
Minimum Squared Error 



LDF:  Minimum Squared-Error Procedures 

 MSE procedure 

 Choose positive constants b1, b2,…, bn 

 try to find weight vector a s.t. atyi  = bi for all samples yi 

 If we can find weight vector a such that  atyi  = bi for all 

samples yi , then a is a solution because bi’s are positive 

 consider all the samples (not just the misclassified ones) 

 Idea: convert to easier and better understood  problem 

atyi  > 0 for all samples yi 

solve system of linear inequalities 

atyi = bi  for all samples yi 

solve system of linear equations 

Perceptron 



yi g(y) = 0 

LDF:  MSE Margins 

 Since we want atyi = bi, we expect sample yi to be at distance  

bi from the separating hyperplane (normalized by ||a||) 

 Thus b1, b2,…, bn  give relative expected distances or 

“margins” of samples from the hyperplane  

 Should make bi small if sample i  is expected to be near 

separating hyperplane, and make bi larger otherwise 

 In the absence of any additional information, there are good 

reasons to set b1 =  b2 =… = bn  = 1 

yk 



LDF:  MSE Matrix Notation 

 Need to solve n equations 

 Introduce matrix notation: 
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 Thus need to solve a linear system Ya = b 
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LDF:  Exact Solution is Rare 

 Y is an n by (d +1) matrix 

  a = Y-1b 

 Exact solution can be found only if Y is nonsingular 
and square, in which case the inverse Y-1 exists 

 Thus need to solve a linear system Ya = b 

 (number of samples) = (number of features + 1) 
 almost never happens in practice 

 in this case, guaranteed to find the separating hyperplane 

1y

2y



LDF:  Approximate Solution 

 Need Ya = b, but no exact solution exists for an 

overdetermined system of equation 

 More equations than unknowns 

 

 Typically Y  is overdetermined, that is it has more 

rows (examples) than columns (features) 
 If it has more features than examples, should reduce 

dimensionality 

Y b a = 

 Find an approximate solution a, that is bYa 

 Note that approximate solution a does not necessarily 
give the separating hyperplane in the separable case 

 But hyperplane corresponding to a may still be a good 
solution, especially if there is no separating hyperplane 



LDF:  MSE Criterion Function 

 Minimum squared error approach: find a which 

minimizes the length of the error vector e 

bYae 

Ya 

b 

e 

 Thus  minimize the minimum squared error  criterion 

function:  
  2

bYaaJs 

 Unlike the perceptron criterion function, we can 

optimize the minimum squared error criterion 

function analytically by setting the gradient to 0 
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LDF:  Optimizing Js(a) 

 Let’s compute the gradient: 
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 Setting the gradient to 0: 

  bYYaYbYaY ttt  02



LDF:  Pseudo Inverse Solution 

 Matrix YtY is square (it has d +1 rows and columns) 

and it is often non-singular 

 If YtY is non-singular, its inverse exists and we can 

solve for a uniquely: 

  bYYYa tt 1


pseudo inverse of Y 

       IYYYYYYYY tttt 
 11



LDF:  Minimum Squared-Error Procedures 

 If b1=…=bn =1, MSE procedure is equivalent to finding a 
hyperplane of best fit through the samples y1,…,yn 

  2

ns 1YaaJ 

 Then we shift this line to the origin, if this line was a 
good fit, all samples will be classified correctly 
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LDF:  Minimum Squared-Error Procedures 

 Thus in linearly separable case, least squares solution 
a does not necessarily gives separating hyperplane 

 Only guaranteed the separating hyperplane if  Ya  > 0  
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 If  e1,…, en are small relative to b1,…, bn ,   then each element 

of Ya is positive, and a gives a separating hyperplane 

 That is                          where e  may be negative  
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 We have bYa 

 If approximation is not good, ei  may be large and negative, 

for some i, thus bi + ei  will be negative and a is not a 

separating hyperplane 

 But it  will give a “reasonable” hyperplane 



LDF:  Minimum Squared-Error Procedures 

2

a

bYaminarg    22

a

b/aYminarg  

*a

 thus if for some i th element of Ya  is less than 0, that is        

yt
ia < 0, then yt

i (a) < 0,  

 Relative difference between components of b matters, 

but not the size of each individual component 

 We are free to choose b. May be tempted to make b 

large as a way to insure  0bYa 

 Does not work 

 Let  be a scalar, let’s try  b  instead of b 

  if a* is a least squares solution to Ya = b, then for any 

scalar  ,  least squares solution to Ya = b  is  a*  

  2

a

b/aYminarg  



LDF:  Example 

 Class 1: (6 9), (5 7) 

 Class 2: (5 9), (0 4) 

 Matrix Y is then 
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 Set vectors y1, y2 , y3 , y4  by 

adding extra feature and 

“normalizing”  
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LDF:  Example 

 Choose 
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 In matlab, a=Y\b solves the 

least squares problem 
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 Note a is an approximation to Ya = b, since no 

exact solution exists 
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 This solution does give a separating hyperplane 

since Ya > 0 



LDF:  Example 

 Class 1: (6 9), (5 7) 

 Class 2: (5 9), (0 10) 

 Matrix 
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 The last sample is very far 

compared to others from the 

separating hyperplane 
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LDF:  Example 

 Choose 
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 In matlab, a=Y\b solves the 

least squares problem 
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 Note a is an approximation to Ya = b, since no 

exact solution exists 
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 This solution does not give a separating 

hyperplane since aty3 < 0 



LDF:  Example 

 MSE pays to much attention to isolated “noisy” 

examples (such examples are called outliers) 

outlier 

desired solution 

MSE solution 

 No problems with convergence though, and 

solution it gives ranges from reasonable to good 



LDF:  Example 

 we know that 4th point is far  far 

from separating hyperplane 

 In practice we don’t know this   

 In Matlab, solve  a=Y\b 
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 Note a is an approximation to Ya = b,  
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 This solution does give the separating hyperplane 

since Ya > 0 
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LDF:  Gradient Descent for MSE solution 

2. YtY may be close to singular if samples are highly 
correlated (rows of Y are almost linear 
combinations of each other) 
 computing the inverse of YtY  is not numerically stable 

 May wish to find MSE solution by gradient descent: 

1. Computing the inverse of YtY may be too costly 

  2
bYaaJs 

 In the beginning of the lecture,  computed the 

gradient: 
   bYaYaJ t

s  2



LDF:  Widrow-Hoff Procedure 

 Thus the update rule for gradient descent: 
        bYaYaa ktkkk  1

 If                       weight vector a(k) converges to the MSE 

solution a, that is Yt(Ya-b)=0 

    kk /1 

   bYaYaJ t

s  2

 Widrow-Hoff procedure reduces storage 

requirements by considering single samples 

sequentially: 
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LDF:  Ho-Kashyap Procedure  

 Suppose training samples are linearly separable. 

Then there is as and positive bs s.t. 

 In the MSE procedure, if b is chosen arbitrarily, 

finding separating hyperplane is not guaranteed 

0 ss bYa

 If we knew bs could apply MSE procedure to find the 

separating hyperplane 

 Idea: find both as and bs  

 Minimize the following criterion function, restricting to 

positive b: 
  2

, bYabaJHK 



LDF:  Ho-Kashyap Procedure 

 As usual, take partial derivatives w.r.t. a and b 

  2
, bYabaJHK 

  02  bYaYJ t

HKa

  02  bYaJHKb

 Use modified gradient descent procedure to find a  

minimum of JHK(a,b) 

2) Fix a and minimize JHK(a,b) with respect to b 

 Alternate the two steps below until convergence: 

1) Fix b and minimize JHK(a,b) with respect to a 



LDF:  Ho-Kashyap Procedure 

  02  bYaYJ t

HKa
  02  bYaJHKb

 Step (1) can be performed with pseudoinverse 

2) Fix a and minimize JHK(a,b) with respect to b 

 Alternate the two steps below until convergence: 

1) Fix b and minimize JHK(a,b) with respect to a 

 For fixed b minimum of JHK(a,b) with respect to a is 

found by solving  

  02  bYaY t

 Thus  

  bYYYa tt 1




LDF:  Ho-Kashyap Procedure 

 We can’t  use  b = Ya   because  b has to be positive 

 Step 2:  fix a and minimize JHK(a,b) with respect to b 

 Solution: use modified gradient descent 

 start with positive b , follow negative gradient but 

refuse to decrease any components of b 

 This can be achieved by setting all the positive 

components of           to  0 Jb

 Not doing steepest descent anymore, but we are 

still doing descent and ensure that  b is positive 



LDF:  Ho-Kashyap Procedure 

 The Ho-Kashyap procedure: 

0) Start with arbitrary a(1) and b(1) > 0, let k = 1 

 repeat steps (1) through (4) 

3) Solve for a(k+1) using b(k+1) 
     111   kttk bYYYa

4) k = k + 1 

1)   
     kkk bYae 

2) Solve for b(k+1) using a(k) and b(k) 

         ||1 kkkk eebb  

 until  |e(k)| <= threshold  or  k > kmax or b(k+1) = b(k)  

 For convergence, learning rate should be fixed 

between 0 <   < 1 



LDF:  Ho-Kashyap Procedure 

 In the linearly separable case,  

 e(k)  = 0,  found solution, stop 

 one of components of e(k) is positive, algorithm continues 

 In non separable case,  

 e(k)  will have only negative components eventually, thus 

found proof of nonseparability 

 No bound on how many iteration need for the proof of 

nonseparability 



LDF:  Ho-Kashyap Procedure Example 

 Class 1: (6 9), (5 7) 

 Class 1: (5 9), (0 10) 

 Matrix 
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 Use fixed learning  = 0.9 

 Start with                 and 
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LDF:  Ho-Kashyap Procedure Example 

 solve for a(2) using b(2) 

 solve for b(2) using a(1) and b(1) 

 

 Iteration 1: 
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LDF:  Ho-Kashyap Procedure Example 
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 a does gives a separating hyperplane 

 Continue iterations until Ya > 0 

 In practice, continue until minimum 

component of Ya is less then 0.01 
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 After 104 iterations converged to solution 
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 Suppose we have m classes 

 Define m  linear discriminant functions  

 Given x, assign class ci if  

ij         )()(  xgxg ji

 Such classifier is called a  linear machine 

 A linear machine divides the feature space into c 
decision regions, with gi(x) being the largest 
discriminant if x is in the region Ri 

LDF:  MSE for Multiple Classes 



 For each class i, find weight vector ai, s.t.  

LDF:  MSE for Multiple Classes 
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 Let Yi be matrix whose rows are samples from 

class i, so it has d +1 columns and ni rows 
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 Let’s pile all samples in n by d +1 matrix Y: 
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 Let bi be a column vector of length n which is 0 
everywhere except rows corresponding to samples 
from class i, where it is 1: 

LDF:  MSE for Multiple Classes 
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LDF:  MSE for Multiple Classes 

 n1 bbB 

 Let’s pile all bi as columns in n by c matrix B 

 Let’s pile all ai as columns in d +1 by m matrix A 

 maaA 1























 m LSE problems can be represented in YA = B: 
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LDF:  MSE for Multiple Classes 
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 Our objective function is: 

 J(A) is minimized with the use of pseudoinverse 

  YBYYA t 1




LDF:  Summary 

 Perceptron procedures  
 find a separating hyperplane  in the linearly separable case, 
 do not converge in the non-separable case 
 can force convergence  by using a decreasing learning rate, 

but are not guaranteed a reasonable stopping point 

 MSE procedures  

 converge in separable and not separable case  

 may not find separating hyperplane if classes are linearly 
separable 

 use pseudoinverse if YtY is not singular and not too large 
 use gradient descent (Widrow-Hoff procedure) otherwise 

 Ho-Kashyap procedures  
 always converge 
 find separating hyperplane in the linearly separable case 

 more costly 


