L iInear Discriminant Functions

Linear discriminant functions on Road Map

= No probabillity distribution (no shape or a lot is
parameters are known) known

= Labeled data gz, g e
= The shape of discriminant functions Is

known
v, ,/..\ linear #
3 discriminant
: 0
= o function
: length
= Need to estimate parameters of the P
discriminant function (parameters of the ot

line in case of linear discriminant)

Linear Discriminant Functions: Basic Idea

lightness

syowljes

lightness

o ' length

bad boundary

Have samples from 2 classes x4, X, ,..., X,

Assume 2 classes can be separated by a linear
boundary (8 with some unknown parameters &

Fit the “best” boundary to data by optimizing over
parameters 8 How?

Minimize a criterion function.

Obvious choice: Minimize classification error on training
data. (Does not guarantee small test error)

Parametric Methods VS.

Discriminant Functions

Assume the shape of density
for classes is known p,(x|8)),

P5(X]8,),...
Estimate 6,, 8,... from data

Use a Bayesian classifier to
find decision regions

Assume discriminant
functions are of known shape
1(8), 1(8,), with parameters

6, 6,...
Estimate 6,, 8,... from data

Use discriminant functions for
classification

Parametric Methods vs. Discriminant Functions

= |n theory, Bayesian classifier minimizes the risk,
but In pracrice:
= do not have confidence in assumed model shapes;
= do not really need the actual density functions in the

end.

= Estimating accurate density functions is much
harder than estimating accurate discriminant
functions

= Some argue that estimating densities should be
skipped. Why solve a harder problem than needed ?

LDF: Introduction

Discriminant functions can be more general than
linear.

For now, we will study linear discriminant functions
= Simple model (should try simpler models first)

= Analytically tractable.

Linear Discriminant functions are optimal for
Gaussian distributions with equal covariance.

May not be optimal for other data distributions, but
they are very simple to use.

Knowledge of class densities Is not required when
using linear discriminant functions.

= we can say that this Is a non-parametric approach

LDF: 2 Classes

= A discriminant function is linear if it can be written as
g(x) = wix +wy
= w is called the weight vector and w,, called bias or threshold

g
g
g

|

X
X
X

|

>0 =>Xx eclass 1
<0 = x eclass 2
=0 = either class

decision boundary g (x) =0

LDF: 2 Classes

= Decision boundary g(x) = w'x + w,=0 is a hyperplane

= A hyperplane Is
apointin 1D —eesee0-0ee—

=alinein 2D ootloee
= a plane in 3D

&

LDF: 2 Classes

g(x) = WX + wq

= W determines orientation of the decision hyperplane
= W, determines location of the decision surface

LDF. Many Classes

Suppose we have m classes
Define m linear discriminant functions

g;(X)=W X +W, I=1,..,m

Given x, assign class ¢; if
gi(x)29;(x) Vj#i

Such classifier is called a linear machine

A linear machine divides the feature space Iinto c
decision regions, with g;(x) being the largest
discriminant if x is in the region R

LDF. Many Classes

LDF:. Many Classes

= For a two contiguous regions R and R; the

boundary that separates them is a portion of
hyperplane H; defined by:

g;(X)=0;(X) W X+W,=WX+W

& (Wi —Wj)tX +(wio —wjo)=o

= Thus w; — w; Is normal to H;
= And distance from x to Hj is given by

gi(x)_gj(x)

i —w|

d(x,H;)=

LDF:. Many Classes

= Decision regions for a linear machine are convex

y,zeR = ay +(1-a)zeR, (y)
Z

R

vizi gily)2g,(y) and g,(z)29,(z) =
oVjizi gley+@1-a)z)2g.(ay +(1-a)z)

= In particular, decision regions must be spatially
contiguous

<.

<.

<.

R; is a valid R is not a valid
decision region decision region

LDF:. Many Classes

= Thus applicablility of linear machine is mostly limited
to unimodal conditional densities p(x|6
= even though we did not assume any parametric models

= Example:

LDF:. Many Classes

= Thus applicablility of linear machine to mostly limited
to unimodal conditional densities p(x|6
= even though we did not assume any parametric models

= Example:

LDF:. Many Classes

= Thus applicablility of linear machine to mostly limited
to unimodal conditional densities p(x|6
= even though we did not assume any parametric models

= Example:

LDF:. Many Classes

= Thus applicablility of linear machine to mostly limited
to unimodal conditional densities p(x|6
= even though we did not assume any parametric models

= Example:

= need non-contiguous decision regions
= thus linear machine will fall

LDF: Augmented feature vector

= Linear discriminant function: g(x)=w"x +w,

= Canrewrite it: g(x)= [WO Wt] [ﬂ =a'y =g(y)

Y \
new weight new feature
vector a vectory

* y Is called the augmented feature vector

= Added a dummy dimension to get a completely
equivalent new homogeneous problem

old problem new problem
t
g(x)=w'x +W, g(y)=a'y
_ - r 1]
X4 X,

LDF: Augmented feature vector

Feature augmenting is done for simpler notation

= From now on we always assume that we have

augmented feature vectors
= Given samples X4,..., X, convert them to
augmented samples y,,..., ¥, by adding Yi =
a new dimension of value 1

y (Z)ﬂk

gly)=0

LDF: Training Error

= For the rest of the lecture, assume we have 2 classes
= Samplesy,,..., Yy, some In class 1, some in class 2

= Use these samples to determine weights a In the
discriminant function g(y)=a'y

= \What should be our criterion for determining a?

= For now, suppose we want to minimize the training error
(that is the number of misclassifed samples y,,..., Yy,)

g(y,)>0=y. classified c,

= Recall that .
g(y,)<0=y. classified c,
g(y;)>0 Vy, ec,

= Thus training error is 0 If
J {g(yi)<o vy, €C,

LDF: Problem “Normalization”

a'y, >0 Vy. ec,

= Thus training error is O If { t
ay. <0 Vy. ec,

= Equivalently, training erroris O If

a'y, >0 Vy. ec,
a'(-y,)>0 Vy, ec,

= This suggest problem “normalization”:
1. Replace all examples from class c, by their negative

Yi 7Y, vy, €cC,

2. Seek weight vector a s.t.
a'ly, >0 Vy.

= |f such a exists, It is called a separating or solution vector
= Original samples x4,..., X, can indeed be separated by a
line then

LDF: Problem “Normalization”

before normalization

y (2)a

Seek a hyperplane that

separates patterns from

different categories

after “normalization”

y (2)?

Seek hyperplane that
<— puts normalized
patterns on the same
(positive) side

LDF: Solution Region

= Find weight vector a s(.jt. for all samples y,,...

a'y; =) ay;’ >0
k=0

y (2) 4

= In general, there are many such solutions a

 Yn

LDF: Solution Region

= Solution region for a: set of all possible solutions
= defined in terms of normal a to the separating hyperplane

Optimization

= Need to minimize a function of many variables
I(x)=J(x Xy)
= We know how to minimize J(X)
= Take partial derivatives and set them to zero

0

OX 4

5

——J(x)

OX 4

J(x)

= However solving analytica
= Would you like to solve this system of nonlinear equations?

. 2
sin(x? +x3)+eX =0
2
cos (x? +x3)+log (xf)x“ =0

gradient

=VvJ(x)=0

ly IS not always easy

= Sometimes it is not even possible to write down an analytical
expression for the derivative, we will see an example later today

Optimization: Gradient Descent

= Gradient vJ(x) points in direction of steepest increase of
J(x),and -VvJ(x) indirection of steepest decrease

one dimension

J(x) |

two dimensions

400

Optimization: Gradient Descent

J(X) 1 -vI(x)

s 5@
> e ¥ °
x(1) x@) %3 ¥ (K)

Gradient Descent for minimizing any function J(x)

set k =1 and x to some initial guess for the weight vector
while 7| va(x©)|> ¢
choose learning rate n®

Xt = x0 — n® g3(x) (update rule)
k=k+1

Optimization: Gradient Descent

= Gradient descent Is guaranteed to find only a local
minimum

J(X) ¢
\ +/v(

X1 %@ %) ¥ (K) global minimum

= Nevertheless gradient descent is very popular
because It Is simple and applicable to any function

Optimization: Gradient Descent

= Main issue: how to set parameter 77 (learning rate)
= |If nis too small, need too many iterations

J(X)|

= If pis too large may
overshoot the minimum
and possibly never find it

(if we keep overshooting) - >e
x (1) X (2)

LDF: Criterion Function

= Find weight vector a :;:.t. for all samplesy,,..., vy,
atyi = Zakyi(k) >0
k=0

= Need criterion function J(a) which is minimized when
a Is a solution vector

= LetY,, be the set of examples misclassified by a
Y, (a)={sample y, st. a'y, <0 |
= First natural choice: number of misclassified examples

J(a)=|vy(a)

tJ(a)

= piecewise constant, gradient :
descent is useless o

LDF: Perceptron Criterion Function

= Better choice: Perceptron criterion function

‘Jlo(a)= Z(_aty)

yeYy

= |fy is misclassified, a'y <0
= Thus J,(a)=0

J(@) 1
= J,(a) Is piecewise linear
and thus suitable for
gradient descent

LDF:. Perceptron Batch Rule

‘Jp(a): Z(_aty)

yEYy

= Gradient of J () is vJ,(a)= 3 (-y)

yeYy
= Y,, are samples misclassified by a®

= Itis not possible to solve VJ (a)=0 analytically
because of Y,,

= Gradient decent batch update rule for J(a) Is:
(k+1 + n (k) Zy

y€eYy
= |t s called batch rule because it is based on all
misclassified examples

LDF: Perceptron Single Sample Rule

= Thus gradient decent single sample rule for J,(a)
IS a(k+1) () +7 k)yM

= note that y,, is one sample misclassified by a®
= must have a consistent way of visiting samples

= Geometric Interpretation:
= yy Mmisclassified by a®

@)y, <o

=y, IS onthe wrong side of
decision hyperplane

= adding ny,, to a moves new
decision hyperplane in the right
direction with respect to y,

LDF: Perceptron Single Sample Rule

(k+1)

a

n is too large, previously nis too small, y,, is still
correctly classified sample misclassified
Y IS now misclassified

LDF: Perceptron Example

features grade
name good tall? sleeps in chews
attendance? class? gum?
Jane yes(l) |yes(1)| no(-1) | no(-1) A
Steve yes(l) |yes(1l)| yes(1l) |yes (1) F
Mary no (-1) no(-1) | no(-1) |yes (1) F
Peter yes (1) no(-1) | no(-1) |yes (1) A

= class 1 : students who get grade A

= class 2 : students who get grade F

LDF Example: Augment feature vector

features grade
name |extra good tall? sleeps in chews
attendance? class? gum?
Jane 1 yes (1) yes (1) | no(-1) | no (-1) A
Steve | 1 yes (1) yes (1) | yes (1) | yes (1) F
Mary 1 no (-1) no(-1) | no(-1) | yes (1) F
Peter | 1 yes (1) no(-1) | no(-1) | yes (1) A

= convert samples xy4,..., X, to augmented samples
Yi,---» ¥, Dy @dding a new dimension of value 1

LDF: Perform “Normalization”

features grade
name |extra good tall? sleeps in chews
attendance? class? gum?
Jane 1 yes (1) yes (1) | no(-1) | no (-1) A
Steve | -1 yes (-1) yes (-1) | yes (-1) |yes (-1) F
Mary | -1 no (1) no (1) no (1) |yes (-1) F
Peter | 1 yes (1) no(-1) | no(-1) | yes (1) A

= Replace all examples from class c, by their negative
Yi =Y,

= Seek weight vector a s.t.

vy,

a'y,

|€C2

>0

vy,

LDF:. Use Single Sample Rule

features grade

name |extra good tall? sleeps in chews
attendance? class? gum?

Jane 1 yes (1) yes (1) | no(-1) | no (-1)

Steve | -1 yes (-1) yes (-1) | yes (-1) |yes (-1)

Mary | -1 no (1) no (1) no (1) |yes(-1)

> M| m| >

Peter | 1 yes (1) no(-1) | no(-1) | yes (1)

4
= Sample is misclassified if a'y, =) ay <0
k=0

= gradient descent single sample rule: a® =a® 4+ &y

= Set fixed learning rate to 7®=1: |a&V=ak) +y

LDF: Gradient decent Example

= set equal initial weights all)=[0.25, 0.25, 0.25, 0.25]

= visit all samples sequentially, modifying the weights
for after finding a misclassified example

name aty misclassified?
Jane 0.25*1+0.25*1+0.25*1+0.25*(-1)+0.25*%(-1) >0 no
Steve | 0.25%(-1)+0.25*(-1)+0.25*(-1)+0.25*(-1)+0.25*(-1)<0 yes

= new weights
a®=aW 4y, =[0.25 0.25 0.25 0.25 0.25]+
+-1 -1 -1 -1 -1]=
=[-0.75 -0.75 -0.75 -0.75 -0.75]

LDF:. Gradient decent Example

a® =[-0.75 —=0.75 —0.75 —0.75 —0.75]

name aty

misclassified?

Mary

-0.75*(-1)-0.75%1 -0.75 *1 -0.75 *1 -0.75*(-1) <0

yes

= new weights
a®=a®+y, =[-0.75 =0.75 —=0.75 —0.75 —0.75]+

+-1 1

11 -1]=

=[-1.75 0.25 0.25 0.25 -1.75]

LDF:. Gradient decent Example

a® =[-1.75 0.25 0.25 0.25 —1.75]

name aty misclassified?

Peter | -1.75*1 +0.25* 1+0.25* (-1) +0.25 *(-1)-1.75*1 <0 yes

= new weights
a®=a®+y, =[-1.75 0.25 0.25 0.25 —1.75]+
+1 1 -1 -1 1=

=[-0.75 1.25 -0.75 -0.75 -0.75]

LDF:. Gradient decent Example

a® =[-0.75 1.25 -0.75 -0.75 —0.75]

name aty misclassified?
Jane -0.75*1 +1.25*1 -0.75*1 -0.75 *(-1) -0.75 *(-1)>0 no
Steve | -0.75*(-1)+1.25*(-1) -0.75*(-1) -0.75*(-1)-0.75*(-1)>0 no
|\/|ary -0.75 *(-1)+1.25*1-0.75*1 -0.75 *1 —0.75*(-1) >0 no
Peter -0.75 *1+ 1.25*1-0.75* (-1)-0.75* (-1) -0.75 *1 >0 no

= Thus the discriminant function iIs
g(y)=-0.75*y @ +1.25*y®_0.75+y® _075*y®) _0.75*y®

= Converting back to the original features x:
g(x)=1.25*x®-0.75*x® -0.75*x® -0.75*x* - 0.75

LDF:. Gradient decent Example

= Converting back to the original features x:
1.25*x® _0.75*x® -0.75*x® ~0.75*x*¥ > 0.75 = grade A
1.25*x® _0.75*x® —0.75*x®) ~0.75*x*® < 0.75 = grade F

/ / \ \

good tall sleepsinclass chews gum
attendance

= This Is just one possible solution vector

= |f we started with weights al1)=[0,0.5, 0.5, 0, 0],

solution would be [-1,1.5, -0.5, -1, -1]
1.5*xW_05*x® _x® _x® 51— grade A
1.5*xM _05%x® _x® _x® <1 = grade F

= |n this solution, being tall is the least important feature

LDF: Nonseparable Example

= Suppose we have 2 features
and samples are:
= Class 1: [2,1], [4,3], [3,5]
= Class 2: [1,3] and [5,6]
= These samples are not
separable by a line

= Still would like to get approximate separation by a

line, good choice Is shown In green

= some samples may be “noisy”, and it's ok if they are on
the wrong side of the line

= Get y,,Y,,Y3,Ys by adding extra feature and

“‘normalizing” 4 1 1 1 _1
=2 =4 ;=3 =| - 5 =|—2
SRS IS HEREIRES

o \—L n W I ol ()]
. . . . ‘

[an]
—
v
[€%]
~
(2]

LDF: Nonseparable Example

= Let’s apply Perceptron single
sample algorithm

= initial equal weights a® =[1 1 1]
= thisis line xW+x®+1=0

= fixed learning rate n=1
P O IRV

2 E5/es ug oy i Bp
/Q

SHESHISEIREE

= ytaW=[111]*121
= ytaW=1[111]*14 3
= ytaW=[111]*[135

LDF: Nonseparable Example

_ ; ®
2@ — [1 1 1] qk+1) _ 5(k) +Yy 5 H
3131] v]
y1=|:%:| y2=|:g'_ y3—|:5:| y4—|:__3:| y5—|::6i| | . .
NP =
AN
= yLbal=[111]-1-1-3]'=-5<0 =7 a(2)
P “t‘;' 1 oW 3 4 5
a®=aWyy, =[111]+[-1-1-3]=[0 0 -2]

" y;a@=[00-2][-1-5-6]'=12>0 ¥

" y4,a@=[00-2]*1 21]' <0
a®=a® 4y, =[00-2]+[121]=[1 2 -1]

LDF: Nonseparable Example

a =12 -

o

-yt al®)=
-yt a®)=
- yt, al®)=

4@ _

(k+1)

1] :a(k)‘l'yM

] g f3] o[
Y3 = =|-1| v
3 3 5 y4 _3 5

14312 -1]'=6>0 ¥
135*[12-1]'>0 ¥

a

-1-1-312-1]'=0

a®+y, =12 -1]+[-1 -1 -3]=[0 1 - 4]

LDF: Nonseparable Example

a®=[01-4] a%Y=al)iy,

o

= yt2 a(3):
= yt3 a(3):

i efd] o] o[

14312 -1]'=6>0 ¥
135*[12-1]'>0 ¥

= yt4 a(3):

-1-1-312-1]'=0

‘0
‘0
*
‘0
*
>
14
¢ ¢
* \S
0‘ \‘0
oV

* z *
‘0‘
*
‘0
*

n

[l >

— <N - N [¥%] i (9] (o]

T g T T T T T T
*

‘ a(4

1
—

3 4

a®=al®l 4y =[12-1]+[-1 -1 -3]=[0 1 - 4]

5

LDF: Nonseparable Example

= we can continue this forever
= there is no solution vector a satisfying for all |

5
a'y; =) ay;’>0
k=0

= need to stop but at a good point:

6_

= solutions at iterations °
900 through 915.
Some are good
some are not.

good solution? Al

LDF: Convergence of Perceptron rules

= If classes are linearly separable, and use fixed
earning rate, that is for some constant c, n®/=c

* both single sample and batch perceptron rules converge to
a correct solution (could be any a in the solution space)

= If classes are not linearly separable:

= algorithm does not stop, it keeps looking for solution which
does not exist

= by choosing appropriate learning rate, can always ensure
convergence: 7%) >0 as k - «

) ,7(1)

K
= for inverse linear learning rate convergence in the linearly
separable case can also be proven

= no guarantee that we stopped at a good point, but is popular
In practice.

= for example inverse linear learning rate: 7

LDF: Perceptron Rule and Gradient decent

= Linearly separable data
= perceptron rule with gradient decent works well

= Linearly non-separable data
= need to stop perceptron rule algorithm at a good point, this

maybe tricky
Batch Rule Single Sample Rule
= Smoother gradient " easler to analyze
because all samples are
used = Concentrates more than

necessary on any isolated
“noisy” training examples

