasons to set b1 = b2 =… = bn = 1

LDF: MSE Matrix Notation

� Need to solve n equations

� Introduce matrix notation:
(((()))) (((()))) (((())))

(((()))) (((()))) (((())))

====

d

d

b
b

a
ayyy

yyy

MMM

L

L

2

1

1

0
2

1
2

0
2

1
1

1
0

1

nn
t

t

bya

bya

====

====
M

11

(((()))) (((()))) (((())))

====

 n
dd

nnn
ba

a

yyy
M
M

M

L

MM

MM 1

10

Y a b

� Thus need to solve a linear system Ya = b

LDF: Exact Solution is Rare

� Y is an n by (d +1) matrix

� a = Y-1b

� Exact solution can be found only if Y is nonsingular
and square, in which case the inverse Y-1 exists

� Thus need to solve a linear system Ya = b

� (number of samples) = (number of features + 1)
� almost never happens in practice
� in this case, guaranteed to find the separating hyperplane� in this case, guaranteed to find the separating hyperplane

1y

2y

LDF: Approximate Solution

� Need Ya = b, but no exact solution exists for an

� Typically Y is overdetermined, that is it has more
rows (examples) than columns (features)
� If it has more features than examples, should reduce

dimensionality

Y ba =

� Need Ya = b, but no exact solution exists for an
overdetermined system of equation
� More equations than unknowns

� Find an approximate solution a, that is bYa ≈≈≈≈
� Note that approximate solution a does not necessarily

give the separating hyperplane in the separable case
� But hyperplane corresponding to a may still be a good

solution, especially if there is no separating hyperplane

LDF: MSE Criterion Function

� Minimum squared error approach: find a which
minimizes the length of the error vector e

bYae −−−−====

Ya

b

e

� Thus minimize the minimum squared error criterion � Thus minimize the minimum squared error criterion
function:

(((()))) 2
bYaaJs −−−−====

� Unlike the perceptron criterion function, we can
optimize the minimum squared error criterion
function analytically by setting the gradient to 0

(((())))∑∑∑∑
====

−−−−====
n

i
ii

t bya
1

2

LDF: Optimizing Js(a)

� Let’s compute the gradient:

(((()))) 2
bYaaJs −−−−==== (((())))∑∑∑∑

====

−−−−====
n

i
ii

t bya
1

2

(((())))

∂∂∂∂

∂∂∂∂
∂∂∂∂

====∇∇∇∇

s

s

a
J

aJ M
0

(((())))bYaY t −−−−==== 2(((())))

∂∂∂∂
∂∂∂∂

====∇∇∇∇

d

s

s

a
J

aJ M (((())))bYaY −−−−==== 2

� Setting the gradient to 0:

(((()))) bYYaYbYaY ttt ====⇒⇒⇒⇒====−−−− 02

LDF: Pseudo Inverse Solution

� Matrix YtY is square (it has d +1 rows and columns)
and it is often non-singular

� If YtY is non-singular, its inverse exists and we can
solve for a uniquely:

(((()))) 1−−−−(((()))) bYYYa tt 1−−−−
====

pseudo inverse of Y

(((())))(((()))) (((()))) (((()))) IYYYYYYYY tttt ========
−−−−−−−− 11

LDF: Minimum Squared-Error Procedures

� If b1=…=bn =1, MSE procedure is equivalent to finding a
hyperplane of best fit through the samples y1,…,yn

(((()))) 2
ns 1YaaJ −−−−====

nn

====

1

1
1 M

� Then we shift this line to the origin, if this line was a
good fit, all samples will be classified correctly

LDF: Minimum Squared-Error Procedures

� Only guaranteed the separating hyperplane if Ya > 0

====

n
t

1
t

ya

ya
Ya M� that is if all elements of vector are positive

� That is where εεεε may be negative

++++

++++
====

nnb

b
Ya

εεεε

εεεε
M

11

� We have bYa ≈≈≈≈

� Thus in linearly separable case, least squares solution
a does not necessarily gives separating hyperplane

� If εεεε1,…, εεεεn are small relative to b1,…, bn , then each element
of Ya is positive, and a gives a separating hyperplane

 ++++ nnb εεεε

� If approximation is not good, εεεεi may be large and negative,
for some i, thus bi + εεεεi will be negative and a is not a
separating hyperplane

� But it will give a “reasonable” hyperplane

LDF: Minimum Squared-Error Procedures

� We are free to choose b. May be tempted to make b
large as a way to insure 0bYa >>>>≈≈≈≈

� Does not work
� Let β β β β be a scalar, let’s try ββββb instead of b
� if a* is a least squares solution to Ya = b, then for any

scalar ββββ, least squares solution to Ya = ββββb is ββββa*
2

a
bYaminarg ββββ−−−− (((()))) 22

a
b/aYminarg −−−−==== ββββββββ

*aββββ====

� thus if for some i th element of Ya is less than 0, that is
yt

ia < 0, then yt
i (ββββa) < 0,

� Relative difference between components of b matters,
but not the size of each individual component

scalar ββββ, least squares solution to Ya = ββββb is ββββa*

(((()))) 2

a
b/aYminarg −−−−==== ββββ

LDF: Example

� Class 1: (6 9), (5 7)
� Class 2: (5 9), (0 4)

� Set vectors y1, y2 , y3 , y4 by
adding extra feature and
“normalizing”

1 1 −−−−1 −−−−1

� Matrix Y is then

−−−−−−−−
−−−−−−−−−−−−====

401
951
751
961

Y

====

9
6
1

y1

====

7
5
1

y2

−−−−
−−−−
−−−−

====
9
5
1

y3

−−−−

−−−−
====

4
0
1

y 4

LDF: Example

� Choose

====

1
1
1
1

b

� In matlab, a=Y\b solves the
least squares problem

−−−−
==== 0.1

7.2
a

−−−−

====
9.0
0.1a

� Note a is an approximation to Ya = b, since no
exact solution exists

≠≠≠≠

====

1
1
1
1

1.1
6.0
3.1
4.0

Ya

� This solution does give a separating hyperplane
since Ya > 0

LDF: Example

� Class 1: (6 9), (5 7)
� Class 2: (5 9), (0 10)
� The last sample is very far

compared to others from the
separating hyperplane

1 1 −−−−1 −−−−1

� Matrix

−−−−−−−−
−−−−−−−−−−−−====
1001

951
751
961

Y

====

9
6
1

y1

====

7
5
1

y2

−−−−
−−−−
−−−−

====
9
5
1

y3

−−−−

−−−−
====

10
0
1

y 4

LDF: Example

� Choose

====

1
1
1
1

b

� In matlab, a=Y\b solves the
least squares problem

−−−−
==== 2.0

2.3
a

−−−−

====
4.0
2.0a

� Note a is an approximation to Ya = b, since no
exact solution exists

≠≠≠≠

−−−−====
1
1
1
1

16.1
04.0

9.0
2.0

Ya

� This solution does not give a separating
hyperplane since aty3 < 0

LDF: Example

� MSE pays to much attention to isolated “noisy”
examples (such examples are called outliers)

outlier
MSE solution

desired solution

� No problems with convergence though, and
solution it gives ranges from reasonable to good

LDF: Example
� we know that 4th point is far far

from separating hyperplane
� In practice we don’t know this

� In Matlab, solve a=Y\b

====

10
1
1
1

b� Thus appropriate

� In Matlab, solve a=Y\b

−−−−

−−−−
====

9.0
7.1
1.1

a

� Note a is an approximation to Ya = b,

≠≠≠≠

====

10
1
1
1

0.10
8.0
0.1
9.0

Ya

� This solution does give the separating hyperplane
since Ya > 0

LDF: Gradient Descent for MSE solution

2. YtY may be close to singular if samples are highly
correlated (rows of Y are almost linear
combinations of each other)

� May wish to find MSE solution by gradient descent:

1. Computing the inverse of YtY may be too costly

(((()))) 2
bYaaJs −−−−====

combinations of each other)
� computing the inverse of YtY is not numerically stable

� In the beginning of the lecture, computed the
gradient:

(((()))) (((())))bYaYaJ t
s −−−−====∇∇∇∇ 2

LDF: Widrow-Hoff Procedure

� Thus the update rule for gradient descent:
(((()))) (((()))) (((()))) (((())))(((())))bYaYaa ktkkk −−−−−−−−====++++ ηηηη1

� If weight vector a(k) converges to the MSE
solution a, that is Yt(Ya-b)=0

(((()))) (((()))) kk /1ηηηηηηηη ====

(((()))) (((())))bYaYaJ t
s −−−−====∇∇∇∇ 2

solution a, that is Yt(Ya-b)=0

� Widrow-Hoff procedure reduces storage
requirements by considering single samples
sequentially:

(((()))) (((()))) (((()))) (((())))(((())))i
kt

ii
kkk bayyaa −−−−−−−−====++++ ηηηη1

LDF: Ho-Kashyap Procedure

� Suppose training samples are linearly separable.
Then there is as and positive bs s.t.

� In the MSE procedure, if b is chosen arbitrarily,
finding separating hyperplane is not guaranteed

0>>>>==== ss bYa

� If we knew bs could apply MSE procedure to find the � If we knew bs could apply MSE procedure to find the
separating hyperplane

� Idea: find both as and bs

� Minimize the following criterion function, restricting to
positive b: (((()))) 2

, bYabaJHK −−−−====

LDF: Ho-Kashyap Procedure

� As usual, take partial derivatives w.r.t. a and b

(((()))) 2
, bYabaJHK −−−−====

(((()))) 02 ====−−−−====∇∇∇∇ bYaYJ t
HKa

(((()))) 02 ====−−−−−−−−====∇∇∇∇ bYaJHKb

� Use modified gradient descent procedure to find a � Use modified gradient descent procedure to find a
minimum of JHK(a,b)

2) Fix a and minimize JHK(a,b) with respect to b

� Alternate the two steps below until convergence:
1) Fix b and minimize JHK(a,b) with respect to a

LDF: Ho-Kashyap Procedure

(((()))) 02 ====−−−−====∇∇∇∇ bYaYJ t
HKa

(((()))) 02 ====−−−−−−−−====∇∇∇∇ bYaJHKb

� Step (1) can be performed with pseudoinverse

2) Fix a and minimize JHK(a,b) with respect to b

� Alternate the two steps below until convergence:
1) Fix b and minimize JHK(a,b) with respect to a

� For fixed b minimum of JHK(a,b) with respect to a is
found by solving

(((()))) 02 ====−−−− bYaY t

� Thus

(((()))) bYYYa tt 1−−−−
====

LDF: Ho-Kashyap Procedure

� We can’t use b = Ya because b has to be positive

� Step 2: fix a and minimize JHK(a,b) with respect to b

� Solution: use modified gradient descent

� start with positive b , follow negative gradient but
refuse to decrease any components of b

� This can be achieved by setting all the positive
components of to 0Jb∇∇∇∇

� Not doing steepest descent anymore, but we are
still doing descent and ensure that b is positive

LDF: Ho-Kashyap Procedure
� The Ho-Kashyap procedure:

0) Start with arbitrary a(1) and b(1) > 0, let k = 1

repeat steps (1) through (4)
1) (((()))) (((()))) (((())))kkk bYae −−−−====

2) Solve for b(k+1) using a(k) and b(k)

(((()))) (((()))) (((()))) (((())))[[[[]]]]||1 kkkk eebb ++++++++====++++ ηηηη

3) Solve for a(k+1) using b(k+1)

(((()))) (((()))) (((())))111 ++++−−−−++++ ==== kttk bYYYa

4) k = k + 1

until e(k) >= 0 or k > kmax or b(k+1) = b(k)

� For convergence, learning rate should be fixed
between 0 < ηηηη < 1

LDF: Ho-Kashyap Procedure

� In the linearly separable case,
� e(k) = 0, found solution, stop
� one of components of e(k) is positive, algorithm continues

� In non separable case,
� e(k) will have only negative components eventually, thus

found proof of nonseparability
� No bound on how many iteration need for the proof of

nonseparability

LDF: Ho-Kashyap Procedure Example

� Class 1: (6 9), (5 7)
� Class 1: (5 9), (0 10)

� Matrix

−−−−−−−−
−−−−−−−−−−−−====
1001

951
751
961

Y

1

� Use fixed learning ηηηη = 0.9

� Start with and (((())))

====

1
1
1
1

b 1(((())))

====

1
1
1

a 1

� At the start (((())))

−−−−
−−−−====

11
15
13
16

Ya 1

LDF: Ho-Kashyap Procedure Example

� solve for b(2) using a(1) and b(1)

� Iteration 1:

(((()))) (((()))) (((())))

−−−−

−−−−
−−−−====−−−−====

1
1
1
1

11
15
13
16

bYae 111
�

−−−−
−−−−====

12
16
12
15

(((()))) (((()))) (((()))) (((())))[[[[]]]]|e|e9.0bb 1112 ++++++++====

++++

−−−−++++

==== 16
12
15

16
12
15

9.01
1
1

==== 1
6.22

28

� solve for a(2) using b(2)

[[[[]]]]|e|e9.0bb ++++++++====

++++

−−−−
−−−−++++

====
12
16

12
169.0

1
1

====
1
1

(((()))) (((()))) (((()))) ====

−−−−−−−−−−−−
−−−−−−−−

−−−−−−−−
======== −−−−

1
1
6.22

28
*

1.02.05.026.0
2.01.01.016.0
5.06.17.46.2

bYYYa 2t1t2

−−−− 8.3
7.2
6.34

LDF: Ho-Kashyap Procedure Example

� Continue iterations until Ya > 0
� In practice, continue until minimum

component of Ya is less then 0.01

� After 104 iterations converged to solution

====

48.1
14.0

5.22
2.27

Ya

� a does gives a separating hyperplane

====

147
1

23
28

b

−−−−

−−−−
====

3.11
3.27
9.34

a

m1,...,i)(0 ====++++==== i
t
ii wxwxg

� Suppose we have m classes
� Define m linear discriminant functions

� Given x, assign class ci if

ij)()(≠≠≠≠∀∀∀∀≥≥≥≥ xgxg ji

LDF: MSE for Multiple Classes

ij)()(≠≠≠≠∀∀∀∀≥≥≥≥ xgxg ji

� Such classifier is called a linear machine

� A linear machine divides the feature space into c
decision regions, with gi(x) being the largest
discriminant if x is in the region Ri

� For each class i, find weight vector ai, s.t.

LDF: MSE for Multiple Classes

∉∉∉∉∀∀∀∀====
∈∈∈∈∀∀∀∀====

iclassy 0
iclassy 1

ya
ya

t
i

t
i

� Let Yi be matrix whose rows are samples from
class i, so it has d +1 columns and ni rowsclass i, so it has d +1 columns and ni rows

====

mY

Y
Y

Y
M
2

1

� Let’s pile all samples in n by d +1 matrix Y:

====

mclassfromsample
mclassfromsample

classfromsample
classfromsample

M

1
1

� Let bi be a column vector of length n which is 0
everywhere except rows corresponding to samples
from class i, where it is 1:

LDF: MSE for Multiple Classes

====
1

1

0

bi

M

M

M

rows corresponding
to samples from class i

0
M

LDF: MSE for Multiple Classes

[[[[]]]]n1 bbB L====

� Let’s pile all bi as columns in n by c matrix B

� Let’s pile all ai as columns in d +1 by m matrix A

[[[[]]]]maaA L1====

====

� m LSE problems can be represented in YA = B:

3
3
3
2
1
1

classfromsample
classfromsample
classfromsample
classfromsample
classfromsample
classfromsample

=

100
100
100
010
001
001

Y A B

LDF: MSE for Multiple Classes

(((()))) ∑∑∑∑
====

−−−−====
m

1i

2
ii bYaAJ

� Our objective function is:

� J(A) is minimized with the use of pseudoinverse

(((()))) YBYYA t 1−−−−
====

LDF: Summary

� Perceptron procedures
� find a separating hyperplane in the linearly separable case,
� do not converge in the non-separable case
� can force convergence by using a decreasing learning rate,

but are not guaranteed a reasonable stopping point

� MSE procedures
� converge in separable and not separable case � converge in separable and not separable case
� may not find separating hyperplane if classes are linearly

separable
� use pseudoinverse if YtY is not singular and not too large
� use gradient descent (Widrow-Hoff procedure) otherwise

� Ho-Kashyap procedures
� always converge
� find separating hyperplane in the linearly separable case
� more costly

