
Minimum Squared Error

LDF: Minimum Squared-Error Procedures

 MSE procedure

 Choose positive constants b1, b2,…, bn

 try to find weight vector a s.t. atyi = bi for all samples yi

 If we can find weight vector a such that atyi = bi for all

samples yi , then a is a solution because bi’s are positive

 consider all the samples (not just the misclassified ones)

 Idea: convert to easier and better understood problem

atyi > 0 for all samples yi

solve system of linear inequalities

atyi = bi for all samples yi

solve system of linear equations

Perceptron

yi g(y) = 0

LDF: MSE Margins

 Since we want atyi = bi, we expect sample yi to be at distance

bi from the separating hyperplane (normalized by ||a||)

 Thus b1, b2,…, bn give relative expected distances or

“margins” of samples from the hyperplane

 Should make bi small if sample i is expected to be near

separating hyperplane, and make bi larger otherwise

 In the absence of any additional information, there are good

reasons to set b1 = b2 =… = bn = 1

yk

LDF: MSE Matrix Notation

 Need to solve n equations

 Introduce matrix notation:

     

     

      























































n
dd

nnn

d

d

b

b

b

a

a

a

yyy

yyy

yyy













2

1

1

0

10

2

1

2

0

2

1

1

1

0

1

Y a b

 Thus need to solve a linear system Ya = b

nn

t

t

bya

bya






11

LDF: Exact Solution is Rare

 Y is an n by (d +1) matrix

 a = Y-1b

 Exact solution can be found only if Y is nonsingular
and square, in which case the inverse Y-1 exists

 Thus need to solve a linear system Ya = b

 (number of samples) = (number of features + 1)
 almost never happens in practice

 in this case, guaranteed to find the separating hyperplane

1y

2y

LDF: Approximate Solution

 Need Ya = b, but no exact solution exists for an

overdetermined system of equation

 More equations than unknowns

 Typically Y is overdetermined, that is it has more

rows (examples) than columns (features)
 If it has more features than examples, should reduce

dimensionality

Y b a =

 Find an approximate solution a, that is bYa 

 Note that approximate solution a does not necessarily
give the separating hyperplane in the separable case

 But hyperplane corresponding to a may still be a good
solution, especially if there is no separating hyperplane

LDF: MSE Criterion Function

 Minimum squared error approach: find a which

minimizes the length of the error vector e

bYae 

Ya

b

e

 Thus minimize the minimum squared error criterion

function:
  2

bYaaJs 

 Unlike the perceptron criterion function, we can

optimize the minimum squared error criterion

function analytically by setting the gradient to 0

 



n

i

ii

t bya
1

2

LDF: Optimizing Js(a)

 Let’s compute the gradient:

  2
bYaaJs   




n

i

ii

t bya
1

2

 































d

s

s

s

a

J

a

J

aJ 
0

 bYaY t  2

 Setting the gradient to 0:

  bYYaYbYaY ttt  02

LDF: Pseudo Inverse Solution

 Matrix YtY is square (it has d +1 rows and columns)

and it is often non-singular

 If YtY is non-singular, its inverse exists and we can

solve for a uniquely:

  bYYYa tt 1


pseudo inverse of Y

       IYYYYYYYY tttt 
 11

LDF: Minimum Squared-Error Procedures

 If b1=…=bn =1, MSE procedure is equivalent to finding a
hyperplane of best fit through the samples y1,…,yn

  2

ns 1YaaJ 

 Then we shift this line to the origin, if this line was a
good fit, all samples will be classified correctly

nn




















1

1
1 

LDF: Minimum Squared-Error Procedures

 Thus in linearly separable case, least squares solution
a does not necessarily gives separating hyperplane

 Only guaranteed the separating hyperplane if Ya > 0

















n

t

1

t

ya

ya
Ya  that is if all elements of vector are positive

 If e1,…, en are small relative to b1,…, bn , then each element

of Ya is positive, and a gives a separating hyperplane

 That is where e may be negative





















nnb

b
Ya

e

e


11

 We have bYa 

 If approximation is not good, ei may be large and negative,

for some i, thus bi + ei will be negative and a is not a

separating hyperplane

 But it will give a “reasonable” hyperplane

LDF: Minimum Squared-Error Procedures

2

a

bYaminarg    22

a

b/aYminarg  

*a

 thus if for some i th element of Ya is less than 0, that is

yt
ia < 0, then yt

i (a) < 0,

 Relative difference between components of b matters,

but not the size of each individual component

 We are free to choose b. May be tempted to make b

large as a way to insure 0bYa 

 Does not work

 Let  be a scalar, let’s try b instead of b

 if a* is a least squares solution to Ya = b, then for any

scalar , least squares solution to Ya = b is a*

  2

a

b/aYminarg  

LDF: Example

 Class 1: (6 9), (5 7)

 Class 2: (5 9), (0 4)

 Matrix Y is then






















401
951
751
961

Y

 Set vectors y1, y2 , y3 , y4 by

adding extra feature and

“normalizing”














9
6
1

y1














7
5
1

y 2


















9
5
1

y 3


















4
0
1

y 4

LDF: Example

 Choose



















1
1
1
1

b

 In matlab, a=Y\b solves the

least squares problem
















9.0
0.1
7.2

a

 Note a is an approximation to Ya = b, since no

exact solution exists





































1
1
1
1

1.1
6.0
3.1
4.0

Ya

 This solution does give a separating hyperplane

since Ya > 0

LDF: Example

 Class 1: (6 9), (5 7)

 Class 2: (5 9), (0 10)

 Matrix






















1001
951
751
961

Y

 The last sample is very far

compared to others from the

separating hyperplane














9
6
1

y1














7
5
1

y 2


















9
5
1

y 3


















10
0
1

y 4

LDF: Example

 Choose



















1
1
1
1

b

 In matlab, a=Y\b solves the

least squares problem
















4.0
2.0
2.3

a

 Note a is an approximation to Ya = b, since no

exact solution exists






































1
1
1
1

16.1
04.0

9.0
2.0

Ya

 This solution does not give a separating

hyperplane since aty3 < 0

LDF: Example

 MSE pays to much attention to isolated “noisy”

examples (such examples are called outliers)

outlier

desired solution

MSE solution

 No problems with convergence though, and

solution it gives ranges from reasonable to good

LDF: Example

 we know that 4th point is far far

from separating hyperplane

 In practice we don’t know this

 In Matlab, solve a=Y\b


















9.0
7.1
1.1

a

 Note a is an approximation to Ya = b,





































10
1
1
1

0.10
8.0
0.1
9.0

Ya

 This solution does give the separating hyperplane

since Ya > 0



















10
1
1
1

b Thus appropriate

LDF: Gradient Descent for MSE solution

2. YtY may be close to singular if samples are highly
correlated (rows of Y are almost linear
combinations of each other)
 computing the inverse of YtY is not numerically stable

 May wish to find MSE solution by gradient descent:

1. Computing the inverse of YtY may be too costly

  2
bYaaJs 

 In the beginning of the lecture, computed the

gradient:
   bYaYaJ t

s  2

LDF: Widrow-Hoff Procedure

 Thus the update rule for gradient descent:
        bYaYaa ktkkk  1

 If weight vector a(k) converges to the MSE

solution a, that is Yt(Ya-b)=0

    kk /1 

   bYaYaJ t

s  2

 Widrow-Hoff procedure reduces storage

requirements by considering single samples

sequentially:

        
i

kt

ii

kkk bayyaa  1

LDF: Ho-Kashyap Procedure

 Suppose training samples are linearly separable.

Then there is as and positive bs s.t.

 In the MSE procedure, if b is chosen arbitrarily,

finding separating hyperplane is not guaranteed

0 ss bYa

 If we knew bs could apply MSE procedure to find the

separating hyperplane

 Idea: find both as and bs

 Minimize the following criterion function, restricting to

positive b:
  2

, bYabaJHK 

LDF: Ho-Kashyap Procedure

 As usual, take partial derivatives w.r.t. a and b

  2
, bYabaJHK 

  02  bYaYJ t

HKa

  02  bYaJHKb

 Use modified gradient descent procedure to find a

minimum of JHK(a,b)

2) Fix a and minimize JHK(a,b) with respect to b

 Alternate the two steps below until convergence:

1) Fix b and minimize JHK(a,b) with respect to a

LDF: Ho-Kashyap Procedure

  02  bYaYJ t

HKa
  02  bYaJHKb

 Step (1) can be performed with pseudoinverse

2) Fix a and minimize JHK(a,b) with respect to b

 Alternate the two steps below until convergence:

1) Fix b and minimize JHK(a,b) with respect to a

 For fixed b minimum of JHK(a,b) with respect to a is

found by solving

  02  bYaY t

 Thus

  bYYYa tt 1


LDF: Ho-Kashyap Procedure

 We can’t use b = Ya because b has to be positive

 Step 2: fix a and minimize JHK(a,b) with respect to b

 Solution: use modified gradient descent

 start with positive b , follow negative gradient but

refuse to decrease any components of b

 This can be achieved by setting all the positive

components of to 0 Jb

 Not doing steepest descent anymore, but we are

still doing descent and ensure that b is positive

LDF: Ho-Kashyap Procedure

 The Ho-Kashyap procedure:

0) Start with arbitrary a(1) and b(1) > 0, let k = 1

 repeat steps (1) through (4)

3) Solve for a(k+1) using b(k+1)
     111   kttk bYYYa

4) k = k + 1

1)
     kkk bYae 

2) Solve for b(k+1) using a(k) and b(k)

         ||1 kkkk eebb  

 until |e(k)| <= threshold or k > kmax or b(k+1) = b(k)

 For convergence, learning rate should be fixed

between 0 <  < 1

LDF: Ho-Kashyap Procedure

 In the linearly separable case,

 e(k) = 0, found solution, stop

 one of components of e(k) is positive, algorithm continues

 In non separable case,

 e(k) will have only negative components eventually, thus

found proof of nonseparability

 No bound on how many iteration need for the proof of

nonseparability

LDF: Ho-Kashyap Procedure Example

 Class 1: (6 9), (5 7)

 Class 1: (5 9), (0 10)

 Matrix






















1001
951
751
961

Y

 Use fixed learning  = 0.9

 Start with and
 



















1
1
1
1

b 1 














1
1
1

a 1

 At the start  






















11
15
13
16

Ya 1

LDF: Ho-Kashyap Procedure Example

 solve for a(2) using b(2)

 solve for b(2) using a(1) and b(1)

 Iteration 1:

     








































1
1
1
1

11
15
13
16

bYae 111























12
16
12
15

        |e|e9.0bb 1112 










































































12
16
12
15

12
16
12
15

9.0

1
1
1
1



















1
1
6.22

28

     


































 

1
1
6.22

28

*
1.02.05.026.0
2.01.01.016.0
5.06.17.46.2

bYYYa 2t1t2













 8.3
7.2
6.34

LDF: Ho-Kashyap Procedure Example



















48.1
14.0

5.22
2.27

Ya

 a does gives a separating hyperplane

 Continue iterations until Ya > 0

 In practice, continue until minimum

component of Ya is less then 0.01



















147
1

23
28

b

















3.11
3.27
9.34

a

 After 104 iterations converged to solution

m1,...,i)(0  i

t

ii wxwxg

 Suppose we have m classes

 Define m linear discriminant functions

 Given x, assign class ci if

ij)()( xgxg ji

 Such classifier is called a linear machine

 A linear machine divides the feature space into c
decision regions, with gi(x) being the largest
discriminant if x is in the region Ri

LDF: MSE for Multiple Classes

 For each class i, find weight vector ai, s.t.

LDF: MSE for Multiple Classes









iclassy 0

iclassy 1

ya

ya
t

i

t

i

 Let Yi be matrix whose rows are samples from

class i, so it has d +1 columns and ni rows



















mY

Y
Y

Y

2

1

 Let’s pile all samples in n by d +1 matrix Y:





















mclassfromsample
mclassfromsample

classfromsample
classfromsample


1
1

 Let bi be a column vector of length n which is 0
everywhere except rows corresponding to samples
from class i, where it is 1:

LDF: MSE for Multiple Classes

























0

1

1

0

bi






 rows corresponding
 to samples from class i

LDF: MSE for Multiple Classes

 n1 bbB 

 Let’s pile all bi as columns in n by c matrix B

 Let’s pile all ai as columns in d +1 by m matrix A

 maaA 1























 m LSE problems can be represented in YA = B:























3
3
3
2
1
1

classfromsample
classfromsample
classfromsample
classfromsample
classfromsample
classfromsample





















=





















100
100
100
010
001
001

Y A B

LDF: MSE for Multiple Classes

  



m

1i

2

ii bYaAJ

 Our objective function is:

 J(A) is minimized with the use of pseudoinverse

  YBYYA t 1


LDF: Summary

 Perceptron procedures
 find a separating hyperplane in the linearly separable case,
 do not converge in the non-separable case
 can force convergence by using a decreasing learning rate,

but are not guaranteed a reasonable stopping point

 MSE procedures

 converge in separable and not separable case

 may not find separating hyperplane if classes are linearly
separable

 use pseudoinverse if YtY is not singular and not too large
 use gradient descent (Widrow-Hoff procedure) otherwise

 Ho-Kashyap procedures
 always converge
 find separating hyperplane in the linearly separable case

 more costly

