Minimum Squared Error



LDF:. Minimum Squared-Error Procedures

= |dea: convert to easier and better understooc

. a'y;, >0 for all samplesy;
solve system of linear inequalities

Perceptron

J

aly, = b, for all samplesy;
solve system of linear equations

= MSE procedure
= Choose positive constants by, b,,..., b,

problem

= try to find weight vector a s.t. aty; = b, for all samples y,

= |If we can find weight vector a such that a'y; = b, for all
samples y;, then a is a solution because b,’s are positive

= consider all the samples (not just the misclassified ones)



LDF. MSE Margins

gly)=0

= Since we want a'y; = b;, we expect sample y. to be at distance
b, from the separating hyperplane (normalized by ||al|)

= Thus by, b,,..., b, give relative expected distances or
“margins” of samples from the hyperplane

= Should make b; small if sample i is expected to be near
separating hyperplane, and make b; larger otherwise

= |n the absence of any additional information, there are good
reasonstosetb;,=b,=...=b, =1



LDF: MSE Matrix Notation

_ [ atyl = bl
= Need to solve n equations < :

a'y,=b,
= |ntroduce matrix notation:

YO YOy
(0) yél) é) 0 b

12 a_l — ;2
: : a'd ;
YOy oy | LBy
' Jo ) w _J
Y | | Y
% a b

= Thus need to solve a linear system Ya =Db



LDF: Exact Solution is Rare

= Thus need to solve a linear system Ya =D
= Yisann by (d +1) matrix

= Exact solution can be found only If Y is nonsingular
and square, in which case the inverse Y exists
= a=Yl
= (number of samples) = (number of features + 1)
= almost never happens In practice
= In this case, guaranteed to find the separating hyperplane




LDF: Approximate Solution

= Typically Y Is overdetermined, that is it has more

rows (examples) than columns (features)

= |f it has more features than examples, should reduce
dimensionality

b

Y |[|a

= Need Ya = b, but no exact solution exists for an
overdetermined system of equation
= More equations than unknowns

= Find an approximate solution a, thatis Ya~Db

= Note that approximate solution a does not necessarily
give the separating hyperplane in the separable case

= But hyperplane corresponding to a may still be a good
solution, especially if there is no separating hyperplane



LDF: MSE Criterion Function

= Minimum squared error approach: find a which
minimizes the length of the error vector e

b
YAt

Ya

= Thus minimize the minimum squared error criterion

function:
@) a-bl = Slay, b

= Unlike the perceptron criterion function, we can
optimize the minimum squared error criterion
function analytically by setting the gradient to O



LDF: Optimizing J.(a)

J.(a)=|va-b| —z(ay.—b)

= Let’s compute the gradient:
0.
0q,
vi.(a)=| : | =2Y'(Ya-b)
0J
0,

= Setting the gradient to O:
2Y'(Ya-b)=0 = Y'Ya=Y'b



LDF: Pseudo Inverse Solution

= Matrix Y'Y is square (it has d +1 rows and columns)
and it is often non-singular

= |f Y'Y Is non-singular, its inverse exists and we can
solve for a uniquely:

a=(Y'y )Y b

pseudo inverse of Y

(v = (v ev)=1



LDF: Minimum Squared-Error Procedures

= |f b,=...=b, =1, MSE procedure Is equivalent to finding a
hyperplane of best fit through the samples y,,...,y,

= Then we shift this line to the origin, if this line was a
good fit, all samples will be classified correctly



LDF: Minimum Squared-Error Procedures

= Only guaranteed the separating hyperplane if Ya >0

= that is If all elements of vector Ya =

= We have Ya=b
| b, +g |
= ThatIs Ya-= :

b, +¢&,

t
aYs g
. | are positive

X
ay,

where £ may be negative

= If &,..., & are small relative to b,,..., b, then each element
of Ya Is positive, and a gives a separating hyperplane

= |f approximation is not good, & may be large and negative,
for some I, thus b; + & will be negative and a is not a

separating hyperplane

= Thus in linearly separable case, least squares solution
a does not necessarily gives separating hyperplane

= But it will give a “reasonable” hyperplane



LDF: Minimum Squared-Error Procedures

= We are free to choose b. May be tempted to make b
large as a way to insure Ya~b >0

= Does not work

= Let Sbe a scalar, let'stry (b instead of b

= |f a* Is a least squares solution to Ya = b, then for any
scalar g, least squares solutionto Ya= b Is fa*

argmin|Ya— o[ = 20 i B|Y (a/ B)-b|’
—argminlY (a/ g)-b| = pa*

= thus if for some ith element of Ya is less than O, that is
yta <0, theny' () <0,

= Relative difference between components of b matters,
but not the size of each individual component



LDF: Example

Class 1:(69), (57)
Class 2: (59), (0 4)

Setvectorsy,, ¥, , Y3, Ys DY

adding extra feature and -

(e L= o [e2] -~ [o=] W
T T T T T T

-1 0 1 2 3 4 5 6

“normalizing”
_é_ .- - __%_
Y= Y, =9 Ys=|—-9| Y.=
1 _9_ 2 _7_ 3 __9_ 4 __ 4_

1 6
Matrix Y is then Y = % _g
1 O




LDF: Example

_1_ 10+
Choose b=|7 |
1
L] ol .
In matlab, a=Y\b solves the f w7
least squares problem o
2.7
a=| 1.0 % 0 2 s
-0.9
Note a Is an approximation to Ya = b, since no
exact solution exists 0.4] [1
(13 |1
Ya=\p6|*|1
1.1 [1]

This solution does give a separating hyperplane
since Ya >0



LDF: Example

Class 1:(69), (57)
Class 2: (5 9), (0 10)

The last sample Is very far
compared to others from the
separating hyperplane

1 1 -1

Y1 = 8 Y, = ? Y3 = :g
1 6 9]
Matrix Y = _% _g _Z)
-1 0 -10




LDF: Example

—1— 107 H
Choose b=|1

_1_ 8.5
In matlab, a=Y\b solves the

7.5F

least squares problem

3.2 N | | |
a= O 2 2 0 2 4
-0.4
Note a Is an approximation to Ya = b, since no

exact solution exists - 0.2] [1]
09| (1
Ya=|_0.04 7|1
116 |[1]

This solution does not give a separating
hyperplane since aly,; <0



LDF: Example

= MSE pays to much attention to isolated “noisy”
examples (such examples are called outliers)

MSE solution

o e
outlier

*., desired solution

= No problems with convergence though, and
solution it gives ranges from reasonable to good



LDF: Example

= we know that 4™ point is far far
from separating hyperplane |

= |n practice we don’t know this
S q -

= Thus appropriate b=| 1

10
= |n Matlab, solve a=Y\b

-1.1
a=| 1.7
-0.9 " 091 17

0.9
= Note a is an approximation to Ya=b, va=| ;2 |=

8
B
4
ol
0
2
4

o 0 D 4 g

e

= This solution does give the separating hype_rplaﬁe
since Ya> 0



LDF: Gradient Descent for MSE solution

J,(a)=va-bf

= May wish to find MSE solution by gradient descent:

1. Computing the inverse of Y'Y may be too costly

2. Y'Y may be close to singular if samples are highly
correlated (rows of Y are almost linear
combinations of each other)

= computing the inverse of Y'Y is not numerically stable

= In the beginning of the lecture, computed the

gradient:
vi.(a)=2Y'(Ya-b)



LDF: Widrow-Hoff Procedure

vl (a)=2Y'(Ya-b)

= Thus the update rule for gradient descent:
qk+1) _ 5() _ n(k)Yt(Ya(k) B b)

= If % =5W/k weight vector a®) converges to the MSE
solution a, that is Y{(Ya-b)=0

= Widrow-Hoff procedure reduces storage
requirements by considering single samples
sequentially:

al =a® —py (yia® b))



LDF:. Ho-Kashyap Procedure

= In the MSE procedure, if b is chosen arbitrarily,
finding separating hyperplane is not guaranteed

= Suppose training samples are linearly separable.
Then there Is as and positive bS s.t.
Ya’=b" >0
= If we knew bS could apply MSE procedure to find the
separating hyperplane
= |dea: find both as and bs
= Minimize the following criterion function, restricting to

ositive b:
P Ji(a,b)=[ya-b|



LDF: Ho-Kashyap Procedure

Ju(a,b)=[Ya-b[

= As usual, take partial derivatives w.r.t. a and b
V.J =2Y'(Ya-b)=0
V,J.. =-2(Ya-b)=0

= Use modified gradient descent procedure to find a
minimum of J,(a,b)

= Alternate the two steps below until convergence:

1) Fix b and minimize J,(a,b) with respect to a
2) Fix a and minimize J,(a,b) with respect to b



LDF: Ho-Kashyap Procedure

Va‘JHK=2Yt(Ya_b)=O Vb‘]HKz_Z(Ya_b):O

= Alternate the two steps below until convergence:

1) Fix b and minimize J,(a,b) with respect to a
2) Fix a and minimize J,(a,b) with respect to b

= Step (1) can be performed with pseudoinverse

= For fixed b minimum of J(a,b) with respect to a is
found by solving

2Y'(Ya-Db)=0
= Thus
a=(YY)'Y'b




LDF: Ho-Kashyap Procedure

= Step 2: fix a and minimize J,(a,b) with respect to b

= We can’t use b =Ya because b has to be positive
= Solution: use modified gradient descent

= start with positive b , follow negative gradient but
refuse to decrease any components of b

= This can be achieved by setting all the positive
components of V,J to 0

= Not doing steepest descent anymore, but we are
still doing descent and ensure that b Is positive



LDF: Ho-Kashyap Procedure

= The Ho-Kashyap procedure:
0) Start with arbitrary a®¥ and bW >0, letk=1
repeat steps (1) through (4)
1) e® =val) _p®
2) Solve for b®*D using ak) and b)
p&+1) — pk) 4 U[e(k) +| e (k) |]

3) Solve for ak*1d) using b*+1)
a(k"'l) — (Y tY )—1Yt b(k+1)
4) k=k+1

until ek >=0 or k > k.., or bkl = pk)

max

= For convergence, learning rate should be fixed
between0< p <1



LDF: Ho-Kashyap Procedure

* In the linearly separable case,

= ek) =0, found solution, stop
= one of components of e®) is positive, algorithm continues

* In non separable case,

= e® will have only negative components eventually, thus
found proof of nonseparability

= No bound on how many iteration need for the proof of
nonseparability



LDF: Ho-Kashyap Procedure Example

= Class 1: (69), (5 7) o i
= Class 1: (59), (0 10) ;
-1 & o |
] I _ 1 5 V4 7
Matrix Y=l _1 -5 —9 |
-1 0 -10
_1_ _1_
= Start with al¥) = % and b® = %
o 1

= Use fixed learning n=0.9

16

. w_| 13
Atthe start Ya™' =| ¢




LDF: Ho-Kashyap Procedure Example

= |teration 1:

e® _ya® _p@ _

solve for b® using a® and b®

a® =(y'y )yt p® =

[ 16
13
15

solve for al® using b

PR

b® =b®4+0.9[e® +]e®|| =

- 15

RPRRE

12
16
~12 |

+0.9




LDF: Ho-Kashyap Procedure Example

10| B
= Continue iterations until Ya >0 |

= |n practice, continue until minimum

component of Ya is less then 0.01 7 )

6

-2 0 2 4 6

= After 104 iterations converged to solution

—34.9 28
a{ 27.3} b — 213
~11.3 147

= a does gives a separating hyperplane

27.2
22.5
0.14
1.48

Ya =




LDF: MSE for Multiple Classes

Suppose we have m classes
Define m linear discriminant functions

g, (X)=W X +W, I=1,..,m

Given x, assign class c; if
gi(x)29;(x)  Vj#i

Such classifier is called a linear machine

A linear machine divides the feature space Iinto c
decision regions, with g;(x) being the largest
discriminant if x is in the region R



LDF: MSE for Multiple Classes

= For each class I, find weight vector a,, s.t.

ay=1 Vy e class i
ay =0 Vy ¢ class i

= Let Y; be matrix whose rows are samples from
class I, so it has d +1 columns and n; rows

= Let’s pile all samples inn by d +1 matrix Y:

Y, [ sample from class1 |
sample from class1
Y2 °

sample from classm
Y | sample from classm_




LDF: MSE for Multiple Classes

= Let b, be a column vector of length n which is O
everywhere except rows corresponding to samples
from class I, where it is 1: -

1 rows corresponding
b, = l to samples from class i
0




LDF: MSE for Multiple Classes

= Let’s pile all b; as columns in n by ¢ matrix B
B=[b, - b,]

= Let's pile all a; as columns in d +1 by m matrix A

_ - N E_
© ®© (4]
28 @
) O
|33 2
= m LSE problems can be represented in YA = B:
[ sample from class1|[ S92 100
sample from class1 E E ~§ 100
sample from class 2 wngl =010
sample from class3|| £ £ E 001
DOD 001
sample from class 3 S0 00 1
| sample from class3| L 3 331 L -
Y A B



LDF: MSE for Multiple Classes

= QOur objective function is:

I(A) = iZ::HYai _b,|f

= J(A) Is minimized with the use of pseudoinverse

A=Yty )'yB



LDF: Summary

= Perceptron procedures

= find a separating hyperplane in the linearly separable case,
= do not converge in the non-separable case

= can force convergence by using a decreasing learning rate,
but are not guaranteed a reasonable stopping point

= MSE procedures

= converge in separable and not separable case

= may not find separating hyperplane if classes are linearly
separable

= use pseudoinverse if Y'Y is not singular and not too large
= use gradient descent (Widrow-Hoff procedure) otherwise

» Ho-Kashyap procedures
= always converge

» find separating hyperplane in the linearly separable case
" more costly



