Minimum Squared Error



LDF:. Minimum Squared-Error Procedures

= |dea: convert to easier and better understood problem

Perceptron a'y; > 0 for all samples y;
solve system of linear inequalities

J

aly; = b; for all samplesy;
solve system of linear equations

= MSE procedure
= Choose positive constants b, b,,...,b,
= try to find weight vector a s.t. a'y; = b, for all samples y;

= |If we can find weight vector a such that a'y, = b, for all
samples y;, then a is a solution because b.'s are positive

= consider all the samples (not just the misclassified ones)



LDF. MSE Margins

1

= Since we want a'y; = b;, we expect sample y; to be at distance
b, from the separating hyperplane (normalized by ||a||)

= Thusb,,b,,...,b, give relative expected distances or
“margins” of samples from the hyperplane

= Should make b; small if sample i is expected to be near
separating hyperplane, and make b, larger otherwise

In the absence of any additional information, there are good
reasonstosetb,=b,=...=b, =1



LDF: MSE Matrix Notation

] [ atyl = bl
*= Need to solve n equations <« :
a'y, =b,
= |ntroduce matrix notation:
_y:(LZ) yii) y%:;_ _a _ -bl_
yzg) W ... % acl) b,
y© y@ . y@ (L% [b,
- i U R
Y | |
% a b

= Thus need to solve a linear system Ya =Db



LDF: Exact Solution is Rare

= Thus need to solve a linear system Ya =Db
= Yisann by (d +1) matrix

= Exact solution can be found only if Y is nonsingular
and square, in which case the inverse Y- exists
= a=Y1l
= (number of samples) = (number of features + 1)
= almost never happens In practice
= In this case, guaranteed to find the separating hyperplane




LDF: Approximate Solution

= Typically Y Is overdetermined, that is it has more

rows (examples) than columns (features)

= If it has more features than examples, should reduce
dimensionality

b

Y ||la

= Need Ya = b, but no exact solution exists for an
overdetermined system of equation
= More equations than unknowns

= Find an approximate solution a, thatis Ya = b

= Note that approximate solution a does not necessarily
give the separating hyperplane in the separable case

= But hyperplane corresponding to a may still be a good
solution, especially if there is no separating hyperplane



LDF: MSE Criterion Function

= Minimum squared error approach: find a which
minimizes the length of the error vector e

b
Yt %

Ya

= Thus minimize the minimum squared error criterion

function:
@)= a-bf =Xy, b

= Unlike the perceptron criterion function, we can
optimize the minimum squared error criterion
function analytically by setting the gradient to O



LDF: Optimizing J.(a)

J,(a)=|va-b|f —Z(ay. ~b,f

= Let's compute the gradient:
0.
0a,

vi.(a)= 53 =2Y'(Ya-b)

04,

= Setting the gradient to O:
2Y'(Ya-b)=0 = Y'Ya=Y'b



LDF: Pseudo Inverse Solution

= Matrix Y'Y is square (it has d +1 rows and columns)
and it Is often non-singular

= |If Y'Y Is non-singular, its inverse exists and we can
solve for a uniquely:

a=(Y'Y )Y

pseudo inverse of Y

by b =6ev)rey)




LDF: Minimum Squared-Error Procedures

= |f b,=...=b, =1, MSE procedure is equivalent to finding a
hyperplane of best fit through the samples y,,...,y,

J.(a)=]va-1,[

1. =|:|¢n

= Then we shift this line to the origin, if this line was a
good fit, all samples will be classified correctly



LDF: Minimum Squared-Error Procedures

= Only guaranteed the separating hyperplane if Ya >0

= that is If all elements of vector Ya =

= We have Ya=Db
| b, +¢g,
= Thatis Ya= :

b, +¢,

Lt
ay. =
: are pOSItIVG

:
ay,

where ¢ may be negative

= If &g,..., &, are small relative to b,,...,b,, then each element
of Ya Is positive, and a gives a separating hyperplane

= |f approximation is not good, & may be large and negative,
for some I, thus b; + & will be negative and a is not a

separating hyperplane

= Thus Iin linearly separable case, least squares solution
a does not necessarily gives separating hyperplane

= Butit will give a “reasonable” hyperplane



LDF: Minimum Squared-Error Procedures

= We are free to choose b. May be tempted to make b
large as a way to insure Ya=b >0

= Does not work
= Let fbe a scalar, let'stry pb instead of b

= |f a* Is a least squares solution to Ya = b, then for any
scalar g, least squares solution to Ya = b is fa*

arg min|Ya— go|" = arg min g2|Y (a/ B)-b|’
=argmin|Y(a/g)-b| = fa*

= thus if for some ith element of Ya is less than O, that is
yta <0, then yt (fa) <0,

= Relative difference between components of b matters,
but not the size of each individual component



LDF: Example

Class 1: (6 9), (57)
Class 2: (59), (04)

Setvectorsy,,¥Y,,VYs,Ys DY

adding extra feature and .

w B Ul (=2 ~l w© «©
T T T T T

-1 0 1 2 3 4 5 6

“normalizing”
1 il -1 —1]
Yi=|6| Y,=|2| Ys=[-3| Ys=| O
1 _9_ 2 _7_ 3 __9_ 4 - 4_

1 6
Matrix Y Is then Y = % _g
1 O




LDF: Example

1 ol
Choose b=|j 8
1
B ol
In matlab, a=Y\b solves the ¢ om
least squares problem )
2.7
a= 1.0 % 0 > 4
—-0.9
Note a Is an approximation to Ya = b, since no
exact solution exists 0.4] [1]
113 |1
Ya=lp6|*|1
1.1 |1]

This solution does give a separating hyperplane
since Ya >0



LDF: Example

Class 1: (6 9), (57)
Class 2: (59), (0 10)
The last sample is very far

compared to others from the

separating hyperplane

1 1

Y, = 693 Y, = g Y3 =
1 6 9

Matrix Y = _% _g _g
-1 0 -10

Y4




LDF: Example

101 B

9.5r

Choose b=

|
PRPP

8.5

In matlab, a=Y\b solves the
least squares problem

7.5¢

3.2 | | |
a= 0.2 6.5, 0 2 4
-0.4
Note a Is an approximation to Ya = b, since no

exact solution exists - 0.2] [1]
| 09]_|1
Ya=|_p0.04|*|1
116 |[1]

This solution does not give a separating
hyperplane since a'y; <0



LDF: Example

= MSE pays to much attention to isolated “noisy”
examples (such examples are called outliers)

o MSE solution

outlier - %
", desired solution

= No problems with convergence though, and
solution it gives ranges from reasonable to good



LDF: Example

we know that 4t point is far far =

from separating hyperplane

= |n practice we don’t know this
e

- 1
Thus appropriate b=| 3

8
6
4
ol
0
2
.

10
In Matlab, solve a=Y\b E: 0 >
—1.1]
a=| 1.7
—-0.9]

Note a is an approximation to Ya =b, Ya=

+

This solution does give the separating hype_rplar_1e

since Ya> 0

SRR




LDF: Gradient Descent for MSE solution

J,(a)=[va-b[

= May wish to find MSE solution by gradient descent:

1. Computing the inverse of Y'Y may be too costly

2. Y'Y may be close to singular if samples are highly
correlated (rows of Y are almost linear
combinations of each other)

= computing the inverse of Y'Y is not numerically stable

= |n the beginning of the lecture, computed the

gradient:
vJ.(a)=2Y'(va-b)



LDF: Widrow-Hoff Procedure

v, (a)=2Y'(va-b)

= Thus the update rule for gradient descent:
a(k+1) a(k) (k)Yt(Ya(k)_b)

= If % =7W/k weight vector ak) converges to the MSE
solution a, that is Yi(Ya-b)=0

= Widrow-Hoff procedure reduces storage
requirements by considering single samples
sequentially:

al =ak - pty (yja®-b,)



LDF. Ho-Kashyap Procedure

= In the MSE procedure, if b Is chosen arbitrarily,
finding separating hyperplane is not guaranteed

= Suppose training samples are linearly separable.
Then there Is a® and positive bS s.t.

Ya’=b" >0

= |If we knew b could apply MSE procedure to find the
separating hyperplane

= |dea: find both a° and bs
= Minimize the following criterion function, restricting to

ositive b:
P 3., (a,b)=[Ya—b|’



LDF: Ho-Kashyap Procedure

J ik (a’ b) = ”Ya B bHZ

= As usual, take partial derivatives w.r.t. a and b
V.3 =2Y'(Ya-b)=0
V., ) =—2(Ya-b)=0

= Use modified gradient descent procedure to find a
minimum of J,(a,b)

= Alternate the two steps below until convergence:

1) Fix b and minimize J(a,b) with respect to a
2) Fix a and minimize J,(a,b) with respectto b



LDF: Ho-Kashyap Procedure

VI3, =2Y'(Ya=b)=0 V.3« =-2(Ya-b)=0

= Alternate the two steps below until convergence:

1) Fix b and minimize J(a,b) with respect to a
2) Fix a and minimize J,(a,b) with respectto b

= Step (1) can be performed with pseudoinverse

= For fixed b minimum of J,«(a,b) with respect to a is
found by solving

2Y'(Ya-b)=0
= Thus

a=(YYJ'vip




LDF: Ho-Kashyap Procedure

= Step 2: fix a and minimize J(a,b) with respectto b

= We can’'t use b =Ya because b has to be positive
= Solution: use modified gradient descent

= start with positive b , follow negative gradient but
refuse to decrease any components of b

= This can be achieved by setting all the positive
components of V,J to 0

= Not doing steepest descent anymore, but we are
still doing descent and ensure that b Is positive



LDF: Ho-Kashyap Procedure

= The Ho-Kashyap procedure:
0) Start with arbitrary a¥ and b >0, letk =1
repeat steps (1) through (4)
1) e —vyg®) _pk)
2) Solve for b&+1) using a® and b®)
b(k+1) — b(k) + n[e(k) _|_| e(k) |]

3) Solve for ak*d) using bk+L)
a(k+1) — (Y tY )—lY'[ b(k+l)

4) k=k+1

until |e®|<=threshold or k > k..., or bk =pk)

max

= For convergence, learning rate should be fixed
between0<np <1



LDF: Ho-Kashyap Procedure

= In the linearly separable case,

= e =0, found solution, stop
= one of components of e is positive, algorithm continues

= In non separable case,

= e® will have only negative components eventually, thus
found proof of nonseparability

= No bound on how many iteration need for the proof of
nonseparability



LDF: Ho-Kashyap Procedure Example

= Matrix Y =

= At the start

Start with a® =

Yal) =

Class 1: (6 9), (57)
Class 1: (5 9), (0 10)

-1
-1

1
1
1

and bW =

Use fixed learning n = 0.9

16
13
—15
-11

PR




LDF: Ho-Kashyap Procedure Example

= |teration 1:

e® b® =

=Yal¥) -

- 167

13
-15

RPRRE

15
12
~-16

solve for b®® using a® and b®

b® =p® +O.9[e(1) +|eW |] =

solve for al® using b

a® =(Y'y )y p® =

- 2.
0.1
0.2

6 4.7 1.6 -05
6 -0.1 -0.1 0.2}
6 —-0.5 -0.2 -0.1

PR

+0.9

15
12
—16
—12




LDF: Ho-Kashyap Procedure Example
10| H
= Continue iterations until Ya >0 | A

= |n practice, continue until minimum ol
component of Ya is less then 0.01

4 ®

6 L 1
-2 0 2 4 6

= After 104 iterations converged to solution

—34.9 28 |
a{ 27.3} b = 213
~11.3 147

= a does gives a separating hyperplane

(27.2 ]
225
Ya=|pg14g
1,48




LDF: MSE for Multiple Classes

Suppose we have m classes
Define m linear discriminant functions

0, () =WX+W,,  i=1..,m

Given x, assign class c; if
9;(x)29g;(x) V]I

Such classifier is called a linear machine

A linear machine divides the feature space into c
decision regions, with g;(x) being the largest
discriminant if x is in the region R



LDF: MSE for Multiple Classes

= For each class I, find weight vector a, s.t.

ay=1 Vy e class |
ay =0 Vy ¢ class |

= Let Y; be matrix whose rows are samples from
class I, so it has d +1 columns and n, rows

= Let's pile all samples in n by d +1 matrix Y:

Y, " sample from class 1
sample from class 1
Y, :

sample from class m
Y  sample from class m_




LDF: MSE for Multiple Classes

= Let b, be a column vector of length n which is 0
everywhere except rows corresponding to samples
from class I, where it is 1: -

1 rows corresponding
b, = 1 to samples from class i
0




LDF: MSE for Multiple Classes

= |Let's pile all b; as columns in n by ¢ matrix B
3=[b, - b,]

= Let's pile all a; as columns in d +1 by m matrix A

— = N E_
© © (44]
22 @
A=la, - a,] <55 §
Q0 )
23 %
= m LSE problems can be represented in YA = B:
'sample from class1|[ SY9%C 100
sample from class 1 5 § § 100
sample from class 2 wng =010
sample from class 3 '-S"'-S"E 8 8 1
sample from class 3|| g ' -%' 00 %
'sample from class 3| 33 L7 7 7
Y A B



LDF: MSE for Multiple Classes

= Qur objective function is:

3(A) = g\wai b,

= J(A) iIs minimized with the use of pseudoinverse

A=(vty)'ve



LDF.: Summary

= Perceptron procedures

= find a separating hyperplane in the linearly separable case,
= do not converge in the non-separable case

= can force convergence by using a decreasing learning rate,
but are not guaranteed a reasonable stopping point

= MSE procedures

= converge in separable and not separable case

= may not find separating hyperplane if classes are linearly
separable

= use pseudoinverse if Y'Y is not singular and not too large
= use gradient descent (Widrow-Hoff procedure) otherwise

= Ho-Kashyap procedures
= always converge

= find separating hyperplane in the linearly separable case
= more costly



