
Minimum Squared Error



LDF:  Minimum Squared-Error Procedures

� Idea: convert to easier and better understood  problem

atyi > 0 for all samples yi

solve system of linear inequalities

atyi = bi for all samples yi

solve system of linear equations

Perceptron

� MSE procedure
� Choose positive constants b1, b2,…, bn

� try to find weight vector a s.t. atyi = bi for all samples yi

� If we can find weight vector a such that atyi = bi for all 
samples yi , then a is a solution because bi’s are positive

� consider all the samples (not just the misclassified ones)

solve system of linear equations



yig(y) = 0

LDF:  MSE Margins

yk

� Since we want atyi = bi, we expect sample yi to be at distance  
bi from the separating hyperplane (normalized by ||a||)

� Thus b1, b2,…, bn  give relative expected distances or 
“margins” of samples from the hyperplane 

� Should make bi small if sample i is expected to be near 
separating hyperplane, and make bi larger otherwise

� In the absence of any additional information, there are good 
reasons to set b1 = b2 =… = bn  = 1



LDF:  MSE Matrix Notation

� Need to solve n equations

� Introduce matrix notation:
(((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( ))))
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� Thus need to solve a linear system Ya = b



LDF:  Exact Solution is Rare

� Y is an n by (d +1) matrix

� a = Y-1b

� Exact solution can be found only if Y is nonsingular 
and square, in which case the inverse Y-1 exists

� Thus need to solve a linear system Ya = b

� (number of samples) = (number of features + 1)
� almost never happens in practice
� in this case, guaranteed to find the separating hyperplane� in this case, guaranteed to find the separating hyperplane

1y

2y



LDF:  Approximate Solution

� Need Ya = b, but no exact solution exists for an 

� Typically Y is overdetermined, that is it has more 
rows (examples) than columns (features)
� If it has more features than examples, should reduce 

dimensionality

Y ba =

� Need Ya = b, but no exact solution exists for an 
overdetermined system of equation
� More equations than unknowns

� Find an approximate solution a, that is bYa ≈≈≈≈
� Note that approximate solution a does not necessarily 

give the separating hyperplane in the separable case
� But hyperplane corresponding to a may still be a good 

solution, especially if there is no separating hyperplane



LDF:  MSE Criterion Function

� Minimum squared error approach: find a which 
minimizes the length of the error vector e

bYae −−−−====

Ya

b

e

� Thus  minimize the minimum squared error criterion � Thus  minimize the minimum squared error criterion 
function: 

(((( )))) 2
bYaaJs −−−−====

� Unlike the perceptron criterion function, we can 
optimize the minimum squared error criterion 
function analytically by setting the gradient to 0
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LDF:  Optimizing Js(a)

� Let’s compute the gradient:

(((( )))) 2
bYaaJs −−−−==== (((( ))))∑∑∑∑
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� Setting the gradient to 0:

(((( )))) bYYaYbYaY ttt ====⇒⇒⇒⇒====−−−− 02



LDF:  Pseudo Inverse Solution

� Matrix YtY is square (it has d +1 rows and columns) 
and it is often non-singular

� If YtY is non-singular, its inverse exists and we can 
solve for a uniquely:

(((( )))) 1−−−−(((( )))) bYYYa tt 1−−−−
====

pseudo inverse of Y

(((( ))))(((( )))) (((( )))) (((( )))) IYYYYYYYY tttt ========
−−−−−−−− 11



LDF:  Minimum Squared-Error Procedures

� If b1=…=bn =1, MSE procedure is equivalent to finding a 
hyperplane of best fit through the samples y1,…,yn
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� Then we shift this line to the origin, if this line was a 
good fit, all samples will be classified correctly



LDF:  Minimum Squared-Error Procedures

� Only guaranteed the separating hyperplane if  Ya > 0 
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� We have bYa ≈≈≈≈

� Thus in linearly separable case, least squares solution 
a does not necessarily gives separating hyperplane

� If  εεεε1,…, εεεεn are small relative to b1,…, bn ,   then each element 
of Ya is positive, and a gives a separating hyperplane





 ++++ nnb εεεε

� If approximation is not good, εεεεi may be large and negative, 
for some i, thus bi + εεεεi will be negative and a is not a 
separating hyperplane

� But it  will give a “reasonable” hyperplane



LDF:  Minimum Squared-Error Procedures

� We are free to choose b. May be tempted to make b
large as a way to insure 0bYa >>>>≈≈≈≈

� Does not work
� Let β β β β be a scalar, let’s try  ββββb instead of b
� if a* is a least squares solution to Ya = b, then for any 

scalar  ββββ,  least squares solution to Ya = ββββb  is  ββββa*
2

a
bYaminarg ββββ−−−− (((( )))) 22

a
b/aYminarg −−−−==== ββββββββ

*aββββ====

� thus if for some i th element of Ya is less than 0, that is        
yt

ia < 0, then yt
i (ββββa) < 0, 

� Relative difference between components of b matters, 
but not the size of each individual component

scalar  ββββ,  least squares solution to Ya = ββββb  is  ββββa*

(((( )))) 2

a
b/aYminarg −−−−==== ββββ



LDF:  Example

� Class 1: (6 9), (5 7)
� Class 2: (5 9), (0 4)

� Set vectors y1, y2 , y3 , y4 by 
adding extra feature and 
“normalizing” 

1 1 −−−−1  −−−−1

� Matrix Y is then
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LDF:  Example

� Choose
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� In matlab, a=Y\b solves the 
least squares problem
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� Note a is an approximation to Ya = b, since no 
exact solution exists
















≠≠≠≠
















====

1
1
1
1

1.1
6.0
3.1
4.0

Ya

� This solution does give a separating hyperplane 
since Ya > 0



LDF:  Example

� Class 1: (6 9), (5 7)
� Class 2: (5 9), (0 10)
� The last sample is very far 

compared to others from the 
separating hyperplane

1 1 −−−−1  −−−−1

� Matrix
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LDF:  Example

� Choose
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� In matlab, a=Y\b solves the 
least squares problem
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� Note a is an approximation to Ya = b, since no 
exact solution exists
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� This solution does not give a separating 
hyperplane since aty3 < 0



LDF:  Example

� MSE pays to much attention to isolated “noisy” 
examples (such examples are called outliers)

outlier
MSE solution

desired solution

� No problems with convergence though, and 
solution it gives ranges from reasonable to good



LDF:  Example
� we know that 4th point is far  far 

from separating hyperplane
� In practice we don’t know this 

� In Matlab, solve  a=Y\b
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� In Matlab, solve  a=Y\b













−−−−

−−−−
====

9.0
7.1
1.1

a

� Note a is an approximation to Ya = b, 
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� This solution does give the separating hyperplane 
since Ya > 0



LDF:  Gradient Descent for MSE solution

2. YtY may be close to singular if samples are highly 
correlated (rows of Y are almost linear 
combinations of each other)

� May wish to find MSE solution by gradient descent:

1. Computing the inverse of YtY may be too costly

(((( )))) 2
bYaaJs −−−−====

combinations of each other)
� computing the inverse of YtY is not numerically stable

� In the beginning of the lecture,  computed the 
gradient:

(((( )))) (((( ))))bYaYaJ t
s −−−−====∇∇∇∇ 2



LDF:  Widrow-Hoff Procedure

� Thus the update rule for gradient descent:
(((( )))) (((( )))) (((( )))) (((( ))))(((( ))))bYaYaa ktkkk −−−−−−−−====++++ ηηηη1

� If                       weight vector a(k) converges to the MSE 
solution a, that is Yt(Ya-b)=0

(((( )))) (((( )))) kk /1ηηηηηηηη ====

(((( )))) (((( ))))bYaYaJ t
s −−−−====∇∇∇∇ 2

solution a, that is Yt(Ya-b)=0

� Widrow-Hoff procedure reduces storage 
requirements by considering single samples 
sequentially:

(((( )))) (((( )))) (((( )))) (((( ))))(((( ))))i
kt

ii
kkk bayyaa −−−−−−−−====++++ ηηηη1



LDF:  Ho-Kashyap Procedure 

� Suppose training samples are linearly separable. 
Then there is as and positive bs s.t.

� In the MSE procedure, if b is chosen arbitrarily, 
finding separating hyperplane is not guaranteed

0>>>>==== ss bYa

� If we knew bs could apply MSE procedure to find the � If we knew bs could apply MSE procedure to find the 
separating hyperplane

� Idea: find both as and bs

� Minimize the following criterion function, restricting to 
positive b: (((( )))) 2

, bYabaJHK −−−−====



LDF:  Ho-Kashyap Procedure

� As usual, take partial derivatives w.r.t. a and b

(((( )))) 2
, bYabaJHK −−−−====

(((( )))) 02 ====−−−−====∇∇∇∇ bYaYJ t
HKa

(((( )))) 02 ====−−−−−−−−====∇∇∇∇ bYaJHKb

� Use modified gradient descent procedure to find a  � Use modified gradient descent procedure to find a  
minimum of JHK(a,b)

2) Fix a and minimize JHK(a,b) with respect to b

� Alternate the two steps below until convergence:
1) Fix b and minimize JHK(a,b) with respect to a



LDF:  Ho-Kashyap Procedure

(((( )))) 02 ====−−−−====∇∇∇∇ bYaYJ t
HKa

(((( )))) 02 ====−−−−−−−−====∇∇∇∇ bYaJHKb

� Step (1) can be performed with pseudoinverse

2) Fix a and minimize JHK(a,b) with respect to b

� Alternate the two steps below until convergence:
1) Fix b and minimize JHK(a,b) with respect to a

� For fixed b minimum of JHK(a,b) with respect to a is 
found by solving 

(((( )))) 02 ====−−−− bYaY t

� Thus 

(((( )))) bYYYa tt 1−−−−
====



LDF:  Ho-Kashyap Procedure

� We can’t  use  b = Ya because  b has to be positive

� Step 2:  fix a and minimize JHK(a,b) with respect to b

� Solution: use modified gradient descent

� start with positive b , follow negative gradient but 
refuse to decrease any components of b

� This can be achieved by setting all the positive 
components of           to  0Jb∇∇∇∇

� Not doing steepest descent anymore, but we are 
still doing descent and ensure that  b is positive



LDF:  Ho-Kashyap Procedure
� The Ho-Kashyap procedure:

0) Start with arbitrary a(1) and b(1) > 0, let k = 1

repeat steps (1) through (4)
1) (((( )))) (((( )))) (((( ))))kkk bYae −−−−====

2) Solve for b(k+1) using a(k) and b(k)

(((( )))) (((( )))) (((( )))) (((( ))))[[[[ ]]]]||1 kkkk eebb ++++++++====++++ ηηηη

3) Solve for a(k+1) using b(k+1)

(((( )))) (((( )))) (((( ))))111 ++++−−−−++++ ==== kttk bYYYa

4) k = k + 1

until e(k) >= 0  or  k > kmax or b(k+1) = b(k)

� For convergence, learning rate should be fixed 
between 0 < ηηηη < 1



LDF:  Ho-Kashyap Procedure

� In the linearly separable case, 
� e(k) = 0,  found solution, stop
� one of components of e(k) is positive, algorithm continues

� In non separable case, 
� e(k) will have only negative components eventually, thus 

found proof of nonseparability
� No bound on how many iteration need for the proof of 

nonseparability



LDF:  Ho-Kashyap Procedure Example

� Class 1: (6 9), (5 7)
� Class 1: (5 9), (0 10)

� Matrix
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LDF:  Ho-Kashyap Procedure Example

� solve for b(2) using a(1) and b(1)

� Iteration 1:

(((( )))) (((( )))) (((( ))))
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� solve for a(2) using b(2)
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LDF:  Ho-Kashyap Procedure Example

� Continue iterations until Ya > 0
� In practice, continue until minimum 

component of Ya is less then 0.01

� After 104 iterations converged to solution
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� a does gives a separating hyperplane
















====

147
1

23
28

b












−−−−

−−−−
====

3.11
3.27
9.34

a



m1,...,i         )( 0 ====++++==== i
t
ii wxwxg

� Suppose we have m classes
� Define m linear discriminant functions 

� Given x, assign class ci if 

ij         )()( ≠≠≠≠∀∀∀∀≥≥≥≥ xgxg ji

LDF:  MSE for Multiple Classes

ij         )()( ≠≠≠≠∀∀∀∀≥≥≥≥ xgxg ji

� Such classifier is called a  linear machine

� A linear machine divides the feature space into c 
decision regions, with gi(x) being the largest 
discriminant if x is in the region Ri



� For each class i, find weight vector ai, s.t. 

LDF:  MSE for Multiple Classes
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� Let Yi be matrix whose rows are samples from 
class i, so it has d +1 columns and ni rowsclass i, so it has d +1 columns and ni rows
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� Let’s pile all samples in n by d +1 matrix Y:
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� Let bi be a column vector of length n which is 0
everywhere except rows corresponding to samples 
from class i, where it is 1:

LDF:  MSE for Multiple Classes
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LDF:  MSE for Multiple Classes

[[[[ ]]]]n1 bbB L====

� Let’s pile all bi as columns in n by c matrix B

� Let’s pile all ai as columns in d +1 by m matrix A

[[[[ ]]]]maaA L1====
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� m LSE problems can be represented in YA = B:
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LDF:  MSE for Multiple Classes

(((( )))) ∑∑∑∑
====
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� Our objective function is:

� J(A) is minimized with the use of pseudoinverse

(((( )))) YBYYA t 1−−−−
====



LDF:  Summary

� Perceptron procedures 
� find a separating hyperplane  in the linearly separable case,
� do not converge in the non-separable case
� can force convergence  by using a decreasing learning rate, 

but are not guaranteed a reasonable stopping point

� MSE procedures 
� converge in separable and not separable case � converge in separable and not separable case 
� may not find separating hyperplane if classes are linearly 

separable
� use pseudoinverse if YtY is not singular and not too large
� use gradient descent (Widrow-Hoff procedure) otherwise

� Ho-Kashyap procedures 
� always converge
� find separating hyperplane in the linearly separable case
� more costly


