
Minimum Squared Error 



LDF:  Minimum Squared-Error Procedures 

 MSE procedure 

 Choose positive constants b1, b2,…, bn 

 try to find weight vector a s.t. atyi  = bi for all samples yi 

 If we can find weight vector a such that  atyi  = bi for all 

samples yi , then a is a solution because bi’s are positive 

 consider all the samples (not just the misclassified ones) 

 Idea: convert to easier and better understood  problem 

atyi  > 0 for all samples yi 

solve system of linear inequalities 

atyi = bi  for all samples yi 

solve system of linear equations 

Perceptron 



yi g(y) = 0 

LDF:  MSE Margins 

 Since we want atyi = bi, we expect sample yi to be at distance  

bi from the separating hyperplane (normalized by ||a||) 

 Thus b1, b2,…, bn  give relative expected distances or 

“margins” of samples from the hyperplane  

 Should make bi small if sample i  is expected to be near 

separating hyperplane, and make bi larger otherwise 

 In the absence of any additional information, there are good 

reasons to set b1 =  b2 =… = bn  = 1 

yk 



LDF:  MSE Matrix Notation 

 Need to solve n equations 

 Introduce matrix notation: 
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 Thus need to solve a linear system Ya = b 
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LDF:  Exact Solution is Rare 

 Y is an n by (d +1) matrix 

  a = Y-1b 

 Exact solution can be found only if Y is nonsingular 
and square, in which case the inverse Y-1 exists 

 Thus need to solve a linear system Ya = b 

 (number of samples) = (number of features + 1) 
 almost never happens in practice 

 in this case, guaranteed to find the separating hyperplane 

1y

2y



LDF:  Approximate Solution 

 Need Ya = b, but no exact solution exists for an 

overdetermined system of equation 

 More equations than unknowns 

 

 Typically Y  is overdetermined, that is it has more 

rows (examples) than columns (features) 
 If it has more features than examples, should reduce 

dimensionality 

Y b a = 

 Find an approximate solution a, that is bYa 

 Note that approximate solution a does not necessarily 
give the separating hyperplane in the separable case 

 But hyperplane corresponding to a may still be a good 
solution, especially if there is no separating hyperplane 



LDF:  MSE Criterion Function 

 Minimum squared error approach: find a which 

minimizes the length of the error vector e 

bYae 

Ya 

b 

e 

 Thus  minimize the minimum squared error  criterion 

function:  
  2

bYaaJs 

 Unlike the perceptron criterion function, we can 

optimize the minimum squared error criterion 

function analytically by setting the gradient to 0 
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LDF:  Optimizing Js(a) 

 Let’s compute the gradient: 

  2
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 Setting the gradient to 0: 

  bYYaYbYaY ttt  02



LDF:  Pseudo Inverse Solution 

 Matrix YtY is square (it has d +1 rows and columns) 

and it is often non-singular 

 If YtY is non-singular, its inverse exists and we can 

solve for a uniquely: 

  bYYYa tt 1


pseudo inverse of Y 

       IYYYYYYYY tttt 
 11



LDF:  Minimum Squared-Error Procedures 

 If b1=…=bn =1, MSE procedure is equivalent to finding a 
hyperplane of best fit through the samples y1,…,yn 

  2

ns 1YaaJ 

 Then we shift this line to the origin, if this line was a 
good fit, all samples will be classified correctly 
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LDF:  Minimum Squared-Error Procedures 

 Thus in linearly separable case, least squares solution 
a does not necessarily gives separating hyperplane 

 Only guaranteed the separating hyperplane if  Ya  > 0  

















n

t

1

t

ya

ya
Ya  that is if all elements of vector                      are positive 

 If  e1,…, en are small relative to b1,…, bn ,   then each element 

of Ya is positive, and a gives a separating hyperplane 

 That is                          where e  may be negative  
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 We have bYa 

 If approximation is not good, ei  may be large and negative, 

for some i, thus bi + ei  will be negative and a is not a 

separating hyperplane 

 But it  will give a “reasonable” hyperplane 



LDF:  Minimum Squared-Error Procedures 

2

a

bYaminarg    22

a

b/aYminarg  

*a

 thus if for some i th element of Ya  is less than 0, that is        

yt
ia < 0, then yt

i (a) < 0,  

 Relative difference between components of b matters, 

but not the size of each individual component 

 We are free to choose b. May be tempted to make b 

large as a way to insure  0bYa 

 Does not work 

 Let  be a scalar, let’s try  b  instead of b 

  if a* is a least squares solution to Ya = b, then for any 

scalar  ,  least squares solution to Ya = b  is  a*  

  2

a

b/aYminarg  



LDF:  Example 

 Class 1: (6 9), (5 7) 

 Class 2: (5 9), (0 4) 

 Matrix Y is then 
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 Set vectors y1, y2 , y3 , y4  by 

adding extra feature and 

“normalizing”  
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LDF:  Example 

 Choose 
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1
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b

 In matlab, a=Y\b solves the 

least squares problem 
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a

 Note a is an approximation to Ya = b, since no 

exact solution exists 
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 This solution does give a separating hyperplane 

since Ya > 0 



LDF:  Example 

 Class 1: (6 9), (5 7) 

 Class 2: (5 9), (0 10) 

 Matrix 
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 The last sample is very far 

compared to others from the 

separating hyperplane 
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LDF:  Example 

 Choose 
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b

 In matlab, a=Y\b solves the 

least squares problem 
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 Note a is an approximation to Ya = b, since no 

exact solution exists 
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 This solution does not give a separating 

hyperplane since aty3 < 0 



LDF:  Example 

 MSE pays to much attention to isolated “noisy” 

examples (such examples are called outliers) 

outlier 

desired solution 

MSE solution 

 No problems with convergence though, and 

solution it gives ranges from reasonable to good 



LDF:  Example 

 we know that 4th point is far  far 

from separating hyperplane 

 In practice we don’t know this   

 In Matlab, solve  a=Y\b 
















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 Note a is an approximation to Ya = b,  
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 This solution does give the separating hyperplane 

since Ya > 0 
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LDF:  Gradient Descent for MSE solution 

2. YtY may be close to singular if samples are highly 
correlated (rows of Y are almost linear 
combinations of each other) 
 computing the inverse of YtY  is not numerically stable 

 May wish to find MSE solution by gradient descent: 

1. Computing the inverse of YtY may be too costly 

  2
bYaaJs 

 In the beginning of the lecture,  computed the 

gradient: 
   bYaYaJ t

s  2



LDF:  Widrow-Hoff Procedure 

 Thus the update rule for gradient descent: 
        bYaYaa ktkkk  1

 If                       weight vector a(k) converges to the MSE 

solution a, that is Yt(Ya-b)=0 

    kk /1 

   bYaYaJ t

s  2

 Widrow-Hoff procedure reduces storage 

requirements by considering single samples 

sequentially: 

        
i

kt

ii

kkk bayyaa  1



LDF:  Ho-Kashyap Procedure  

 Suppose training samples are linearly separable. 

Then there is as and positive bs s.t. 

 In the MSE procedure, if b is chosen arbitrarily, 

finding separating hyperplane is not guaranteed 

0 ss bYa

 If we knew bs could apply MSE procedure to find the 

separating hyperplane 

 Idea: find both as and bs  

 Minimize the following criterion function, restricting to 

positive b: 
  2

, bYabaJHK 



LDF:  Ho-Kashyap Procedure 

 As usual, take partial derivatives w.r.t. a and b 

  2
, bYabaJHK 

  02  bYaYJ t

HKa

  02  bYaJHKb

 Use modified gradient descent procedure to find a  

minimum of JHK(a,b) 

2) Fix a and minimize JHK(a,b) with respect to b 

 Alternate the two steps below until convergence: 

1) Fix b and minimize JHK(a,b) with respect to a 



LDF:  Ho-Kashyap Procedure 

  02  bYaYJ t

HKa
  02  bYaJHKb

 Step (1) can be performed with pseudoinverse 

2) Fix a and minimize JHK(a,b) with respect to b 

 Alternate the two steps below until convergence: 

1) Fix b and minimize JHK(a,b) with respect to a 

 For fixed b minimum of JHK(a,b) with respect to a is 

found by solving  

  02  bYaY t

 Thus  

  bYYYa tt 1




LDF:  Ho-Kashyap Procedure 

 We can’t  use  b = Ya   because  b has to be positive 

 Step 2:  fix a and minimize JHK(a,b) with respect to b 

 Solution: use modified gradient descent 

 start with positive b , follow negative gradient but 

refuse to decrease any components of b 

 This can be achieved by setting all the positive 

components of           to  0 Jb

 Not doing steepest descent anymore, but we are 

still doing descent and ensure that  b is positive 



LDF:  Ho-Kashyap Procedure 

 The Ho-Kashyap procedure: 

0) Start with arbitrary a(1) and b(1) > 0, let k = 1 

 repeat steps (1) through (4) 

3) Solve for a(k+1) using b(k+1) 
     111   kttk bYYYa

4) k = k + 1 

1)   
     kkk bYae 

2) Solve for b(k+1) using a(k) and b(k) 

         ||1 kkkk eebb  

 until  |e(k)| <= threshold  or  k > kmax or b(k+1) = b(k)  

 For convergence, learning rate should be fixed 

between 0 <   < 1 



LDF:  Ho-Kashyap Procedure 

 In the linearly separable case,  

 e(k)  = 0,  found solution, stop 

 one of components of e(k) is positive, algorithm continues 

 In non separable case,  

 e(k)  will have only negative components eventually, thus 

found proof of nonseparability 

 No bound on how many iteration need for the proof of 

nonseparability 



LDF:  Ho-Kashyap Procedure Example 

 Class 1: (6 9), (5 7) 

 Class 1: (5 9), (0 10) 

 Matrix 
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 Use fixed learning  = 0.9 

 Start with                 and 
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LDF:  Ho-Kashyap Procedure Example 

 solve for a(2) using b(2) 

 solve for b(2) using a(1) and b(1) 

 

 Iteration 1: 
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

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LDF:  Ho-Kashyap Procedure Example 



















48.1
14.0

5.22
2.27

Ya

 a does gives a separating hyperplane 

 Continue iterations until Ya > 0 

 In practice, continue until minimum 

component of Ya is less then 0.01 




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









147
1
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28

b

















3.11
3.27
9.34

a

 After 104 iterations converged to solution 



m1,...,i         )( 0  i
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ii wxwxg

 Suppose we have m classes 

 Define m  linear discriminant functions  

 Given x, assign class ci if  

ij         )()(  xgxg ji

 Such classifier is called a  linear machine 

 A linear machine divides the feature space into c 
decision regions, with gi(x) being the largest 
discriminant if x is in the region Ri 

LDF:  MSE for Multiple Classes 



 For each class i, find weight vector ai, s.t.  

LDF:  MSE for Multiple Classes 









iclassy        0

iclassy        1

ya

ya
t

i

t

i

 Let Yi be matrix whose rows are samples from 

class i, so it has d +1 columns and ni rows 



















mY

Y
Y

Y

2

1

 Let’s pile all samples in n by d +1 matrix Y: 





















mclassfromsample
mclassfromsample

classfromsample
classfromsample


1
1



 Let bi be a column vector of length n which is 0 
everywhere except rows corresponding to samples 
from class i, where it is 1: 

LDF:  MSE for Multiple Classes 

























0

1

1

0

bi






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LDF:  MSE for Multiple Classes 

 n1 bbB 

 Let’s pile all bi as columns in n by c matrix B 

 Let’s pile all ai as columns in d +1 by m matrix A 

 maaA 1
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 m LSE problems can be represented in YA = B: 
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LDF:  MSE for Multiple Classes 
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 Our objective function is: 

 J(A) is minimized with the use of pseudoinverse 

  YBYYA t 1




LDF:  Summary 

 Perceptron procedures  
 find a separating hyperplane  in the linearly separable case, 
 do not converge in the non-separable case 
 can force convergence  by using a decreasing learning rate, 

but are not guaranteed a reasonable stopping point 

 MSE procedures  

 converge in separable and not separable case  

 may not find separating hyperplane if classes are linearly 
separable 

 use pseudoinverse if YtY is not singular and not too large 
 use gradient descent (Widrow-Hoff procedure) otherwise 

 Ho-Kashyap procedures  
 always converge 
 find separating hyperplane in the linearly separable case 

 more costly 


