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Bias-Variance tradeoff – Intuition

� Model too “simple”→does not fit the data well – a 
biased solution. 

� Model too complex →small changes to the data, 
solution changes a lot – high-variance solution.



Expected Loss

� Let h(x) = E[t|x] be the optimal predictor and y(x) our actual 
predictor, which will incur the following expected loss
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Sources of error 1 –noise

� What if we have perfect learner, infinite data?
� Our learning solution y(x) satisfies y(x)=h(x)

� Still have remaining, unavoidable error of σ2

due to noise ε
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Bias-variance decomposition
� Focus on 
� Let us first examine expected loss averaging over 

data sets.
� For one data set D and one test point x:
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Bias
� Suppose you are given a dataset D with m samples 

from some distribution. 
� You learn function y(x) from data D

� If you sample a different datasets, you will learn 
different y(x)

� Expected hypothesis : ED[y(x,D)]� Expected hypothesis : ED[y(x,D)]

� Bias: difference between what you expect to learn 
and the truth.
� Measures how well you expect to represent true solution
� Decreases with more complex model

( ) dxxpxhDxyE
x

D )()()],([bias 22 ∫ −=
Expected 
to learn True model



Variance
� Variance: difference between what you expect to 

learn and what you learn from a particular dataset
� Measures how sensitive learner is to a specific dataset
� Decreases with simpler model
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Bias-Variance Tradeoff

� Choice of hypothesis class introduces 
learning bias

� More complex class →less bias
� More complex class →more variance



The Expected Prediction Error
� The expected prediction squared error over fixed 

size training sets D drawn from P(X,T) can be 
expressed as sum of three components:
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Bias-Variance Decomposition – Graphical 
Representation



Training Error

� Given a training data, choose a loss 
function. (e.g., squared error (L2) for regression)

� Training set error: For a particular set of 
parameters, loss function on training data:
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Training Error vs. Model Complexity
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Prediction (Generalization) Error

� Training set error can be poor measure of 
“quality" of solution

� Prediction error: We really care about error over 
all possible input points, not just training data:
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Prediction Error vs. Model Complexity
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Model complexity highlow
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Why training set error doesn’t 
approximate prediction error?

� Sampling approximation of prediction error:

� Training error
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� Very similar equations!!! 

Why is training set a bad measure of 
prediction error???
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Why is training set a bad measure of 
prediction error???

� Training error is a good estimate for a single w,
� But we optimized w with respect to the training 

error, and found w that is good for this set of 
samples.

� Training error is a (optimistically) biased 
estimate of prediction error



Test Error

� Given a dataset, randomly split it into two parts:
� Training data –{x1,…, xNtrain}
� Test data –{x1,…, xNtest}

� Use training data to optimize parameters w
� Test set error: For the final solution w*, 

evaluate the error using:evaluate the error using:
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Unbiased but has variance
Test set only unbiased if you never do any learning  on the test data
For example, if you use the test set to select the degree of the 
polynomial…no longer unbiased!!!



Test Set Error vs. Model Complexity
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How many points to use for 
training/testing?
� Very hard question to answer!

� Too few training points, learned w is bad
� Too few test points, you never know if you reached a 

good solution

� Theory proposes error bounds  (advanced 
course)course)

� Typically:
� if you have a reasonable amount of data, pick 

test set “large enough” for a “reasonable” 
estimate of error, and use the rest for learning

� if you have little data, then you need to use 
some special techniques e.g., bootstrapping



Error as a function of number of training 
examples for a fixed model complexity

Test error 

Infinite dataLittle data

Training errorE
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Overfitting
� With too few training examples our model may 

achieve zero training error but never the less has 
a large generalization error

� When the training error no longer bears any 
relation to the generalization error the model relation to the generalization error the model 
overfits the data



Cross-validation for 
detecting and preventing 

overfitting
Andrew W. Moore
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A Regression Problem

y

y = f(x) + noise

Can we learn f from this data?
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x

y

Let’s consider three methods…



Linear Regression

y
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Quadratic Regression

y
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Join-the-dots

y

Also known as piecewise 
linear nonparametric 

regression if that makes 
you feel better
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Which is best?

x

y

x

y
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Why not choose the method with the 
best fit to the data?



What do we really want?

x

y

x

y
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Why not choose the method with the 
best fit to the data?

“How well are you going to predict 
future data drawn from the same 

distribution?”



The test set method

y

1. Randomly choose 
30% of the data to be in a 
test set

2. The remainder is a 
training set
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x

y training set



The test set method

y

1. Randomly choose 
30% of the data to be in a 
test set

2. The remainder is a 
training set
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x

y training set

3. Perform your 
regression on the training 
set

(Linear regression example)



The test set method

y

1. Randomly choose 
30% of the data to be in a 
test set

2. The remainder is a 
training set
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x

y training set

3. Perform your 
regression on the training 
set

4. Estimate your future 
performance with the test 
set

(Linear regression example)

Mean Squared Error = 2.4



The test set method

y

1. Randomly choose 
30% of the data to be in a 
test set

2. The remainder is a 
training set
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x

y training set

3. Perform your 
regression on the training 
set

4. Estimate your future 
performance with the test 
set

(Quadratic regression example)

Mean Squared Error = 0.9



The test set method

y

1. Randomly choose 
30% of the data to be in a 
test set

2. The remainder is a 
training set
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x

y training set

3. Perform your 
regression on the training 
set

4. Estimate your future 
performance with the test 
set

(Join the dots example)

Mean Squared Error = 2.2



The test set method
Good news:

•Very very simple

•Can then simply choose the method with 
the best test-set score

Bad news:

Copyright © Andrew W. Moore Slide 35

Bad news:

•What’s the downside?



The test set method
Good news:

•Very very simple

•Can then simply choose the method with 
the best test-set score

Bad news:
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Bad news:

•Wastes data: we get an estimate of the 
best method to apply to 30% less data

•If we don’t have much data, our test-set 
might just be lucky or unlucky

We say the 
“test-set 
estimator of 
performance 
has high 
variance”



LOOCV (Leave-one-out Cross Validation)

y

For k=1 to R

1. Let (xk,yk) be the kth record
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LOOCV (Leave-one-out Cross Validation)

y

For k=1 to R

1. Let (xk,yk) be the kth record

2. Temporarily remove (xk,yk)
from the dataset
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LOOCV (Leave-one-out Cross Validation)

y

For k=1 to R

1. Let (xk,yk) be the kth record

2. Temporarily remove (xk,yk)
from the dataset

3. Train on the remaining R-1 
datapoints
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x

y datapoints



LOOCV (Leave-one-out Cross Validation)
For k=1 to R

1. Let (xk,yk) be the kth record

2. Temporarily remove (xk,yk)
from the dataset

3. Train on the remaining R-1 
datapointsy
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datapoints

4. Note your error (xk,yk)

x

y



LOOCV (Leave-one-out Cross Validation)
For k=1 to R

1. Let (xk,yk) be the kth record

2. Temporarily remove (xk,yk)
from the dataset

3. Train on the remaining R-1 
datapointsy
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datapoints

4. Note your error (xk,yk)

When you’ve done all points, 
report the mean error.

x

y



LOOCV (Leave-one-out Cross Validation)
For k=1 to R

1. Let (xk,yk) be 
the kth

record

2. Temporarily 
remove 
(xk,yk) from 
the dataset

3. Train on the 
remaining 
R-1 
datapoints

x

y

x

y

x

y
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datapoints

4. Note your 
error (xk,yk)

When you’ve 
done all points, 
report the mean 
error.

x

y

x

y

x

y

x

y

x

y

x

y

MSELOOCV 
= 2.12



LOOCV for Quadratic Regression
For k=1 to R

1. Let (xk,yk) be 
the kth

record

2. Temporarily 
remove 
(xk,yk) from 
the dataset

3. Train on the 
remaining 
R-1 
datapoints

x

y

x

y

x

y
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datapoints

4. Note your 
error (xk,yk)

When you’ve 
done all points, 
report the mean 
error.

x

y

x

y

x

y

x

y

x

y

x

y

MSELOOCV
=0.962



LOOCV for Join The Dots
For k=1 to R

1. Let (xk,yk) be 
the kth

record

2. Temporarily 
remove 
(xk,yk) from 
the dataset

3. Train on the 
remaining 
R-1 
datapoints

x

y

x

y

x

y
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datapoints

4. Note your 
error (xk,yk)

When you’ve 
done all points, 
report the mean 
error.

x

y

x

y

x

y

x

y

x

y

x

y

MSELOOCV
=3.33



Which kind of Cross Validation?

Downside Upside

Test-set Variance: unreliable 
estimate of future 
performance

Cheap

Leave- Expensive. Doesn’t 
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Leave-
one-out

Expensive. 
Has some weird 
behavior

Doesn’t 
waste data

..can we get the best of both worlds?



k-fold Cross 
Validation

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 
partitions colored Red Green and Blue)
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k-fold Cross 
Validation

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 
partitions colored Red Green and Blue)

For the red partition: Train on all the 
points not in the red partition. Find 
the test-set sum of errors on the red 
points.

Copyright © Andrew W. Moore Slide 47

x

y



k-fold Cross 
Validation

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 
partitions colored Red Green and Blue)

For the red partition: Train on all the 
points not in the red partition. Find 
the test-set sum of errors on the red 
points.

For the green partition: Train on all the 
points not in the green partition. 
Find the test-set sum of errors on 
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x

y Find the test-set sum of errors on 
the green points.



k-fold Cross 
Validation

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 
partitions colored Red Green and Blue)

For the red partition: Train on all the 
points not in the red partition. Find 
the test-set sum of errors on the red 
points.

For the green partition: Train on all the 
points not in the green partition. 
Find the test-set sum of errors on 
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x

y Find the test-set sum of errors on 
the green points.

For the blue partition: Train on all the 
points not in the blue partition. Find 
the test-set sum of errors on the 
blue points.



k-fold Cross 
Validation

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 
partitions colored Red Green and Blue)

For the red partition: Train on all the 
points not in the red partition. Find 
the test-set sum of errors on the red 
points.

For the green partition: Train on all the 
points not in the green partition. 
Find the test-set sum of errors on 
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x

y Find the test-set sum of errors on 
the green points.

For the blue partition: Train on all the 
points not in the blue partition. Find 
the test-set sum of errors on the 
blue points.

Then report the mean error

Linear Regression 
MSE3FOLD=2.05



k-fold Cross 
Validation

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 
partitions colored Red Green and Blue)

For the red partition: Train on all the 
points not in the red partition. Find 
the test-set sum of errors on the red 
points.

For the green partition: Train on all the 
points not in the green partition. 
Find the test-set sum of errors on 
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x

y Find the test-set sum of errors on 
the green points.

For the blue partition: Train on all the 
points not in the blue partition. Find 
the test-set sum of errors on the 
blue points.

Then report the mean error

Quadratic Regression 
MSE3FOLD=1.11



k-fold Cross 
Validation

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 
partitions colored Red Green and Blue)

For the red partition: Train on all the 
points not in the red partition. Find 
the test-set sum of errors on the red 
points.

For the green partition: Train on all the 
points not in the green partition. 
Find the test-set sum of errors on 
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x

y Find the test-set sum of errors on 
the green points.

For the blue partition: Train on all the 
points not in the blue partition. Find 
the test-set sum of errors on the 
blue points.

Then report the mean error

Joint-the-dots 
MSE3FOLD=2.93



Which kind of Cross Validation?
Downside Upside

Test-set Variance: unreliable 
estimate of future 
performance

Cheap

Leave-
one-out

Expensive. 
Has some weird behavior

Doesn’t waste data
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one-out Has some weird behavior

10-fold Wastes 10% of the data. 
10 times more expensive 
than test set

Only wastes 10%. Only 
10 times more expensive 
instead of R times.

3-fold Wastier than 10-fold. 
Expensivier than test set

Slightly better than test-
set

R-fold Identical to Leave-one-out


