Minimum Squared Error

LDF: Minimum Squared-Error Procedures

- Idea: convert to easier and better understood problem

$\boldsymbol{a}^{\boldsymbol{t}} \boldsymbol{y}_{\boldsymbol{i}}=\boldsymbol{b}_{\boldsymbol{i}}$ for all samples $\boldsymbol{y}_{\boldsymbol{i}}$ solve system of linear equations
- MSE procedure
- Choose positive constants $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{n}$
- try to find weight vector \boldsymbol{a} s.t. $\boldsymbol{a}^{\boldsymbol{t}} \boldsymbol{y}_{\boldsymbol{i}}=\boldsymbol{b}_{\boldsymbol{i}}$ for all samples $\boldsymbol{y}_{\boldsymbol{i}}$
- If we can find weight vector \boldsymbol{a} such that $\boldsymbol{a}^{t} \boldsymbol{y}_{\boldsymbol{i}}=\boldsymbol{b}_{\boldsymbol{i}}$ for all samples $\boldsymbol{y}_{\boldsymbol{i}}$, then \boldsymbol{a} is a solution because \boldsymbol{b}_{i} 's are positive
- consider all the samples (not just the misclassified ones)

LDF: MSE Margins

- Since we want $\boldsymbol{a}^{t} \boldsymbol{y}_{\boldsymbol{i}}=\boldsymbol{b}_{\boldsymbol{i}}$, we expect sample $\boldsymbol{y}_{\boldsymbol{i}}$ to be at distance $\boldsymbol{b}_{\boldsymbol{i}}$ from the separating hyperplane (normalized by \|a\|)
- Thus $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{n}$ give relative expected distances or "margins" of samples from the hyperplane
- Should make $\boldsymbol{b}_{\boldsymbol{i}}$ small if sample \boldsymbol{i} is expected to be near separating hyperplane, and make $\boldsymbol{b}_{\boldsymbol{i}}$ larger otherwise
- In the absence of any additional information, there are good reasons to set $b_{1}=b_{2}=\ldots=b_{n}=\mathbf{1}$

LDF: MSE Matrix Notation

- Need to solve \boldsymbol{n} equations $\left\{\begin{array}{l}a^{\prime} y_{1}=b_{1} \\ a^{\prime} y_{n}=b_{n}\end{array}\right.$
- Introduce matrix notation:
- Thus need to solve a linear system $\mathbf{Y a}=\boldsymbol{b}$

LDF: Exact Solution is Rare

- Thus need to solve a linear system $\mathbf{Y a}=\boldsymbol{b}$
- \boldsymbol{Y} is an \boldsymbol{n} by $(\boldsymbol{d}+\boldsymbol{1})$ matrix
- Exact solution can be found only if \boldsymbol{Y} is nonsingular and square, in which case the inverse \boldsymbol{Y}^{1} exists
- $a=Y^{-1} b$
- (number of samples) = (number of features +1)
- almost never happens in practice
- in this case, guaranteed to find the separating hyperplane

LDF: Approximate Solution

- Typically \boldsymbol{Y} is overdetermined, that is it has more rows (examples) than columns (features)
- If it has more features than examples, should reduce dimensionality

- Need $\mathbf{Y a}=\boldsymbol{b}$, but no exact solution exists for an overdetermined system of equation
- More equations than unknowns
- Find an approximate solution \boldsymbol{a}, that is $\mathbf{Y a} \approx \boldsymbol{b}$
- Note that approximate solution a does not necessarily give the separating hyperplane in the separable case
- But hyperplane corresponding to a may still be a good solution, especially if there is no separating hyperplane

LDF: MSE Criterion Function

- Minimum squared error approach: find a which minimizes the length of the error vector \mathbf{e}

$$
e=Y a-b
$$

- Thus minimize the minimum squared error criterion function:

$$
J_{s}(a)=\|Y a-b\|^{2}=\sum_{i=1}^{n}\left(a^{t} y_{i}-b_{i}\right)^{2}
$$

- Unlike the perceptron criterion function, we can optimize the minimum squared error criterion function analytically by setting the gradient to 0

LDF: Optimizing $J_{s}(a)$

$$
J_{s}(\boldsymbol{a})=\|Y a-b\|^{2}=\sum_{i=1}^{n}\left(a^{t} y_{i}-b_{i}\right)^{2}
$$

- Let's compute the gradient:

$$
\nabla \boldsymbol{J}_{s}(\boldsymbol{a})=\left[\begin{array}{c}
\frac{\partial \boldsymbol{J}_{s}}{\partial \mathbf{a}_{0}} \\
\vdots \\
\frac{\partial \boldsymbol{J}_{s}}{\partial \mathbf{a}_{d}}
\end{array}\right]=\mathbf{2 \boldsymbol { Y } ^ { t } (\boldsymbol { Y a } - \boldsymbol { b }) , ~ ({ } ^ { 2 })}
$$

- Setting the gradient to 0 :

$$
2 Y^{t}(Y a-b)=0 \Rightarrow Y^{t} Y a=Y^{t} b
$$

LDF: Pseudo Inverse Solution

- Matrix $\boldsymbol{Y}^{t} \boldsymbol{Y}$ is square (it has $\boldsymbol{d}+\mathbf{1}$ rows and columns) and it is often non-singular
- If $\boldsymbol{Y}^{t} \boldsymbol{Y}$ is non-singular, its inverse exists and we can solve for a uniquely:

$$
\begin{aligned}
& \boldsymbol{a}=\left(\boldsymbol{Y}^{t} \boldsymbol{Y}\right)^{-1} \boldsymbol{Y}^{t} \boldsymbol{b} \\
& \text { pseudo inverse of } \boldsymbol{Y} \\
& \left(\left(\boldsymbol{Y}^{\prime} \boldsymbol{Y}\right)^{-1} \boldsymbol{Y}^{\prime}\right) \boldsymbol{Y}=\left(\boldsymbol{Y}^{\prime} \boldsymbol{Y}\right)^{-1}\left(\boldsymbol{Y}^{\prime} \boldsymbol{Y}\right)=\boldsymbol{I}
\end{aligned}
$$

LDF: Minimum Squared-Error Procedures

- If $\boldsymbol{b}_{1}=\ldots=\boldsymbol{b}_{\boldsymbol{n}}=1$, MSE procedure is equivalent to finding a hyperplane of best fit through the samples $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{\boldsymbol{n}}$

- Then we shift this line to the origin, if this line was a good fit, all samples will be classified correctly

LDF: Minimum Squared-Error Procedures

- Only guaranteed the separating hyperplane if $\boldsymbol{Y a}>\mathbf{0}$
- that is if all elements of vector $\boldsymbol{Y a}=\left[\begin{array}{c}\boldsymbol{a}^{t} \boldsymbol{y}_{\boldsymbol{y}} \\ \vdots \\ \boldsymbol{a}^{t} \boldsymbol{y}_{n}\end{array}\right]$ are positive
- We have $Y a \approx b$
- That is $\boldsymbol{Y a}=\left[\begin{array}{c}\boldsymbol{b}_{1}+\varepsilon_{1} \\ \vdots \\ \boldsymbol{b}_{n}+\varepsilon_{n}\end{array}\right] \quad$ where ε may be negative
- If $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are small relative to $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{\boldsymbol{n}}$, then each element of $Y a$ is positive, and a gives a separating hyperplane
- If approximation is not good, ε_{i} may be large and negative, for some \boldsymbol{i}, thus $\boldsymbol{b}_{i}+\varepsilon_{i}$ will be negative and \boldsymbol{a} is not a separating hyperplane
- Thus in linearly separable case, least squares solution a does not necessarily gives separating hyperplane
- But it will give a "reasonable" hyperplane

LDF: Minimum Squared-Error Procedures

- We are free to choose \boldsymbol{b}. May be tempted to make \boldsymbol{b} large as a way to insure $\quad \mathrm{Ya} \approx \boldsymbol{b}>\mathbf{0}$
- Does not work
- Let β be a scalar, let's try $\beta \boldsymbol{b}$ instead of \boldsymbol{b}
- if \boldsymbol{a}^{*} is a least squares solution to $\mathbf{Y a}=\boldsymbol{b}$, then for any scalar β, least squares solution to $Y a=\beta b$ is βa^{*}

$$
\begin{aligned}
\underset{a}{\arg \min \| Y a-\beta b} \|^{2} & =\underset{a}{\arg \min } \beta^{2}\|\boldsymbol{Y}(a / \beta)-\boldsymbol{b}\|^{2} \\
& =\underset{a}{\arg \min }\|\boldsymbol{Y}(a / \beta)-\boldsymbol{b}\|^{2}=\beta a^{*}
\end{aligned}
$$

- thus if for some \boldsymbol{i} th element of $\boldsymbol{Y a}$ is less than 0 , that is $\boldsymbol{y}^{t} \boldsymbol{a} \boldsymbol{a}<0$, then $\boldsymbol{y}_{i}^{t}(\beta a)<0$,
- Relative difference between components of \boldsymbol{b} matters, but not the size of each individual component

LDF: Example

- Class 1: (6 9), (5 7)
- Class 2: (5 9), (0 4)
- Set vectors $\boldsymbol{y}_{1}, \boldsymbol{y}_{\mathbf{2}}, \boldsymbol{y}_{3}, \boldsymbol{y}_{4}$ by adding extra feature and "normalizing"

$$
y_{1}=\left[\begin{array}{l}
1 \\
6 \\
9
\end{array}\right] \quad y_{2}=\left[\begin{array}{l}
1 \\
5 \\
7
\end{array}\right] \quad y_{3}=\left[\begin{array}{l}
-1 \\
-5 \\
-9
\end{array}\right] \quad y_{4}=\left[\begin{array}{r}
-1 \\
0 \\
-4
\end{array}\right]
$$

- Matrix \boldsymbol{Y} is then

$$
Y=\left[\begin{array}{rrr}
1 & 6 & 9 \\
1 & 5 & 7 \\
-1 & -5 & -9 \\
-1 & 0 & -4
\end{array}\right]
$$

LDF: Example

- Choose $b=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$
- In matlab, $\boldsymbol{a}=\boldsymbol{Y} \boldsymbol{b}$ solves the least squares problem

$$
a=\left[\begin{array}{r}
2.7 \\
1.0 \\
-0.9
\end{array}\right]
$$

- Note \boldsymbol{a} is an approximation to $\mathbf{Y a}=\boldsymbol{b}$, since no exact solution exists

$$
Y a=\left[\begin{array}{l}
0.4 \\
1.3 \\
0.6 \\
1.1
\end{array}\right] \neq\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

- This solution does give a separating hyperplane since $Y a>0$

LDF: Example

- Class 1: (6 9), (5 7)
- Class 2: (5 9), (0 10)
- The last sample is very far compared to others from the separating hyperplane

$$
y_{1}=\left[\begin{array}{l}
1 \\
6 \\
9
\end{array}\right] \quad y_{2}=\left[\begin{array}{l}
1 \\
5 \\
7
\end{array}\right] \quad y_{3}=\left[\begin{array}{l}
-1 \\
-5 \\
-9
\end{array}\right] \quad y_{4}=\left[\begin{array}{r}
-1 \\
0 \\
-10
\end{array}\right]
$$

- Matrix $Y=\left[\begin{array}{rrr}1 & 6 & 9 \\ 1 & 5 & 7 \\ -1 & -5 & -9 \\ -1 & 0 & -10\end{array}\right]$

LDF: Example

- Choose $b=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$
- In matlab, $\boldsymbol{a}=\boldsymbol{Y} \boldsymbol{b}$ solves the least squares problem

$$
a=\left[\begin{array}{r}
3.2 \\
0.2 \\
-0.4
\end{array}\right]
$$

- Note \boldsymbol{a} is an approximation to $\mathbf{Y a}=\boldsymbol{b}$, since no exact solution exists

$$
Y a=\left[\begin{array}{r}
0.2 \\
0.9 \\
-0.04 \\
1.16
\end{array}\right] \neq\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

- This solution does not give a separating hyperplane since $\boldsymbol{a}^{t} \boldsymbol{y}_{3}<\mathbf{0}$

LDF: Example

- MSE pays to much attention to isolated "noisy" examples (such examples are called outliers)

- No problems with convergence though, and solution it gives ranges from reasonable to good

LDF: Example

- we know that $4^{\text {th }}$ point is far far from separating hyperplane
- In practice we don't know this
- Thus appropriate $b=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 10\end{array}\right]$
- In Matlab, solve $\boldsymbol{a}=\boldsymbol{Y} \boldsymbol{b}$

$$
a=\left[\begin{array}{r}
-1.1 \\
1.7 \\
-0.9
\end{array}\right]
$$

- Note \boldsymbol{a} is an approximation to $\boldsymbol{Y a}=\boldsymbol{b}, \quad \boldsymbol{Y a}=\left[\begin{array}{c}0.9 \\ 10.0 \\ 0.8 \\ 10.0\end{array}\right] \neq\left[\begin{array}{c}1 \\ 1 \\ 1 \\ 10\end{array}\right]$
- This solution does give the separating hyperplane since $\mathbf{Y a}>\mathbf{0}$

LDF: Gradient Descent for MSE solution

$$
J_{s}(a)=\|Y a-b\|^{2}
$$

- May wish to find MSE solution by gradient descent:

1. Computing the inverse of $\boldsymbol{Y}^{\boldsymbol{t}} \boldsymbol{Y}$ may be too costly
2. $\boldsymbol{Y}^{\boldsymbol{t}} \boldsymbol{Y}$ may be close to singular if samples are highly correlated (rows of \boldsymbol{Y} are almost linear combinations of each other)

- computing the inverse of $\boldsymbol{Y}^{\prime} \boldsymbol{Y}$ is not numerically stable
- In the beginning of the lecture, computed the gradient:

$$
\nabla J_{s}(a)=2 Y^{t}(Y a-b)
$$

LDF: Widrow-Hoff Procedure

$$
\nabla J_{s}(a)=2 Y^{t}(Y a-b)
$$

- Thus the update rule for gradient descent:

$$
a^{(k+1)}=\boldsymbol{a}^{(k)}-\eta^{(k)} \boldsymbol{Y}^{t}\left(\boldsymbol{Y a}^{(k)}-b\right)
$$

- If $\eta^{(k)}=\eta^{(1)} / \boldsymbol{k}$ weight vector $\mathbf{a}^{(k)}$ converges to the MSE solution a, that is $\boldsymbol{Y}^{\boldsymbol{t}}(\boldsymbol{Y a}-\boldsymbol{b})=0$
- Widrow-Hoff procedure reduces storage requirements by considering single samples sequentially:

$$
a^{(k+1)}=a^{(k)}-\eta^{(k)} y_{i}\left(y_{i}^{t} a^{(k)}-b_{i}\right)
$$

LDF: Ho-Kashyap Procedure

- In the MSE procedure, if \boldsymbol{b} is chosen arbitrarily, finding separating hyperplane is not guaranteed
- Suppose training samples are linearly separable. Then there is $\boldsymbol{a}^{\boldsymbol{s}}$ and positive $\boldsymbol{b}^{\boldsymbol{s}}$ s.t.

$$
Y a^{s}=b^{s}>0
$$

- If we knew $\boldsymbol{b}^{\boldsymbol{s}}$ could apply MSE procedure to find the separating hyperplane
- Idea: find both $\boldsymbol{a}^{\boldsymbol{s}}$ and $\boldsymbol{b}^{\boldsymbol{s}}$
- Minimize the following criterion function, restricting to positive \boldsymbol{b} :

$$
J_{H K}(a, b)=\|Y a-b\|^{2}
$$

LDF: Ho-Kashyap Procedure

$$
J_{H K}(a, b)=\|\boldsymbol{Y} a-\boldsymbol{b}\|^{2}
$$

- As usual, take partial derivatives w.r.t. \boldsymbol{a} and \boldsymbol{b}

$$
\begin{aligned}
\nabla_{a} J_{H K}=2 Y^{t}(Y a-b) & =0 \\
\nabla_{b} J_{H K}=-2(Y a-b) & =0
\end{aligned}
$$

- Use modified gradient descent procedure to find a minimum of $\boldsymbol{J}_{\boldsymbol{H K}}(\mathbf{a}, \boldsymbol{b})$
- Alternate the two steps below until convergence:

1) Fix \boldsymbol{b} and minimize $\boldsymbol{J}_{\boldsymbol{H}}(\boldsymbol{a}, \boldsymbol{b})$ with respect to \boldsymbol{a}
2) Fix \boldsymbol{a} and minimize $\boldsymbol{J}_{\boldsymbol{H K}}(\boldsymbol{a}, \boldsymbol{b})$ with respect to \boldsymbol{b}

LDF: Ho-Kashyap Procedure

$$
\nabla_{a} J_{H K}=2 Y^{t}(Y a-b)=0 \quad \nabla_{b} J_{H K}=-2(Y a-b)=0
$$

- Alternate the two steps below until convergence:

1) Fix \boldsymbol{b} and minimize $\boldsymbol{J}_{\boldsymbol{H K}}(\boldsymbol{a}, \boldsymbol{b})$ with respect to \boldsymbol{a}
2) Fix \boldsymbol{a} and minimize $\boldsymbol{J}_{\boldsymbol{H K}}(\boldsymbol{a}, \boldsymbol{b})$ with respect to \boldsymbol{b}

- Step (1) can be performed with pseudoinverse
- For fixed \boldsymbol{b} minimum of $\boldsymbol{J}_{\boldsymbol{H K}}(\mathbf{a}, \boldsymbol{b})$ with respect to \boldsymbol{a} is found by solving

$$
2 Y^{t}(Y a-b)=0
$$

- Thus

$$
\boldsymbol{a}=\left(\boldsymbol{Y}^{t} \boldsymbol{Y}\right)^{-1} \boldsymbol{Y}^{t} \boldsymbol{b}
$$

LDF: Ho-Kashyap Procedure

- Step 2: fix \boldsymbol{a} and minimize $\boldsymbol{J}_{\boldsymbol{H K}}(\boldsymbol{a}, \boldsymbol{b})$ with respect to \boldsymbol{b}
- We can't use $\boldsymbol{b}=\boldsymbol{Y a}$ because \boldsymbol{b} has to be positive
- Solution: use modified gradient descent
- start with positive \boldsymbol{b}, follow negative gradient but refuse to decrease any components of \boldsymbol{b}
- This can be achieved by setting all the positive components of $\nabla_{b} \boldsymbol{J}$ to $\mathbf{0}$
- Not doing steepest descent anymore, but we are still doing descent and ensure that \boldsymbol{b} is positive

LDF: Ho-Kashyap Procedure

- The Ho-Kashyap procedure:
$0)$ Start with arbitrary $\boldsymbol{a}^{(1)}$ and $\boldsymbol{b}^{(1)}>0$, let $\mathrm{k}=1$
repeat steps (1) through (4)

1) $\boldsymbol{e}^{(k)}=\boldsymbol{Y} a^{(k)}-b^{(k)}$
2) Solve for $\boldsymbol{b}^{(k+1)}$ using $\boldsymbol{a}^{(k)}$ and $\boldsymbol{b}^{(k)}$

$$
b^{(k+1)}=b^{(k)}+\eta\left[e^{(k)}+\left|e^{(k)}\right|\right]
$$

3) Solve for $\boldsymbol{a}^{(k+1)}$ using $\boldsymbol{b}^{(k+1)}$

$$
\boldsymbol{a}^{(k+1)}=\left(\boldsymbol{Y}^{t} \boldsymbol{Y}\right)^{-1} \boldsymbol{Y}^{t} \boldsymbol{b}^{(k+1)}
$$

4) $k=k+1$
until $\boldsymbol{e}^{(\boldsymbol{k})}>=0$ or $\boldsymbol{k}>\boldsymbol{k}_{\text {max }}$ or $\boldsymbol{b}^{(k+1)}=\boldsymbol{b}^{(\boldsymbol{k})}$

- For convergence, learning rate should be fixed between $0<\eta<1$

LDF: Ho-Kashyap Procedure

- In the linearly separable case,
- $\boldsymbol{e}^{(k)}=\mathbf{0}$, found solution, stop
- one of components of $\boldsymbol{e}^{(\boldsymbol{k})}$ is positive, algorithm continues
- In non separable case,
- $\boldsymbol{e}^{(\boldsymbol{k})}$ will have only negative components eventually, thus found proof of nonseparability
- No bound on how many iteration need for the proof of nonseparability

LDF: Ho-Kashyap Procedure Example

- Class 1: (6 9), (5 7)
- Class 1: (5 9), (0 10)
- Matrix $\quad Y=\left[\begin{array}{rrr}1 & 6 & 9 \\ 1 & 5 & 7 \\ -1 & -5 & -9 \\ -1 & 0 & -10\end{array}\right]$

- Start with $a^{(1)}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $b^{(1)}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$
- Use fixed learning $\eta=0.9$
- At the start $\quad Y^{(1)}=\left[\begin{array}{r}16 \\ 13 \\ -15 \\ -11\end{array}\right]$

LDF: Ho-Kashyap Procedure Example

- Iteration 1 :
- $e^{(1)}=Y a^{(1)}-b^{(1)}=\left[\begin{array}{r}16 \\ 13 \\ -15 \\ -11\end{array}\right]-\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{r}15 \\ 12 \\ -16 \\ -12\end{array}\right]$
- solve for $\boldsymbol{b}^{(2)}$ using $\boldsymbol{a}^{(1)}$ and $\boldsymbol{b}^{(1)}$

$$
b^{(2)}=b^{(1)}+0.9\left[e^{(1)}+\left|e^{(1)}\right|\right]=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]+0.9\left[\left[\begin{array}{r}
15 \\
12 \\
-16 \\
-12
\end{array}\right]+\left[\begin{array}{r}
15 \\
12 \\
16 \\
12
\end{array}\right]\right]=\left[\begin{array}{r}
28 \\
22.6 \\
1 \\
1
\end{array}\right]
$$

- solve for $\boldsymbol{a}^{(2)}$ using $\boldsymbol{b}^{(2)}$

$$
a^{(2)}=\left(Y^{t} Y\right)^{-1} Y^{t} b^{(2)}=\left[\begin{array}{rrrr}
-2.6 & 4.7 & 1.6 & -0.5 \\
0.16 & -0.1 & -0.1 & 0.2 \\
0.26 & -0.5 & -0.2 & -0.1
\end{array}\right] *\left[\begin{array}{r}
28 \\
22.6 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
34.6 \\
2.7 \\
-3.8
\end{array}\right]
$$

LDF: Ho-Kashyap Procedure Example

- Continue iterations until $\boldsymbol{Y} \mathbf{a}>0$
- In practice, continue until minimum component of $Y a$ is less then 0.01

- After 104 iterations converged to solution

$$
a=\left[\begin{array}{c}
-34.9 \\
27.3 \\
-11.3
\end{array}\right] \quad b=\left[\begin{array}{c}
28 \\
23 \\
1 \\
147
\end{array}\right]
$$

- a does gives a separating hyperplane

$$
Y a=\left[\begin{array}{l}
27.2 \\
22.5 \\
0.14 \\
1.48
\end{array}\right]
$$

LDF: MSE for Multiple Classes

- Suppose we have m classes
- Define \boldsymbol{m} linear discriminant functions

$$
g_{i}(x)=w_{i}^{t} x+w_{i 0} \quad \mathbf{i}=1, \ldots, m
$$

- Given \boldsymbol{x}, assign class $\boldsymbol{c}_{\boldsymbol{i}}$ if

$$
g_{i}(x) \geq g_{j}(x) \quad \forall \mathbf{j} \neq \mathbf{i}
$$

- Such classifier is called a linear machine
- A linear machine divides the feature space into \boldsymbol{c} decision regions, with $\boldsymbol{g}_{i}(\boldsymbol{x})$ being the largest discriminant if \boldsymbol{x} is in the region $\boldsymbol{R}_{\boldsymbol{i}}$

LDF: MSE for Multiple Classes

- For each class i, find weight vector a_{i}, s.t.

$$
\begin{cases}a_{i}^{t} y=1 & \forall y \in \text { class } i \\ a_{i}^{t} y=0 & \forall y \notin \text { class } i\end{cases}
$$

- Let \boldsymbol{Y}_{i} be matrix whose rows are samples from class \boldsymbol{i}, so it has $\boldsymbol{d}+\mathbf{1}$ columns and $\boldsymbol{n}_{\boldsymbol{i}}$ rows
- Let's pile all samples in \boldsymbol{n} by $\boldsymbol{d}+\mathbf{1}$ matrix \boldsymbol{Y} :

$$
\boldsymbol{Y}=\left[\begin{array}{c}
\boldsymbol{Y}_{1} \\
\boldsymbol{Y}_{2} \\
\vdots \\
\dot{Y}_{m}
\end{array}\right]=\left[\begin{array}{c}
\text { sample erom class } 1 \\
\text { sample from class } 1 \\
\text { sample from class } m \\
\text { sample from class } m
\end{array}\right]
$$

LDF: MSE for Multiple Classes

- Let $\boldsymbol{b}_{\boldsymbol{i}}$ be a column vector of length \boldsymbol{n} which is $\mathbf{0}$ everywhere except rows corresponding to samples from class i, where it is 1 :

LDF: MSE for Multiple Classes

- Let's pile all $\boldsymbol{b}_{\boldsymbol{i}}$ as columns in \boldsymbol{n} by \boldsymbol{c} matrix \boldsymbol{B}

$$
B=\left[\begin{array}{lll}
b_{1} & \cdots & b_{n}
\end{array}\right]
$$

- Let's pile all $\boldsymbol{a}_{\boldsymbol{i}}$ as columns in $\boldsymbol{d}+\mathbf{1}$ by \boldsymbol{m} matrix \boldsymbol{A}
- \boldsymbol{m} LSE problems can be represented in $Y A=B$:

LDF: MSE for Multiple Classes

- Our objective function is:

$$
J(A)=\sum_{i=1}^{m}\left\|\boldsymbol{r} \boldsymbol{a}_{i}-\boldsymbol{b}_{i}\right\|^{2}
$$

- $\boldsymbol{J}(\boldsymbol{A})$ is minimized with the use of pseudoinverse

$$
A=\left(Y^{t} Y\right)^{-1} Y B
$$

LDF: Summary

- Perceptron procedures
- find a separating hyperplane in the linearly separable case,
- do not converge in the non-separable case
- can force convergence by using a decreasing learning rate, but are not guaranteed a reasonable stopping point
- MSE procedures
- converge in separable and not separable case
- may not find separating hyperplane if classes are linearly separable
- use pseudoinverse if $\boldsymbol{Y}^{t} \boldsymbol{Y}$ is not singular and not too large
- use gradient descent (Widrow-Hoff procedure) otherwise
- Ho-Kashyap procedures
- always converge
- find separating hyperplane in the linearly separable case
- more costly

