Linear Discriminant Functions

Linear discriminant functions on Road Map

a lot is

known

little is

known

- No probability distribution (no shape or parameters are known)
- Labeled data salmon bass salmon salmon

 The shape of discriminant functions is known

line in case of linear discriminant)

Linear Discriminant Functions: Basic Idea

- Have samples from 2 classes x_1, x_2, \dots, x_n
- Assume 2 classes can be separated by a linear boundary $I(\theta)$ with some unknown parameters θ
- Fit the "best" boundary to data by optimizing over parameters *θ*. How?
- Minimize a criterion function.
 - Obvious choice: Minimize classification error on training data. (Does not guarantee small test error)

Parametric Methods vs.	Discriminant Functions
Assume the shape of density for classes is known $p_1(\mathbf{x} \theta_1)$, $p_2(\mathbf{x} \theta_2)$,	Assume discriminant functions are of known shape $I(\theta_1), I(\theta_2)$, with parameters $\theta_1, \theta_2, \dots$
Estimate $\theta_1, \theta_2, \dots$ from data	Estimate $\theta_1, \theta_2, \dots$ from data
Use a Bayesian classifier to find decision regions	Use discriminant functions for classification
	$c_3 \rightarrow c_2 \\ c_1 \\ c_1$

Parametric Methods vs. Discriminant Functions

- In theory, Bayesian classifier minimizes the risk, but in pracrice:
 - do not have confidence in assumed model shapes;
 - do not really need the actual density functions in the end.
- Estimating accurate density functions is much harder than estimating accurate discriminant functions
 - Some argue that estimating densities should be skipped. Why solve a harder problem than needed ?

LDF: Introduction

- Discriminant functions can be more general than linear.
- For now, we will study linear discriminant functions
 - Simple model (should try simpler models first)
 - Analytically tractable.
- Linear Discriminant functions are optimal for Gaussian distributions with equal covariance.
- May not be optimal for other data distributions, but they are very simple to use.
- Knowledge of class densities is not required when using linear discriminant functions.
 - we can say that this is a non-parametric approach

LDF: 2 Classes

- A discriminant function is linear if it can be written as $g(x) = w^t x + w_0$
 - w is called the weight vector and w_o called bias or threshold

LDF: 2 Classes

• Decision boundary $g(x) = w^t x + w_0 = 0$ is a hyperplane

LDF: 2 Classes

$$g(\mathbf{x}) = \mathbf{w}^t \mathbf{x} + \mathbf{w}_0$$

- w determines orientation of the decision hyperplane
- **w**_o determines location of the decision surface

- Suppose we have *m* classes
- Define *m* linear discriminant functions

$$g_i(x) = w_i^t x + w_{i0}$$
 $i = 1,...,m$

- Given \boldsymbol{x} , assign class \boldsymbol{c}_i if $\boldsymbol{g}_i(\boldsymbol{x}) \ge \boldsymbol{g}_j(\boldsymbol{x}) \qquad \forall \mathbf{j} \neq \mathbf{i}$
- Such classifier is called a *linear machine*
- A linear machine divides the feature space into c decision regions, with g_i(x) being the largest discriminant if x is in the region R_i

For a two contiguous regions *R_i* and *R_j*; the boundary that separates them is a portion of hyperplane *H_{ii}* defined by:

$$g_{i}(\mathbf{x}) = g_{j}(\mathbf{x}) \iff \mathbf{w}_{i}^{t}\mathbf{x} + \mathbf{w}_{i0} = \mathbf{w}_{j}^{t}\mathbf{x} + \mathbf{w}_{j0}$$
$$\Leftrightarrow (\mathbf{w}_{i} - \mathbf{w}_{j})^{t}\mathbf{x} + (\mathbf{w}_{i0} - \mathbf{w}_{j0}) = \mathbf{0}$$

- Thus $w_i w_j$ is normal to H_{ij}
- And distance from x to H_{ij} is given by

$$\boldsymbol{d}(\boldsymbol{x}, \boldsymbol{H}_{ij}) = \frac{\boldsymbol{g}_i(\boldsymbol{x}) - \boldsymbol{g}_j(\boldsymbol{x})}{\left\| \boldsymbol{w}_i - \boldsymbol{w}_j \right\|}$$

• Decision regions for a linear machine are **convex** $y, z \in R_i \Rightarrow \alpha y + (1 - \alpha)z \in R_i$

$$\forall j \neq i \qquad \mathbf{g}_i(\mathbf{y}) \ge \mathbf{g}_j(\mathbf{y}) \text{ and } \mathbf{g}_i(\mathbf{z}) \ge \mathbf{g}_j(\mathbf{z}) \Leftrightarrow$$

$$\Leftrightarrow \forall j \neq i \qquad \mathbf{g}_i(\alpha \mathbf{y} + (1 - \alpha)\mathbf{z}) \ge \mathbf{g}_j(\alpha \mathbf{y} + (1 - \alpha)\mathbf{z})$$

 In particular, decision regions must be spatially contiguous

 R_i

R_j is not a valid decision region

- Thus applicability of linear machine is mostly limited to unimodal conditional densities p(x|0)
 - even though we did not assume any parametric models
- Example:

- Thus applicability of linear machine to mostly limited to unimodal conditional densities *p*(*x*|*θ*)
 - even though we did not assume any parametric models
- Example:

- Thus applicability of linear machine to mostly limited to unimodal conditional densities p(x|θ)
 - even though we did not assume any parametric models
- Example:

- Thus applicability of linear machine to mostly limited to unimodal conditional densities *p*(*x*|*θ*)
 - even though we did not assume any parametric models
- Example:

- need non-contiguous decision regions
- thus linear machine will fail

LDF: Augmented feature vector

- Linear discriminant function: $g(x) = w^t x + w_0$
- Can rewrite it: $g(x) = \begin{bmatrix} w_0 & w^t \end{bmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix} = a^t y = g(y)$

new weight new feature vector a vector y

- y is called the augmented feature vector
- Added a dummy dimension to get a completely equivalent new *homogeneous* problem

old problem	new problem		
$\boldsymbol{g}(\boldsymbol{x}) = \boldsymbol{w}^t \boldsymbol{x} + \boldsymbol{w}_0$	$g(y) = a^t y$		
$\begin{bmatrix} \mathbf{X}_1 \\ \vdots \\ \mathbf{X}_d \end{bmatrix}$	$\begin{bmatrix} 1 \\ \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_d \end{bmatrix}$		

LDF: Augmented feature vector

- Feature augmenting is done for simpler notation
- From now on we always assume that we have augmented feature vectors
 - Given samples x₁,..., x_n convert them to augmented samples y₁,..., y_n by adding a new dimension of value 1

 $\boldsymbol{y}_i = \begin{bmatrix} \boldsymbol{1} \\ \boldsymbol{x}_i \end{bmatrix}$

LDF: Training Error

- For the rest of the lecture, assume we have 2 classes
- Samples y₁,..., y_n some in class 1, some in class 2
- Use these samples to determine weights *a* in the discriminant function g(y) = a^ty
- What should be our criterion for determining *a*?
 - For now, suppose we want to minimize the training error (that is the number of misclassifed samples y₁,..., y_n)
- Recall that $g(y_i) > 0 \Rightarrow y_i$ classified c_1 $g(y_i) < 0 \Rightarrow y_i$ classified c_2
- Thus training error is 0 if

$$\begin{cases} g(y_i) > 0 \quad \forall y_i \in C_1 \\ g(y_i) < 0 \quad \forall y_i \in C_2 \end{cases}$$

LDF: Problem "Normalization"

Thus training error is **0** if

 $\begin{cases} \boldsymbol{a}^{t} \boldsymbol{y}_{i} > \boldsymbol{0} \quad \forall \boldsymbol{y}_{i} \in \boldsymbol{C}_{1} \\ \boldsymbol{a}^{t} \boldsymbol{y}_{i} < \boldsymbol{0} \quad \forall \boldsymbol{y}_{i} \in \boldsymbol{C}_{2} \end{cases}$

- Equivalently, training error is $\boldsymbol{0}$ if $\begin{cases} \boldsymbol{a}^{t}\boldsymbol{y}_{i} > \boldsymbol{0} & \forall \boldsymbol{y}_{i} \in \boldsymbol{c}_{1} \\ \boldsymbol{a}^{t}(-\boldsymbol{y}_{i}) > \boldsymbol{0} & \forall \boldsymbol{y}_{i} \in \boldsymbol{c}_{2} \end{cases}$
- This suggest problem "normalization":
 - 1. Replace all examples from class c_2 by their negative

$$\boldsymbol{y}_i \rightarrow -\boldsymbol{y}_i \qquad \forall \boldsymbol{y}_i \in \boldsymbol{c}_2$$

2. Seek weight vector *a* s.t.

$$\boldsymbol{a}^{t}\boldsymbol{y}_{i} > \boldsymbol{0} \qquad \forall \boldsymbol{y}_{i}$$

- If such a exists, it is called a separating or solution vector
- Original samples x₁,..., x_n can indeed be separated by a line then

Seek a hyperplane that separates patterns from different categories Seek hyperplane that puts *normalized* patterns on the same (positive) side

LDF: Solution Region

- Find weight vector a s.t. for all samples y₁,..., y_n $\boldsymbol{a}^{t}\boldsymbol{y}_{i} = \sum_{k=0}^{a} \boldsymbol{a}_{k}\boldsymbol{y}_{i}^{(k)} > \boldsymbol{0}$ **y**⁽²⁾ **V**⁽¹⁾ • best a
 - In general, there are many such solutions a

LDF: Solution Region

- **Solution region** for **a**: set of all possible solutions
 - defined in terms of normal *a* to the separating hyperplane

Optimization

- Need to minimize a function of many variables $J(\mathbf{x}) = J(\mathbf{x}_1, ..., \mathbf{x}_d)$
- We know how to minimize J(x)
 - Take partial derivatives and set them to zero

- However solving analytically is not always easy
 - Would you like to solve this system of nonlinear equations?

$$\begin{cases} \sin(x_1^2 + x_2^3) + e^{x_4^2} = 0\\ \cos(x_1^2 + x_2^3) + \log(x_5^3)^{x_4^2} = 0 \end{cases}$$

 Sometimes it is not even possible to write down an analytical expression for the derivative, we will see an example later today

• Gradient $\nabla J(\mathbf{x})$ points in direction of steepest increase of $J(\mathbf{x})$, and $-\nabla J(\mathbf{x})$ in direction of steepest decrease

one dimension

two dimensions

k = k + 1

Gradient Descent for minimizing any function **J**(**x**)

set $\mathbf{k} = \mathbf{1}$ and $\mathbf{x}^{(1)}$ to some initial guess for the weight vector while $\eta^{(k)} |\nabla J(\mathbf{x}^{(k)})| > \varepsilon$ choose learning rate $\eta^{(k)}$ $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \eta^{(k)} \nabla J(\mathbf{x})$ (update rule)

 Nevertheless gradient descent is very popular because it is simple and applicable to any function

- Main issue: how to set parameter η (*learning rate*)
- If η is too small, need too many iterations

 If η is too large may overshoot the minimum and possibly never find it (if we keep overshooting)

LDF: Criterion Function

- Find weight vector \boldsymbol{a} s.t. for all samples $\boldsymbol{y}_1, \dots, \boldsymbol{y}_n$ $\boldsymbol{a}^t \boldsymbol{y}_i = \sum_{k=0}^d \boldsymbol{a}_k \boldsymbol{y}_i^{(k)} > \boldsymbol{0}$
- Need criterion function J(a) which is minimized when a is a solution vector
- Let Y_M be the set of examples misclassified by **a** $Y_M(a) = \{ sample \ y_i \ s.t. \ a^t y_i < 0 \}$
- First natural choice: number of misclassified examples $J(a) = |Y_{M}(a)|$
 - piecewise constant, gradient descent is useless

LDF: Perceptron Criterion Function

- Better choice: **Perceptron** criterion function $J_{p}(a) = \sum_{y \in Y_{M}} (-a^{t}y)$
- If **y** is misclassified, $a^t y \le 0$
- Thus J_p(a) ≥ 0

 J_p(a) is piecewise linear and thus suitable for gradient descent

LDF: Perceptron Batch Rule

$$\boldsymbol{J}_{\boldsymbol{p}}(\boldsymbol{a}) = \sum_{\boldsymbol{y} \in \boldsymbol{Y}_{\boldsymbol{M}}} \left(- \boldsymbol{a}^{t} \boldsymbol{y} \right)$$

- Gradient of $J_p(a)$ is $\nabla J_p(a) = \sum_{y \in Y_M} (-y)$
 - Y_M are samples misclassified by $a^{(k)}$
 - It is not possible to solve $\nabla J_p(a) = 0$ analytically because of Y_M

• Gradient decent batch update rule for $J_p(a)$ is:

$$\boldsymbol{a}^{(\boldsymbol{k}+1)} = \boldsymbol{a}^{(\boldsymbol{k})} + \eta^{(\boldsymbol{k})} \sum_{\boldsymbol{y} \in \boldsymbol{Y}_{\boldsymbol{M}}} \boldsymbol{y}$$

 It is called batch rule because it is based on all misclassified examples

LDF: Perceptron Single Sample Rule

- Thus gradient decent single sample rule for J_p(a) is: a^(k+1) = a^(k) + η^(k)y_M
 - note that y_M is one sample misclassified by a^(k)
 - must have a consistent way of visiting samples
- Geometric Interpretation:
 - y_M misclassified by $a^{(k)}$ $(a^{(k)})^t y_M \le 0$
 - y_M is on the wrong side of decision hyperplane
 - adding *ηy_M* to *a* moves new decision hyperplane in the right direction with respect to *y_M*

LDF: Perceptron Single Sample Rule

 η is too large, previously correctly classified sample y_k is now misclassified

 η is too small, y_M is still misclassified

LDF: Perceptron Example

		grade			
name	good attendance?	tall?	sleeps in class?	chews gum?	
Jane	yes (1)	yes (1)	no (-1)	no (-1)	A
Steve	yes (1)	yes (1)	yes (1)	yes (1)	F
Mary	no (-1)	no (-1)	no (-1)	yes (1)	F
Peter	yes (1)	no (-1)	no (-1)	yes (1)	A

- class 1: students who get grade A
- class 2: students who get grade F

LDF Example: Augment feature vector

	features				grade	
name	extra	good attendance?	tall?	sleeps in class?	chews gum?	
Jane	1	yes (1)	yes (1)	no (-1)	no (-1)	A
Steve	1	yes (1)	yes (1)	yes (1)	yes (1)	F
Mary	1	no (-1)	no (-1)	no (-1)	yes (1)	F
Peter	1	yes (1)	no (-1)	no (-1)	yes (1)	A

convert samples x₁,..., x_n to augmented samples
 y₁,..., y_n by adding a new dimension of value 1

LDF: Perform "Normalization"

	features				grade	
name	extra	good attendance?	tall?	sleeps in class?	chews gum?	
Jane	1	yes (1)	yes (1)	no (-1)	no (-1)	A
Steve	-1	yes (-1)	yes (-1)	yes (-1)	yes (-1)	F
Mary	-1	no (1)	no (1)	no (1)	yes (-1)	F
Peter	1	yes (1)	no (-1)	no (-1)	yes (1)	A

Replace all examples from class c₂ by their negative

$$\boldsymbol{y}_i \rightarrow -\boldsymbol{y}_i \qquad \forall \boldsymbol{y}_i \in \boldsymbol{c}_2$$

• Seek weight vector \mathbf{a} s.t. $\mathbf{a}^t \mathbf{y}_i > \mathbf{0}$ $\forall \mathbf{y}_i$

LDF: Use Single Sample Rule

	features				grade	
name	extra	good attendance?	tall?	sleeps in class?	chews gum?	
Jane	1	yes (1)	yes (1)	no (-1)	no (-1)	A
Steve	-1	yes (-1)	yes (-1)	yes (-1)	yes (-1)	F
Mary	-1	no (1)	no (1)	no (1)	yes (-1)	F
Peter	1	yes (1)	no (-1)	no (-1)	yes (1)	A

- Sample is misclassified if $a^t y_i = \sum_{k=0}^{4} a_k y_i^{(k)} < 0$
- gradient descent single sample rule: $\mathbf{a}^{(k+1)} = \mathbf{a}^{(k)} + \eta^{(k)} \mathbf{y}_{M}$
- Set **fixed** learning rate to $\eta^{(k)} = 1$: $a^{(k+1)} = a^{(k)} + y_M$

- set equal initial weights a⁽¹⁾=[0.25, 0.25, 0.25, 0.25]
- visit all samples sequentially, modifying the weights for after finding a misclassified example

name	a ^t y	misclassified?
Jane	0.25*1+0.25*1+0.25*1+0.25*(-1)+0.25*(-1) >0	no
Steve	0.25*(-1)+0.25*(-1)+0.25*(-1)+0.25*(-1)+0.25*(-1)<0	yes

new weights

$$a^{(2)} = a^{(1)} + y_M = \begin{bmatrix} 0.25 & 0.25 & 0.25 & 0.25 & 0.25 \end{bmatrix} + \\ + \begin{bmatrix} -1 & -1 & -1 & -1 \end{bmatrix} = \\ = \begin{bmatrix} -0.75 & -0.75 & -0.75 & -0.75 \end{bmatrix}$$

$$a^{(2)} = [-0.75 - 0.75 - 0.75 - 0.75 - 0.75]$$

name	a ^t y	misclassified?
Mary	-0.75*(-1)-0.75*1 -0.75 *1 -0.75 *1 -0.75*(-1) <0	yes

new weights

$$m{a}^{(3)} = m{a}^{(2)} + m{y}_M = ig[-0.75 \ -0.75 \ -0.75 \ -0.75 \ -0.75 \ -0.75 ig] + \ + ig[-1 \ 1 \ 1 \ 1 \ -1 ig] = \ = ig[-1.75 \ 0.25 \ 0.25 \ 0.25 \ -1.75 ig]$$

$$a^{(3)} = [-1.75 \quad 0.25 \quad 0.25 \quad 0.25 \quad -1.75]$$

name	a ^t y	misclassified?
Peter	-1.75 *1 +0.25* 1+0.25* (-1) +0.25 *(-1)-1.75*1 <0	yes

new weights

$$a^{(4)} = a^{(3)} + y_M = [-1.75 \quad 0.25 \quad 0.25 \quad 0.25 \quad -1.75] +$$

+ $[1 \quad 1 \quad -1 \quad -1 \quad 1] =$
= $[-0.75 \quad 1.25 \quad -0.75 \quad -0.75 \quad -0.75]$

$a^{(4)} = \begin{bmatrix} -0.75 & 1.25 & -0.75 & -0.75 \end{bmatrix}$

name	a ^t y	misclassified?
Jane	-0.75 *1 +1.25*1 -0.75*1 -0.75 *(-1) -0.75 *(-1)>0	no
Steve	-0.75*(-1)+1.25*(-1) -0.75*(-1) -0.75*(-1)-0.75*(-1)>0	no
Mary	-0.75 *(-1)+1.25*1-0.75*1 -0.75 *1 –0.75*(-1) >0	no
Peter	-0.75 *1+ 1.25*1-0.75* (-1)-0.75* (-1) -0.75 *1 >0	no

- Thus the discriminant function is $g(y) = -0.75 * y^{(0)} + 1.25 * y^{(1)} - 0.75 * y^{(2)} - 0.75 * y^{(3)} - 0.75 * y^{(4)}$
- Converting back to the original features **x**: $g(x) = 1.25 * x^{(1)} - 0.75 * x^{(2)} - 0.75 * x^{(3)} - 0.75 * x^{(4)} - 0.75$

- Converting back to the original features **x**: 1.25 * $x^{(1)} - 0.75 * x^{(2)} - 0.75 * x^{(3)} - 0.75 * x^{(4)} > 0.75 \Rightarrow grade A$ 1.25 * $x^{(1)} - 0.75 * x^{(2)} - 0.75 * x^{(3)} - 0.75 * x^{(4)} < 0.75 \Rightarrow grade F$ good tall sleeps in class chews gum attendance
- This is just one possible solution vector
- If we started with weights $a^{(1)}=[0,0.5, 0.5, 0, 0]$, solution would be [-1,1.5, -0.5, -1, -1] $1.5 * x^{(1)} - 0.5 * x^{(2)} - x^{(3)} - x^{(4)} > 1 \Rightarrow grade A$ $1.5 * x^{(1)} - 0.5 * x^{(2)} - x^{(3)} - x^{(4)} < 1 \Rightarrow grade F$
 - In this solution, being tall is the least important feature

- Suppose we have 2 features and samples are:
 - Class 1: [2,1], [4,3], [3,5]
 - Class 2: [1,3] and [5,6]
- These samples are not separable by a line

- Still would like to get approximate separation by a line, good choice is shown in green
 - some samples may be "noisy", and it's ok if they are on the wrong side of the line
- Get y_1, y_2, y_3, y_4 by adding extra feature and "normalizing" $y_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \quad y_2 = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix} \quad y_3 = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} \quad y_4 = \begin{bmatrix} -1 \\ -1 \\ -3 \end{bmatrix} \quad y_5 = \begin{bmatrix} -1 \\ -5 \\ -6 \end{bmatrix}$

- Let's apply Perceptron single sample algorithm
- initial equal weights $a^{(1)} = [1 \ 1 \ 1]$
 - this is line x⁽¹⁾+x⁽²⁾+1=0
- fixed learning rate $\eta = 1$ $a^{(k+1)} = a^{(k)} + y_M$

$$\boldsymbol{y}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \quad \boldsymbol{y}_2 = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix} \quad \boldsymbol{y}_3 = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} \quad \boldsymbol{y}_4 = \begin{bmatrix} -1 \\ -1 \\ -3 \end{bmatrix} \quad \boldsymbol{y}_5 = \begin{bmatrix} -1 \\ -5 \\ -6 \end{bmatrix}$$

- $y_1^t a^{(1)} = [1 \ 1 \ 1]^* [1 \ 2 \ 1]^t > 0$ \top \top \top \text{
- $y_{2}^{t}a^{(1)} = [1 \ 1 \ 1]^{*}[1 \ 4 \ 3]^{t} > 0$
- $y_{3}^{t}a^{(1)} = [1 \ 1 \ 1]^{*}[1 \ 3 \ 5]^{t} > 0$

• $y_4^t a^{(1)} = [1 \ 1 \ 1]^* [-1 \ -1 \ -3]^t = -5 < 0$

a⁽²⁾

- $y_5^t a^{(2)} = [0 \ 0 \ -2]^* [-1 \ -5 \ -6]^t = 12 > 0$ •
- $y_1^t a^{(2)} = [0 \ 0 \ -2]^* [1 \ 2 \ 1]^t < 0$ $a^{(3)} = a^{(2)} + y_M = [0 \ 0 \ -2] + [1 \ 2 \ 1] = [1 \ 2 \ -1]$

LDF: Nonseparable Example

$$a^{(3)} = [1 \ 2 \ -1]$$
 $a^{(k+1)} = a^{(k)} + y_M$
 $y_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} y_2 = \begin{bmatrix} 1 \\ 4 \end{bmatrix} y_3 = \begin{bmatrix} 1 \\ 3 \end{bmatrix} y_4 = \begin{bmatrix} -1 \\ -1 \\ -3 \end{bmatrix} y_5 = \begin{bmatrix} -1 \\ -5 \\ -6 \end{bmatrix}$
 $y_5^t = \begin{bmatrix} -1 \\ -3 \end{bmatrix} = \begin{bmatrix} -1 \\ -3 \end{bmatrix} y_5 = \begin{bmatrix} -1 \\ -5 \\ -6 \end{bmatrix}$
 $y_5^t = \begin{bmatrix} -1 \\ -3 \end{bmatrix} = \begin{bmatrix} -1 \\ -3 \end{bmatrix} = \begin{bmatrix} -1 \\ -5 \end{bmatrix} = \begin{bmatrix} -1 \\ -5 \\ -6 \end{bmatrix}$
 $y_5^t = \begin{bmatrix} -1 \\ -3 \end{bmatrix} = \begin{bmatrix} -1 \\ -3 \end{bmatrix} = \begin{bmatrix} -1 \\ -5 \end{bmatrix} = \begin{bmatrix} -1 \\$

LDF: Nonseparable Example

$$a^{(4)} = \begin{bmatrix} 0 \ 1 - 4 \end{bmatrix} \quad a^{(k+1)} = a^{(k)} + y_M$$

 $y_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \quad y_2 = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix} \quad y_3 = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} \quad y_4 = \begin{bmatrix} -1 \\ -1 \\ -3 \end{bmatrix} \quad y_5 = \begin{bmatrix} -1 \\ -5 \\ -6 \end{bmatrix}$
 $y_5 = \begin{bmatrix} -1 \\ -5 \\ -6 \end{bmatrix}$
 $y_4^t = a^{(3)} = \begin{bmatrix} 1 \ 4 \ 3 \end{bmatrix}^* \begin{bmatrix} 1 \ 2 \ -1 \end{bmatrix}^t = 6 > 0$
 $y_4^t = a^{(3)} = \begin{bmatrix} -1 \ -1 \ -3 \end{bmatrix}^* \begin{bmatrix} 1 \ 2 \ -1 \end{bmatrix}^t = 0$
 $a^{(4)} = a^{(3)} + y_M = \begin{bmatrix} 1 \ 2 \ -1 \end{bmatrix}^t = 0$

....

- we can continue this forever
 - there is no solution vector a satisfying for all i

$$a^{t}y_{i} = \sum_{k=0}^{5} a_{k}y_{i}^{(k)} > 0$$

- need to stop but at a good point:
- solutions at iterations 900 through 915.
 Some are good some are not.
- How do we stop at a good solution?

LDF: Convergence of Perceptron rules

- If classes are linearly separable, and use fixed learning rate, that is for some constant **c**, $\eta^{(k)} = c$
 - both single sample and batch perceptron rules converge to a correct solution (could be any a in the solution space)
- If classes are not linearly separable:
 - algorithm does not stop, it keeps looking for solution which does not exist
 - by choosing appropriate learning rate, can always ensure convergence: $\eta^{(k)} \rightarrow 0$ as $k \rightarrow \infty$
 - for example inverse linear learning rate: $\eta^{(k)} = \frac{\eta^{(1)}}{k}$
 - for inverse linear learning rate convergence in the linearly separable case can also be proven
 - no guarantee that we stopped at a good point, but is popular in practice.

LDF: Perceptron Rule and Gradient decent

- Linearly separable data
 - perceptron rule with gradient decent works well
- Linearly non-separable data
 - need to stop perceptron rule algorithm at a good point, this maybe tricky

Batch Rule

 Smoother gradient because all samples are used

Single Sample Rule

- easier to analyze
- Concentrates more than necessary on any isolated "noisy" training examples