# **Minimum Squared Error**

Idea: convert to easier and better understood problem



- MSE procedure
  - Choose positive constants b<sub>1</sub>, b<sub>2</sub>,..., b<sub>n</sub>
  - try to find weight vector  $\mathbf{a}$  s.t.  $\mathbf{a}^t \mathbf{y}_i = \mathbf{b}_i$  for all samples  $\mathbf{y}_i$
  - If we can find weight vector a such that a<sup>t</sup>y<sub>i</sub> = b<sub>i</sub> for all samples y<sub>i</sub>, then a is a solution because b<sub>i</sub>'s are positive
  - consider all the samples (not just the misclassified ones)

# LDF: MSE Margins



- Since we want a<sup>t</sup>y<sub>i</sub> = b<sub>i</sub>, we expect sample y<sub>i</sub> to be at distance b<sub>i</sub> from the separating hyperplane (normalized by ||a||)
- Thus b<sub>1</sub>, b<sub>2</sub>,..., b<sub>n</sub> give relative expected distances or "margins" of samples from the hyperplane
- Should make b<sub>i</sub> small if sample i is expected to be near separating hyperplane, and make b<sub>i</sub> larger otherwise
- In the absence of any additional information, there are good reasons to set b<sub>1</sub> = b<sub>2</sub> = ... = b<sub>n</sub> = 1

### **LDF: MSE Matrix Notation**

Need to solve *n* equations

$$\begin{cases} \boldsymbol{a}^{t}\boldsymbol{y}_{1} = \boldsymbol{b}_{1} \\ \vdots \\ \boldsymbol{a}^{t}\boldsymbol{y}_{n} = \boldsymbol{b}_{n} \end{cases}$$

Introduce matrix notation:



Thus need to solve a linear system Ya = b

# LDF: Exact Solution is Rare

- Thus need to solve a linear system Ya = b
  - Y is an n by (d +1) matrix
- Exact solution can be found only if Y is nonsingular and square, in which case the inverse Y<sup>1</sup> exists
  - $a = Y^1 b$
  - (number of samples) = (number of features + 1)
  - almost never happens in practice
  - in this case, guaranteed to find the separating hyperplane



# **LDF:** Approximate Solution

- Typically Y is overdetermined, that is it has more rows (examples) than columns (features)
  - If it has more features than examples, should reduce dimensionality



- Need Ya = b, but no exact solution exists for an overdetermined system of equation
  - More equations than unknowns
- Find an approximate solution *a*, that is Ya ≈ b
  - Note that approximate solution *a does not* necessarily give the separating hyperplane in the separable case
  - But hyperplane corresponding to *a* may still be a good solution, especially if there is no separating hyperplane

# **LDF: MSE Criterion Function**

 Minimum squared error approach: find *a* which minimizes the length of the error vector *e*

$$e = Ya - b$$



- Thus minimize the minimum squared error criterion function:  $J_{s}(a) = \|Ya - b\|^{2} = \sum_{i=1}^{n} (a^{t}y_{i} - b_{i})^{2}$
- Unlike the perceptron criterion function, we can optimize the minimum squared error criterion function analytically by setting the gradient to *0*

LDF: Optimizing J<sub>s</sub>(a)

$$J_{s}(a) = ||Ya - b||^{2} = \sum_{i=1}^{n} (a^{t}y_{i} - b_{i})^{2}$$

Let's compute the gradient:

$$\nabla J_{s}(a) = \begin{bmatrix} \frac{\partial J_{s}}{\partial a_{0}} \\ \vdots \\ \frac{\partial J_{s}}{\partial a_{d}} \end{bmatrix} = 2Y^{t}(Ya - b)$$

Setting the gradient to 0:

$$2Y^{t}(Ya - b) = 0 \implies Y^{t}Ya = Y^{t}b$$

### **LDF: Pseudo Inverse Solution**

- Matrix Y<sup>t</sup>Y is square (it has d+1 rows and columns) and it is often non-singular
- If Y<sup>t</sup>Y is non-singular, its inverse exists and we can solve for a uniquely:

$$\mathbf{a} = \left(\mathbf{Y}^t \mathbf{Y}\right)^{-1} \mathbf{Y}^t \mathbf{b}$$

pseudo inverse of Y

 $\left( \left( \mathbf{Y}^{t} \mathbf{Y} \right)^{-1} \mathbf{Y}^{t} \right) \mathbf{Y} = \left( \mathbf{Y}^{t} \mathbf{Y} \right)^{-1} \left( \mathbf{Y}^{t} \mathbf{Y} \right) = \mathbf{I}$ 

If b<sub>1</sub>=...=b<sub>n</sub>=1, MSE procedure is equivalent to finding a hyperplane of best fit through the samples y<sub>1</sub>,...,y<sub>n</sub>



 Then we shift this line to the origin, if this line was a good fit, all samples will be classified correctly

- Only guaranteed the separating hyperplane if Ya > 0
  - that is if all elements of vector  $\mathbf{Y}_{a} = \begin{bmatrix} \mathbf{a}^{t} \mathbf{y}_{1} \\ \vdots \\ \mathbf{a}^{t} \mathbf{y}_{n} \end{bmatrix}$  are positive
- We have Ya ≈ b

• That is 
$$Ya = \begin{bmatrix} b_1 + \varepsilon_1 \\ \vdots \\ b_n + \varepsilon_n \end{bmatrix}$$

where  $\boldsymbol{\varepsilon}$  may be negative

- If ε<sub>1</sub>,..., ε<sub>n</sub> are small relative to b<sub>1</sub>,..., b<sub>n</sub>, then each element of Ya is positive, and a gives a separating hyperplane
- If approximation is not good,  $\varepsilon_i$  may be large and negative, for some *i*, thus  $b_i + \varepsilon_i$  will be negative and *a* is not a separating hyperplane
- Thus in linearly separable case, least squares solution a does not necessarily gives separating hyperplane
- But it will give a "reasonable" hyperplane

- We are free to choose b. May be tempted to make b
   large as a way to insure Ya ≈ b > 0
- Does not work
  - Let  $\beta$  be a scalar, let's try  $\beta b$  instead of b
  - if  $a^*$  is a least squares solution to Ya = b, then for any scalar  $\beta$ , least squares solution to  $Ya = \beta b$  is  $\beta a^*$   $arg min ||Ya - \beta b||^2 = arg min \beta^2 ||Y(a/\beta) - b||^2$  $= arg min ||Y(a/\beta) - b||^2 = \beta a^*$
  - thus if for some *i*th element of *Ya* is less than 0, that is *y<sup>t</sup><sub>i</sub>a < 0*, then *y<sup>t</sup><sub>i</sub>* (βa) < 0,</li>
- Relative difference between components of *b* matters, but not the size of each individual component

- Class 1: (6 9), (5 7)
- Class 2: (5 9), (0 4)
- Set vectors y<sub>1</sub>, y<sub>2</sub>, y<sub>3</sub>, y<sub>4</sub> by adding extra feature and "normalizing"



$$\boldsymbol{y}_1 = \begin{bmatrix} \boldsymbol{1} \\ \boldsymbol{6} \\ \boldsymbol{9} \end{bmatrix} \quad \boldsymbol{y}_2 = \begin{bmatrix} \boldsymbol{1} \\ \boldsymbol{5} \\ \boldsymbol{7} \end{bmatrix} \quad \boldsymbol{y}_3 = \begin{bmatrix} -\boldsymbol{1} \\ -\boldsymbol{5} \\ -\boldsymbol{9} \end{bmatrix} \quad \boldsymbol{y}_4 = \begin{bmatrix} -\boldsymbol{1} \\ \boldsymbol{0} \\ -\boldsymbol{4} \end{bmatrix}$$

Matrix Y is then

$$\mathbf{Y} = \begin{bmatrix} 1 & 6 & 9 \\ 1 & 5 & 7 \\ -1 & -5 & -9 \\ -1 & 0 & -4 \end{bmatrix}$$

- Choose  $b = \begin{bmatrix} 1\\1\\1\\1\end{bmatrix}$
- In matlab,  $a = Y \setminus b$  solves the least squares problem  $a = \begin{bmatrix} 2.7 \\ 1.0 \\ -0.9 \end{bmatrix}$



- Note **a** is an approximation to Ya = b, since no exact solution exists  $Ya = \begin{bmatrix} 0.4 \\ 1.3 \\ 0.6 \\ 1 \end{bmatrix} \neq \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$
- This solution does give a separating hyperplane since Ya > 0

- Class 1: (6 9), (5 7)
- Class 2: (5 9), (0 10)
- The last sample is very far compared to others from the separating hyperplane



$$y_{1} = \begin{bmatrix} 1\\6\\9 \end{bmatrix} \quad y_{2} = \begin{bmatrix} 1\\5\\7 \end{bmatrix} \quad y_{3} = \begin{bmatrix} -1\\-5\\-9 \end{bmatrix} \quad y_{4} = \begin{bmatrix} -1\\0\\-10 \end{bmatrix}$$
  
Matrix  $Y = \begin{bmatrix} 1&6&9\\1&5&7\\-1&-5&-9\\-1&0&-10 \end{bmatrix}$ 

• Choose  $b = \begin{bmatrix} 7\\1\\1\\1\\1 \end{bmatrix}$ 

• In matlab,  $a = Y \land b$  solves the least squares problem  $a = \begin{bmatrix} 3.2 \\ 0.2 \\ -0.4 \end{bmatrix}$ 



- Note **a** is an approximation to Ya = b, since no exact solution exists  $Ya = \begin{bmatrix} 0.2 \\ 0.9 \\ -0.04 \\ 1.16 \end{bmatrix} \neq \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$
- This solution does not give a separating hyperplane since a<sup>t</sup>y<sub>3</sub> < 0</li>

 MSE pays to much attention to isolated "noisy" examples (such examples are called outliers)



 No problems with convergence though, and solution it gives ranges from reasonable to good

- we know that 4<sup>th</sup> point is far far from separating hyperplane
  - In practice we don't know this
- Thus appropriate  $b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
- In Matlab, solve  $a = Y \ b$  $a = \begin{bmatrix} -1.1 \\ 1.7 \\ -0.9 \end{bmatrix}$
- Note **a** is an approximation to Ya = b,  $Ya = \begin{vmatrix} 0.9 & 1 \\ 1.0 & 4 \\ 0.8 & 4 \end{vmatrix} \neq \begin{vmatrix} 1 \\ 1 \\ 10 & 0 \end{vmatrix} \neq \begin{vmatrix} 1 \\ 1 \\ 10 & 4 \end{vmatrix}$
- This solution does give the separating hyperplane since Ya > 0



#### LDF: Gradient Descent for MSE solution

$$J_s(a) = \|Ya - b\|^2$$

- May wish to find MSE solution by gradient descent:
  - 1. Computing the inverse of Y'Y may be too costly
  - Y<sup>t</sup>Y may be close to singular if samples are highly correlated (rows of Y are almost linear combinations of each other)
    - computing the inverse of Y<sup>t</sup>Y is not numerically stable
- In the beginning of the lecture, computed the gradient:

$$\nabla J_s(a) = 2Y^t(Ya - b)$$

LDF: Widrow-Hoff Procedure

$$\nabla J_{s}(a) = 2Y^{t}(Ya - b)$$

Thus the update rule for gradient descent:

$$\boldsymbol{a}^{(k+1)} = \boldsymbol{a}^{(k)} - \eta^{(k)} \boldsymbol{Y}^{t} \left( \boldsymbol{Y} \boldsymbol{a}^{(k)} - \boldsymbol{b} \right)$$

If η<sup>(k)</sup> = η<sup>(1)</sup> / k weight vector a<sup>(k)</sup> converges to the MSE solution a, that is Y<sup>t</sup>(Ya-b)=0

 Widrow-Hoff procedure reduces storage requirements by considering single samples sequentially:

$$\boldsymbol{a}^{(k+1)} = \boldsymbol{a}^{(k)} - \eta^{(k)} \boldsymbol{y}_i \left( \boldsymbol{y}_i^t \boldsymbol{a}^{(k)} - \boldsymbol{b}_i \right)$$

- In the MSE procedure, if **b** is chosen arbitrarily, finding separating hyperplane is not guaranteed
- Suppose training samples are linearly separable. Then there is **a**<sup>s</sup> and positive **b**<sup>s</sup> s.t.

 $Ya^{s} = b^{s} > 0$ 

- If we knew b<sup>s</sup> could apply MSE procedure to find the separating hyperplane
- Idea: find both **a**<sup>s</sup> and **b**<sup>s</sup>
- Minimize the following criterion function, restricting to positive **b**:

$$J_{HK}(a,b) = \|Ya - b\|^2$$

$$J_{HK}(a,b) = \|Ya - b\|^2$$

As usual, take partial derivatives w.r.t. a and b

$$\nabla_a J_{HK} = 2Y^t (Ya - b) = 0$$
$$\nabla_b J_{HK} = -2(Ya - b) = 0$$

- Use modified gradient descent procedure to find a minimum of J<sub>HK</sub>(a,b)
- Alternate the two steps below until convergence:
   1) Fix *b* and minimize *J<sub>HK</sub>(a,b)* with respect to *a* 2) Fix *a* and minimize *J<sub>HK</sub>(a,b)* with respect to *b*

$$\nabla_a J_{HK} = 2Y^t (Ya - b) = 0$$
  $\nabla_b J_{HK} = -2(Ya - b) = 0$ 

Alternate the two steps below until convergence:

- 1) Fix **b** and minimize  $J_{HK}(a, b)$  with respect to **a**
- 2) Fix **a** and minimize  $J_{HK}(a, b)$  with respect to **b**
- Step (1) can be performed with pseudoinverse
  - For fixed *b* minimum of *J<sub>HK</sub>*(*a*,*b*) with respect to *a* is found by solving

$$2Y^t(Ya-b)=0$$

Thus

$$\mathbf{a} = \left(\mathbf{Y}^t \mathbf{Y}\right)^{-1} \mathbf{Y}^t \mathbf{b}$$

- Step 2: fix **a** and minimize **J<sub>HK</sub>(a, b**) with respect to **b**
- We can't use b = Ya because b has to be positive
- Solution: use modified gradient descent
- start with positive b, follow negative gradient but refuse to decrease any components of b
- This can be achieved by setting all the positive components of  $\nabla_{b}J$  to **0**
- Not doing steepest descent anymore, but we are still doing descent and ensure that b is positive

- The Ho-Kashyap procedure:
   0) Start with arbitrary *a*<sup>(1)</sup> and *b*<sup>(1)</sup> > 0, let k = 1
   *repeat* steps (1) through (4)
   1) *e*<sup>(k)</sup> = *Ya*<sup>(k)</sup> *b*<sup>(k)</sup>
  - 2) Solve for  $\boldsymbol{b}^{(k+1)}$  using  $\boldsymbol{a}^{(k)}$  and  $\boldsymbol{b}^{(k)}$  $\boldsymbol{b}^{(k+1)} = \boldsymbol{b}^{(k)} + \eta \left[ \mathbf{e}^{(k)} + |\mathbf{e}^{(k)}| \right]$

3) Solve for 
$$a^{(k+1)}$$
 using  $b^{(k+1)}$   
 $a^{(k+1)} = (Y^t Y)^{-1} Y^t b^{(k+1)}$ 

4) k = k + 1*until*  $|e^{(k)}| \le$  threshold or  $k > k_{max}$  or  $b^{(k+1)} = b^{(k)}$ 

• For convergence, learning rate should be fixed between  $0 < \eta < 1$ 

- In the linearly separable case,
  - $e^{(k)} = 0$ , found solution, stop
  - one of components of  $e^{(k)}$  is positive, algorithm continues

- In non separable case,
  - *e*<sup>(k)</sup> will have only negative components eventually, thus found proof of nonseparability
  - No bound on how many iteration need for the proof of nonseparability

### LDF: Ho-Kashyap Procedure Example

Class 1: (6 9), (5 7)
Class 1: (5 9), (0 10)
Matrix
$$Y = \begin{bmatrix} 1 & 6 & 9 \\ 1 & -5 & -9 \\ -1 & -5 & -9 \\ -1 & 0 & -10 \end{bmatrix}$$
Start with  $a^{(1)} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$  and  $b^{(1)} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ 

• Use fixed learning  $\eta = 0.9$ 

• At the start  $Ya^{(1)} = \begin{bmatrix} 16\\13\\-15\\-11 \end{bmatrix}$ 

### LDF: Ho-Kashyap Procedure Example

Iteration 1:

• 
$$\mathbf{e}^{(1)} = \mathbf{Y}\mathbf{a}^{(1)} - \mathbf{b}^{(1)} = \begin{bmatrix} 16\\13\\-15\\-11 \end{bmatrix} - \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 15\\12\\-16\\-12 \end{bmatrix}$$

- solve for  $b^{(2)}$  using  $a^{(1)}$  and  $b^{(1)}$  $b^{(2)} = b^{(1)} + 0.9[e^{(1)} + e^{(1)}] = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} + 0.9\begin{bmatrix} 15\\12\\-16\\-12 \end{bmatrix} + \begin{bmatrix} 15\\12\\16\\12 \end{bmatrix} = \begin{bmatrix} 28\\22.6\\1\\1 \end{bmatrix}$
- solve for *a*<sup>(2)</sup> using *b*<sup>(2)</sup>

$$a^{(2)} = (Y^{t}Y)^{-1}Y^{t}b^{(2)} = \begin{bmatrix} -2.6 & 4.7 & 1.6 & -0.5 \\ 0.16 & -0.1 & -0.1 & 0.2 \\ 0.26 & -0.5 & -0.2 & -0.1 \end{bmatrix} * \begin{bmatrix} 28 \\ 22.6 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 34.6 \\ 2.7 \\ -3.8 \end{bmatrix}$$

# LDF: Ho-Kashyap Procedure Example

- Continue iterations until Ya > 0
  - In practice, continue until minimum component of *Ya* is less then 0.01



After 104 iterations converged to solution

$$a = \begin{bmatrix} -34.9 \\ 27.3 \\ -11.3 \end{bmatrix} \qquad b = \begin{bmatrix} 28 \\ 23 \\ 1 \\ 147 \end{bmatrix}$$

a does gives a separating hyperplane

$$Ya = \begin{bmatrix} 27.2 \\ 22.5 \\ 0.14 \\ 1.48 \end{bmatrix}$$

- Suppose we have *m* classes
   Define *m* linear discriminant function
- Define *m* linear discriminant functions

$$g_i(x) = w_i^t x + w_{i0}$$
  $i = 1,...,m$ 

- Given x, assign class c<sub>i</sub> if
   g<sub>i</sub>(x) ≥ g<sub>j</sub>(x) ∀j≠i
- Such classifier is called a *linear machine*
- A linear machine divides the feature space into c decision regions, with g<sub>i</sub>(x) being the largest discriminant if x is in the region R<sub>i</sub>

- For each class *i*, find weight vector  $a_i$ , s.t.  $\begin{cases}
  a_i^t y = 1 & \forall y \in \text{class } i \\
  a_i^t y = 0 & \forall y \notin \text{class } i
  \end{cases}$
- Let Y<sub>i</sub> be matrix whose rows are samples from class i, so it has d+1 columns and n<sub>i</sub> rows
- Let's pile all samples in *n* by *d* + 1 matrix *Y*:

$$\mathbf{Y} = \begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \\ \vdots \\ \mathbf{Y}_m \end{bmatrix} = \begin{bmatrix} \text{sample from class 1} \\ \text{sample from class 1} \\ \vdots \\ \text{sample from class m} \\ \text{sample from class m} \end{bmatrix}$$

Let b<sub>i</sub> be a column vector of length n which is 0 everywhere except rows corresponding to samples from class i, where it is 1: [0]

$$b_{i} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$
 rows corresponding to samples from class i

- Let's pile all  $\boldsymbol{b}_i$  as columns in  $\boldsymbol{n}$  by  $\boldsymbol{c}$  matrix  $\boldsymbol{B}$  $\boldsymbol{B} = \begin{bmatrix} \boldsymbol{b}_1 & \cdots & \boldsymbol{b}_n \end{bmatrix}$
- Let's pile all a<sub>i</sub> as columns in d+1 by m matrix A

$$\mathbf{W} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \end{bmatrix} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \\ \mathbf{w$$

*m* LSE problems can be represented in *YA* = *B*:

 $\begin{bmatrix} sample from class 1 \\ sample from class 1 \\ sample from class 2 \\ sample from class 3 \\ sample from class$ 

Y

Α

B

• Our objective function is:  $J(A) = \sum_{i=1}^{m} ||Ya_i - b_i||^2$ 

• J(A) is minimized with the use of pseudoinverse  $A = (Y^{t}Y)^{-1}YB$ 

# LDF: Summary

#### Perceptron procedures

- find a separating hyperplane in the linearly separable case,
- do not converge in the non-separable case
- can force convergence by using a decreasing learning rate, but are not guaranteed a reasonable stopping point

#### MSE procedures

- converge in separable and not separable case
- may not find separating hyperplane if classes are linearly separable
- use pseudoinverse if Y<sup>t</sup>Y is not singular and not too large
- use gradient descent (Widrow-Hoff procedure) otherwise

#### Ho-Kashyap procedures

- always converge
- find separating hyperplane in the linearly separable case
- more costly