
Linear Discriminant Functions



Linear discriminant  functions on Road Map

� No probability distribution (no shape or 
parameters are known)

� Labeled data
� The shape of discriminant functions is 

known

a lot is 
known

salmon salmonsalmonbass

linear 
discriminant

little is 
known

discriminant
function

length
� Need to estimate parameters of the 

discriminant function (parameters of the 
line in case of linear discriminant)



Linear Discriminant  Functions: Basic Idea

length

bad boundary good boundary
length

� Have samples from 2 classes x1, x2 ,…, xn

� Assume 2 classes can be separated by a linear 
boundary l(θθθθ) with some unknown parameters θθθθ

� Fit the “best” boundary to data by optimizing over 
parameters θ. θ. θ. θ. How????

� Minimize a criterion function. 
� Obvious choice: Minimize classification error on training 

data. (Does not guarantee small test error)

bad boundary



Assume the shape of density 
for classes is known p1(x|θθθθ1111), 
p2(x|θθθθ2222),…

Parametric Methods vs. Discriminant Functions

Estimate θθθθ1111, θθθθ2222,… from data 

Use a Bayesian classifier to 

Assume discriminant 
functions are of known shape 
l(θθθθ1111), l(θθθθ2222), with parameters 
θθθθ1111, θθθθ2222,… 

Estimate θθθθ1111, θθθθ2222,… from data 

Use discriminant functions for 

c1

c2
c3

Use a Bayesian classifier to 
find decision regions 

Use discriminant functions for 
classification 

c1

c2c3



Parametric Methods vs. Discriminant Functions

� In theory, Bayesian classifier minimizes the risk, 
but in pracrice:
� do not have confidence in assumed model shapes;
� do not really need the actual density functions in the 

end.

� Estimating accurate density functions is much � Estimating accurate density functions is much 
harder than estimating accurate discriminant
functions
� Some argue that estimating densities should be 

skipped. Why solve a harder problem than needed ?



LDF: Introduction

� Discriminant functions can be more general than 
linear.

� For now, we will study linear discriminant functions
� Simple model (should try simpler models first)
� Analytically tractable.

� Linear Discriminant functions are optimal for � Linear Discriminant functions are optimal for 
Gaussian distributions with equal covariance.

� May not be optimal for other data distributions, but 
they are very simple to use.

� Knowledge of class densities is not required when 
using linear discriminant functions.
� we can say that this  is a non-parametric approach
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LDF: 2 Classes

� A discriminant function is linear if it can be written as
g(x) = w tx + w0

� w is called the weight vector and w0 called bias or threshold

x(2) (((( ))))
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g(x) < 0
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g(x) > 0

x(1)

decision boundary g (x) = 0
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LDF: 2 Classes

� Decision boundary g(x) = wtx + w0=0 is a hyperplane

� A hyperplane is
� a point in 1D

� a line in 2D� a line in 2D

� a plane in 3D



LDF: 2 Classes
g(x) = wtx + w0

x(2)

x

� w determines orientation of the decision hyperplane
� w0 determines location of the decision surface

x(1)

g(x) > 0

g(x) < 0 g(x) = 0
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LDF:  Many Classes

� Suppose we have m classes
� Define m linear discriminant functions 

� Given x, assign class c i if 

ij         )()( ≠≠≠≠∀∀∀∀≥≥≥≥ xgxg ji ij         )()( ≠≠≠≠∀∀∀∀≥≥≥≥ xgxg ji

� Such classifier is called a  linear machine

� A linear machine divides the feature space into c 
decision regions, with g i(x) being the largest 
discriminant if x is in the region Ri



LDF:  Many Classes



� For a two contiguous regions Ri and Rj; the 
boundary that separates them is a portion of 
hyperplane Hij defined by:

LDF: Many Classes
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� Thus w i – w j is normal to Hij 

� And distance from x to Hij  is given by



� Decision regions for a linear machine are convex

LDF: Many Classes

y
z
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Ri

� In particular, decision regions must be spatially 
contiguous

Ri

Rj is a valid
decision region

Ri

Rj is not a valid
decision region 

Ri
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LDF: Many Classes

� Thus  applicability of linear machine is mostly limited 
to unimodal conditional densities p(x|θθθθ)
� even though we did not assume any parametric models

� Example:
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LDF: Many Classes

� Thus  applicability of linear machine to mostly limited 
to unimodal conditional densities p(x|θθθθ)
� even though we did not assume any parametric models

� Example:

� need non-contiguous decision regions
� thus linear machine will fail



LDF: Augmented feature vector

0)( wxwxg t ++++====� Linear discriminant function:

� Can rewrite it: [[[[ ]]]] (((( ))))ygyaxwwxg tt ========



==== 1)( 0

new weight 
vector a

new feature 
vector y

� y is called the augmented feature vector

� Added a dummy dimension to get a completely � Added a dummy dimension to get a completely 
equivalent new homogeneous problem

0)( wxwxg t ++++====
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LDF: Augmented feature vector
� Feature augmenting is done for simpler notation

� From now on we always assume that we have 
augmented feature vectors
� Given samples x1,…, xn convert them to 

augmented samples y1,…, yn by adding                  
a new dimension of value 1 
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LDF: Training Error

� Samples y1,…, yn  some  in class 1, some in class 2

� For the rest of the lecture, assume we have 2 classes

� Use these samples to determine weights  a in the 
discriminant function yayg t====)(

� What should be our criterion for determining a?
� For now, suppose we want to minimize the training error 

(that is the  number of misclassifed samples y1,…, yn )

� Recall that 10)( cclassifiedyyg ii ⇒⇒⇒⇒>>>>

20)( cclassifiedyyg ii ⇒⇒⇒⇒<<<<

� Thus training error is 0 if 
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LDF: Problem “Normalization”

� Thus training error is 0 if 

� This suggest problem “normalization”:
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� Equivalently,  training error is 0 if 

(((( ))))
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∈∈∈∈∀∀∀∀>>>>
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� This suggest problem “normalization”:
1. Replace all examples from class c2 by their negative 

2cyyy iii ∈∈∈∈∀∀∀∀−−−−→→→→

2. Seek weight vector a s.t. 

ii
t yya ∀∀∀∀>>>> 0

� If such a exists, it is called a separating or solution vector
� Original samples x1,…, xn can indeed be separated by a 

line then



LDF: Problem “Normalization”

(((( ))))2y

before normalization after “normalization”

(((( ))))2y

)1(y )1(y

Seek a hyperplane that 
separates patterns from 
different categories

Seek hyperplane that 
puts normalized
patterns on the same 
(positive) side 



LDF:  Solution Region

� Find weight vector a s.t. for all samples y1,…, yn 

0
0

)( >>>>==== ∑∑∑∑
====
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� In general, there are many such solutions a

a

a

best a

)1(y



LDF:  Solution Region

� Solution region for a: set of all possible solutions
� defined in terms of normal a to the separating hyperplane

(((( ))))2y

)1(y

a



Optimization
� Need to minimize a function of many variables

(((( )))) (((( ))))dxxJxJ ,...,1====

� We know how to minimize J(x)
� Take partial derivatives and set them to zero
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====∇∇∇∇====








∂∂∂∂
∂∂∂∂

xJ

xJ
x

M

gradient

(((( ))))
(((( )))) 0====∇∇∇∇====









∂∂∂∂
∂∂∂∂

xJ

xJ
x d

M

� However solving  analytically is not always easy
� Would you like to solve this system of nonlinear equations?
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� Sometimes it is not even possible to write down an analytical 
expression for the derivative, we will see an example later today



Optimization: Gradient Descent
� Gradient              points in direction of steepest increase of  

J(x), and                   in direction of  steepest decrease
(((( ))))xJ∇∇∇∇

(((( ))))a
dx
dJ−−−−J(x)

one dimension two dimensions

(((( ))))aJ∇∇∇∇−−−−

(((( ))))xJ∇∇∇∇−−−−

a x
a

a

(((( ))))a
dx
dJ−−−−

a

(((( ))))a
dx
dJ−−−−



Optimization: Gradient Descent

x((((1)

J(x)

x

x((((2)

s((((1)

(((( ))))(((( ))))2xJ∇∇∇∇−−−−

(((( )))))1(xJ∇∇∇∇−−−−

x((((3) x((((k)

(((( ))))(((( )))) 0xJ k ====∇∇∇∇s ((((2)

Gradient Descent for minimizing any function J(x)
set k = 1  and x (1) to some initial guess for the weight vector

while (((( )))) (((( ))))(((( )))) εεεεηηηη >>>>∇∇∇∇ kk xJ

x(k+1)= x(k) – η η η η (k)                                                        (update rule )(((( ))))xJ∇∇∇∇

choose learning rate ηηηη(k)

k = k + 1



Optimization: Gradient Descent

� Gradient descent is guaranteed to find only a local 
minimum
J(x)

x

global minimum

� Nevertheless gradient descent is very popular 
because it is simple and applicable to any function

x((((1) x((((2) x((((3) x((((k)



Optimization: Gradient Descent
� Main issue: how to set parameter ηηηη (learning rate )

� If ηηηη is too small, need too many iterations

J(x)

x

� If ηηηη is too large may 
overshoot the minimum 
and possibly never find it  
(if we keep overshooting)

J(x)

x
x((((1) x((((2)



LDF:  Criterion Function

� Find weight vector a s.t. for all samples y1,…, yn 

0
0

)( >>>>==== ∑∑∑∑
====
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� Need criterion function J(a) which is minimized when 
a is a solution vector

� Let YM be the set of examples misclassified by a
(((( )))) {{{{ }}}}0ya.t.sysampleaY t <<<<====

� First natural choice: number of misclassified examples
(((( )))) (((( ))))aYaJ M====

(((( )))) {{{{ }}}}0ya.t.sysampleaY i
t

iM <<<<====

� piecewise constant, gradient 
descent is useless

a

J(a)



LDF:  Perceptron Criterion Function

� Better choice: criterion function
(((( )))) (((( ))))∑∑∑∑

∈∈∈∈

−−−−====
MYy

t
p yaaJ

� If y is misclassified, 0≤≤≤≤yat

� Thus (((( )))) 0≥≥≥≥aJ p

a

J(a)
� Jp(a) is piecewise linear 

and thus suitable for 
gradient descent



LDF:  Perceptron Batch Rule

� Gradient of Jp(a) is (((( )))) (((( ))))∑∑∑∑
∈∈∈∈

−−−−====∇∇∇∇
MYy

p yaJ

� YM are samples misclassified by a(k)

� It is not possible to solve                      analytically 
because of  YM

(((( )))) 0aJ p ====∇∇∇∇

(((( )))) (((( ))))∑∑∑∑
∈∈∈∈

−−−−====
MYy

t
p yaaJ

�� for Jp(a) is:
(((( )))) (((( )))) (((( )))) ∑∑∑∑

∈∈∈∈

++++ ++++====
MYy

kkk yaa ηηηη1

� It is called rule because  it is based on all 
misclassified examples



LDF:  Perceptron Single Sample Rule

� Thus for Jp(a) 
is: (((( )))) (((( )))) (((( ))))

M
kkk yaa ηηηη++++====++++1

� note that yM is one sample misclassified by a(k)

� Geometric Interpretation:

� must have a consistent way of visiting samples

� Geometric Interpretation:
� yM misclassified by a(k)

(((( ))))(((( )))) 0≤≤≤≤M

tk ya yM
� yM is on the wrong side of 

decision hyperplane
� adding ηηηηyM to a moves new 

decision hyperplane in the right 
direction with respect to yM

ηηηηyM



LDF:  Perceptron Single Sample Rule
(((( )))) (((( )))) (((( ))))

M
kkk yaa ηηηη++++====++++1

yM yM

yk

η η η η is too large, previously 
correctly classified sample  
yk  is now misclassified

yk

η η η η is too small, yM  is still 
misclassified



LDF:  Perceptron  Example

features grade
name good 

attendance?
tall? sleeps in 

class?
chews 
gum?

Jane yes (1) yes (1) no (-1) no (-1) A 

Steve yes (1) yes (1) yes (1) yes (1) F

Mary no (-1) no (-1) no (-1) yes (1) F

Peter yes (1) no (-1) no (-1) yes (1) A

� class 1 : students who get grade A
� class 2 : students who get grade F



LDF Example: Augment feature vector

features grade
name extra good 

attendance?
tall? sleeps in 

class?
chews 
gum?

Jane 1 yes (1) yes (1) no (-1) no (-1) A 

Steve 1 yes (1) yes (1) yes (1) yes (1) F

Mary 1 no (-1) no (-1) no (-1) yes (1) FMary 1 no (-1) no (-1) no (-1) yes (1) F

Peter 1 yes (1) no (-1) no (-1) yes (1) A

� convert samples x1,…, xn to augmented samples 
y1,…, yn by adding  a new dimension of value 1 



LDF:  Perform “Normalization”

features grade
name extra good 

attendance?
tall? sleeps in 

class?
chews 
gum?

Jane 1 yes (1) yes (1) no (-1) no (-1) A 

Steve -1 yes (-1) yes (-1) yes (-1) yes (-1) F

Mary -1 no (1) no (1) no (1) yes (-1) F

� Replace all examples from class c2 by their negative 

2cyyy iii ∈∈∈∈∀∀∀∀−−−−→→→→

� Seek weight vector a s.t. ii
t yya ∀∀∀∀>>>> 0

Mary -1 no (1) no (1) no (1) yes (-1) F

Peter 1 yes (1) no (-1) no (-1) yes (1) A



LDF:  Use Single Sample Rule

features grade
name extra good 

attendance?
tall? sleeps in 

class?
chews 
gum?

Jane 1 yes (1) yes (1) no (-1) no (-1) A 

Steve -1 yes (-1) yes (-1) yes (-1) yes (-1) F

Mary -1 no (1) no (1) no (1) yes (-1) F

� Sample is misclassified if 0
4

0

)( <<<<==== ∑∑∑∑
====k

k
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� gradient descent  single sample rule: (((( )))) (((( )))) (((( ))))
M

kk1k yaa ηηηη++++====++++

(((( )))) (((( ))))
M

kk yaa ++++====++++1� Set fixed learning rate to ηηηη(k)= 1:

Peter 1 yes (1) no (-1) no (-1) yes (1) A



LDF: Gradient decent  Example

� set equal initial weights a(1)=[0.25, 0.25, 0.25, 0.25]

name aty misclassified?

Jane 0.25*1+0.25*1+0.25*1+0.25*(-1)+0.25*(-1) >0 no

� visit all samples sequentially, modifying the weights 
for after finding a misclassified example

Jane 0.25*1+0.25*1+0.25*1+0.25*(-1)+0.25*(-1) >0 no

Steve 0.25*(-1)+0.25*(-1)+0.25*(-1)+0.25*(-1)+0.25*(-1)<0 yes

� new weights
(((( )))) (((( )))) [[[[ ]]]]++++====++++==== 25.025.025.025.025.012

Myaa

[[[[ ]]]] ====−−−−−−−−−−−−−−−−−−−−++++ 11111

[[[[ ]]]]75.075.075.075.075.0 −−−−−−−−−−−−−−−−−−−−====



LDF:  Gradient decent  Example

name aty misclassified?

Mary -0.75*(-1)-0.75*1 -0.75 *1 -0.75 *1 -0.75*(-1) <0 yes

(((( )))) [[[[ ]]]]75.075.075.075.075.02 −−−−−−−−−−−−−−−−−−−−====a

� new weights
(((( )))) (((( )))) [[[[ ]]]]++++−−−−−−−−−−−−−−−−−−−−====++++==== 75.075.075.075.075.023

Myaa

[[[[ ]]]] ====−−−−−−−−++++ 11111

[[[[ ]]]]75.125.025.025.075.1 −−−−−−−−====



LDF:  Gradient decent Example

name aty misclassified?

Peter -1.75 *1 +0.25* 1+0.25* (-1) +0.25 *(-1)-1.75*1 <0 yes

(((( )))) [[[[ ]]]]75.125.025.025.075.13 −−−−−−−−====a

� new weights
(((( )))) (((( )))) [[[[ ]]]]++++−−−−−−−−====++++==== 75.125.025.025.075.134

Myaa

[[[[ ]]]] ====−−−−−−−−++++ 11111

[[[[ ]]]]75.075.075.025.175.0 −−−−−−−−−−−−−−−−====



LDF:  Gradient decent Example

name aty misclassified?

Jane -0.75 *1 +1.25*1  -0.75*1 -0.75 *(-1) -0.75 *(-1)>0 no

Steve -0.75*(-1)+1.25*(-1) -0.75*(-1) -0.75*(-1)-0.75*(-1)>0 no

Mary -0.75 *(-1)+1.25*1-0.75*1 -0.75 *1 –0.75*(-1) >0 no

Peter -0.75 *1+ 1.25*1-0.75* (-1)-0.75* (-1) -0.75 *1 >0 no

(((( )))) [[[[ ]]]]75.075.075.025.175.04 −−−−−−−−−−−−−−−−====a

Peter -0.75 *1+ 1.25*1-0.75* (-1)-0.75* (-1) -0.75 *1 >0 no

� Thus the discriminant function is 
(((( )))) (((( )))) (((( )))) (((( )))) (((( )))) (((( ))))43210 *75.0*75.0*75.0*25.1*75.0 yyyyyyg −−−−−−−−−−−−++++−−−−====

� Converting back to the original features x: 
(((( )))) (((( )))) (((( )))) (((( )))) (((( )))) 75.0*75.0*75.0*75.0*25.1 4321 −−−−−−−−−−−−−−−−==== xxxxxg



LDF:  Gradient decent Example

� Converting back to the original features x: 
(((( )))) (((( )))) (((( )))) (((( )))) Agradexxxx ⇒⇒⇒⇒>>>>−−−−−−−−−−−− 75.0*75.0*75.0*75.0*25.1 4321

(((( )))) (((( )))) (((( )))) (((( )))) Fgradexxxx ⇒⇒⇒⇒<<<<−−−−−−−−−−−− 75.0*75.0*75.0*75.0*25.1 4321

good 
attendance

tall sleeps in class chews gum

� This is just one possible solution vector � This is just one possible solution vector 

� If we started with weights a(1)=[0,0.5, 0.5, 0, 0], 
solution would be [-1,1.5, -0.5, -1, -1]

� In this solution, being tall is the least important feature

(((( )))) (((( )))) (((( )))) (((( )))) Agrade1xxx*5.0x*5.1 4321 ⇒⇒⇒⇒>>>>−−−−−−−−−−−−
(((( )))) (((( )))) (((( )))) (((( )))) Fgrade1xxx*5.0x*5.1 4321 ⇒⇒⇒⇒<<<<−−−−−−−−−−−−



LDF:  Nonseparable Example
� Suppose we have 2 features 

and samples are: 
� Class 1:  [2,1], [4,3], [3,5]
� Class 2: [1,3] and [5,6]

� These samples are not 
separable by a line

� Still would like to get approximate separation by a � Still would like to get approximate separation by a 
line, good choice is shown in green
� some samples may be “noisy”, and it’s ok if they are on 

the wrong side of the line
� Get  y1, y2 , y3 , y4 by adding extra feature and 

“normalizing” 
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LDF:  Nonseparable Example

� Let’s apply Perceptron single 
sample algorithm 

� initial equal weights (((( )))) [[[[ ]]]]111a 1 ====

� fixed learning rate  ηηηη = 1
� this is  line  x(1)+x(2)+1=0

(((( )))) (((( ))))
M

kk yaa ++++====++++1
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� y t
1a(1) = [1 1 1]*[1 2 1]t > 0     b

� y t
2a(1) = [1 1 1]*[1 4 3]t > 0     b

� y t
3a(1) = [1 1 1]*[1 3 5]t > 0     b

Myaa ++++====



LDF:  Nonseparable Example
(((( )))) [[[[ ]]]]111a 1 ====
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� y t
4a(1)=[1 1 1]*[-1 -1 -3]t = -5< 0

(((( )))) (((( ))))
M

kk yaa ++++====++++1

(((( )))) (((( )))) [[[[ ]]]] [[[[ ]]]] [[[[ ]]]](((( )))) (((( )))) [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]200311111yaa M
12 −−−−====−−−−−−−−−−−−++++====++++====

� y t
5 a(2)=[0 0 -2]*[-1 -5 -6]t = 12 > 0     b

� y t
1 a(2)=[0 0 -2]*[1 2 1]t  < 0

(((( )))) (((( )))) [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]121121200yaa M
23 −−−−====++++−−−−====++++====



LDF:  Nonseparable Example
(((( )))) [[[[ ]]]]121a 3 −−−−====
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y 4

(((( )))) (((( ))))
M

kk yaa ++++====++++1

� y t
2 a(3)=[1 4 3]*[1 2 -1]t =6 > 0 b

(((( )))) (((( )))) [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]410311121yaa M
34 −−−−====−−−−−−−−−−−−++++−−−−====++++====

� y t
3 a(3)=[1 3 5]*[1 2 -1]t > 0 b

� y t
4 a(3)=[-1 -1 -3]*[1 2 -1]t = 0



LDF:  Nonseparable Example
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� y t
2 a(3)=[1 4 3]*[1 2 -1]t =6 > 0 b

(((( )))) (((( )))) [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]410311121yaa M
34 −−−−====−−−−−−−−−−−−++++−−−−====++++====

� y t
3 a(3)=[1 3 5]*[1 2 -1]t > 0 b

� y t
4 a(3)=[-1 -1 -3]*[1 2 -1]t = 0



LDF:  Nonseparable Example

� we can continue this forever
� there is no solution vector a satisfying for all i

0yaya
5

0k

)k(
iki

t >>>>==== ∑∑∑∑
====

� need to stop but at a good point:

� solutions at iterations 
900 through 915.  
Some are good 
some are not.

� How do we stop at a 
good solution?



LDF:  Convergence of Perceptron rules
� If classes are linearly separable, and use fixed 

learning rate, that is for some constant c,  ηηηη((((k) ) ) ) =c  
� both single sample and batch perceptron rules converge to 

a correct solution (could be any a in the solution space)
� If classes are not linearly separable:

� algorithm does not stop, it keeps looking for solution which 
does not exist

� by choosing appropriate learning rate, can always ensure 
convergence: (((( )))) ∞∞∞∞→→→→→→→→ kask 0ηηηη

� for example inverse linear learning rate: (((( ))))
(((( ))))

k
k

1ηηηη
ηηηη ====

� for inverse linear learning rate convergence in the linearly 
separable case can also be proven 

� no guarantee that we stopped at a good point, but is popular 
in practice.



LDF:  Perceptron Rule and Gradient decent

� Linearly separable data
� perceptron rule with gradient decent works well

� Linearly non-separable data
� need to stop perceptron rule algorithm at a good point, this 

maybe tricky

Single Sample RuleBatch Rule

� Smoother gradient 
because all samples are 
used 

Single Sample RuleBatch Rule

� easier to analyze

� Concentrates more than 
necessary on any isolated 
“noisy” training examples


