
Linear Discriminant Functions

Linear discriminant functions on Road Map

� No probability distribution (no shape or
parameters are known)

� Labeled data
� The shape of discriminant functions is

known

a lot is
known

salmon salmonsalmonbass

linear
discriminant

little is
known

discriminant
function

length
� Need to estimate parameters of the

discriminant function (parameters of the
line in case of linear discriminant)

Linear Discriminant Functions: Basic Idea

length

bad boundary good boundary
length

� Have samples from 2 classes x1, x2 ,…, xn

� Assume 2 classes can be separated by a linear
boundary l(θθθθ) with some unknown parameters θθθθ

� Fit the “best” boundary to data by optimizing over
parameters θ. θ. θ. θ. How????

� Minimize a criterion function.
� Obvious choice: Minimize classification error on training

data. (Does not guarantee small test error)

bad boundary

Assume the shape of density
for classes is known p1(x|θθθθ1111),
p2(x|θθθθ2222),…

Parametric Methods vs. Discriminant Functions

Estimate θθθθ1111, θθθθ2222,… from data

Use a Bayesian classifier to

Assume discriminant
functions are of known shape
l(θθθθ1111), l(θθθθ2222), with parameters
θθθθ1111, θθθθ2222,…

Estimate θθθθ1111, θθθθ2222,… from data

Use discriminant functions for

c1

c2
c3

Use a Bayesian classifier to
find decision regions

Use discriminant functions for
classification

c1

c2c3

Parametric Methods vs. Discriminant Functions

� In theory, Bayesian classifier minimizes the risk,
but in pracrice:
� do not have confidence in assumed model shapes;
� do not really need the actual density functions in the

end.

� Estimating accurate density functions is much � Estimating accurate density functions is much
harder than estimating accurate discriminant
functions
� Some argue that estimating densities should be

skipped. Why solve a harder problem than needed ?

LDF: Introduction

� Discriminant functions can be more general than
linear.

� For now, we will study linear discriminant functions
� Simple model (should try simpler models first)
� Analytically tractable.

� Linear Discriminant functions are optimal for � Linear Discriminant functions are optimal for
Gaussian distributions with equal covariance.

� May not be optimal for other data distributions, but
they are very simple to use.

� Knowledge of class densities is not required when
using linear discriminant functions.
� we can say that this is a non-parametric approach

1ℜℜℜℜ

LDF: 2 Classes

� A discriminant function is linear if it can be written as
g(x) = w tx + w0

� w is called the weight vector and w0 called bias or threshold

x(2) (((())))
(((())))
(((()))) classeitherxg

classxxg
classxxg

⇒⇒⇒⇒====
∈∈∈∈⇒⇒⇒⇒<<<<
∈∈∈∈⇒⇒⇒⇒>>>>

0
20
10

g(x) < 0

2ℜℜℜℜ
g(x) > 0

x(1)

decision boundary g (x) = 0

(((()))) classeitherxg ⇒⇒⇒⇒==== 0

LDF: 2 Classes

� Decision boundary g(x) = wtx + w0=0 is a hyperplane

� A hyperplane is
� a point in 1D

� a line in 2D� a line in 2D

� a plane in 3D

LDF: 2 Classes
g(x) = wtx + w0

x(2)

x

� w determines orientation of the decision hyperplane
� w0 determines location of the decision surface

x(1)

g(x) > 0

g(x) < 0 g(x) = 0

m1,...,i)(0 ====++++==== i
t
ii wxwxg

LDF: Many Classes

� Suppose we have m classes
� Define m linear discriminant functions

� Given x, assign class c i if

ij)()(≠≠≠≠∀∀∀∀≥≥≥≥ xgxg ji ij)()(≠≠≠≠∀∀∀∀≥≥≥≥ xgxg ji

� Such classifier is called a linear machine

� A linear machine divides the feature space into c
decision regions, with g i(x) being the largest
discriminant if x is in the region Ri

LDF: Many Classes

� For a two contiguous regions Ri and Rj; the
boundary that separates them is a portion of
hyperplane Hij defined by:

LDF: Many Classes

)()(xgxg ji ==== 00 j
t
ji

t
i wxwwxw ++++====++++⇔⇔⇔⇔

(((()))) (((()))) 000 ====−−−−++++−−−−⇔⇔⇔⇔ ji
t

ji wwxww

(((()))) (((())))

ji

ji
ij

ww

xgxg
Hxd

−−−−

−−−−
====),(

� Thus w i – w j is normal to Hij

� And distance from x to Hij is given by

� Decision regions for a linear machine are convex

LDF: Many Classes

y
z

(((()))) ii RzyRzy ∈∈∈∈−−−−++++⇒⇒⇒⇒∈∈∈∈ αααααααα 1,

(((()))) (((()))) (((()))) (((()))) ⇔⇔⇔⇔≥≥≥≥≥≥≥≥≠≠≠≠∀∀∀∀ zgzgandygygij jiji

Ri

� In particular, decision regions must be spatially
contiguous

Ri

Rj is a valid
decision region

Ri

Rj is not a valid
decision region

Ri

(((())))(((()))) (((())))(((())))zygzygij ji αααααααααααααααα −−−−++++≥≥≥≥−−−−++++≠≠≠≠∀∀∀∀⇔⇔⇔⇔ 11

LDF: Many Classes

� Thus applicability of linear machine is mostly limited
to unimodal conditional densities p(x|θθθθ)
� even though we did not assume any parametric models

� Example:

LDF: Many Classes

� Thus applicability of linear machine to mostly limited
to unimodal conditional densities p(x|θθθθ)
� even though we did not assume any parametric models

� Example:

LDF: Many Classes

� Thus applicability of linear machine to mostly limited
to unimodal conditional densities p(x|θθθθ)
� even though we did not assume any parametric models

� Example:

LDF: Many Classes

� Thus applicability of linear machine to mostly limited
to unimodal conditional densities p(x|θθθθ)
� even though we did not assume any parametric models

� Example:

� need non-contiguous decision regions
� thus linear machine will fail

LDF: Augmented feature vector

0)(wxwxg t ++++====� Linear discriminant function:

� Can rewrite it: [[[[]]]] (((())))ygyaxwwxg tt ========

==== 1)(0

new weight
vector a

new feature
vector y

� y is called the augmented feature vector

� Added a dummy dimension to get a completely � Added a dummy dimension to get a completely
equivalent new homogeneous problem

0)(wxwxg t ++++====

dx

x
M
1

old problem

yayg t====)(

dx

x
M
1

1

new problem

LDF: Augmented feature vector
� Feature augmenting is done for simpler notation

� From now on we always assume that we have
augmented feature vectors
� Given samples x1,…, xn convert them to

augmented samples y1,…, yn by adding
a new dimension of value 1

====

i
i xy 1

ℜℜℜℜℜℜℜℜ
g(y) > 0

1ℜℜℜℜ
g(y) < 0

2ℜℜℜℜ

y

(((())))2y

)1(y
g(y) = 0

LDF: Training Error

� Samples y1,…, yn some in class 1, some in class 2

� For the rest of the lecture, assume we have 2 classes

� Use these samples to determine weights a in the
discriminant function yayg t====)(

� What should be our criterion for determining a?
� For now, suppose we want to minimize the training error

(that is the number of misclassifed samples y1,…, yn)

� Recall that 10)(cclassifiedyyg ii ⇒⇒⇒⇒>>>>

20)(cclassifiedyyg ii ⇒⇒⇒⇒<<<<

� Thus training error is 0 if

∈∈∈∈∀∀∀∀<<<<
∈∈∈∈∀∀∀∀>>>>

2

1

0)(
0)(

cyyg
cyyg

ii

ii

LDF: Problem “Normalization”

� Thus training error is 0 if

� This suggest problem “normalization”:

∈∈∈∈∀∀∀∀<<<<
∈∈∈∈∀∀∀∀>>>>

2

1

0
0

cyya
cyya

ii
t

ii
t

� Equivalently, training error is 0 if

(((())))

∈∈∈∈∀∀∀∀>>>>−−−−
∈∈∈∈∀∀∀∀>>>>

2ii
t

1ii
t

cy0ya
cy0ya

� This suggest problem “normalization”:
1. Replace all examples from class c2 by their negative

2cyyy iii ∈∈∈∈∀∀∀∀−−−−→→→→

2. Seek weight vector a s.t.

ii
t yya ∀∀∀∀>>>> 0

� If such a exists, it is called a separating or solution vector
� Original samples x1,…, xn can indeed be separated by a

line then

LDF: Problem “Normalization”

(((())))2y

before normalization after “normalization”

(((())))2y

)1(y)1(y

Seek a hyperplane that
separates patterns from
different categories

Seek hyperplane that
puts normalized
patterns on the same
(positive) side

LDF: Solution Region

� Find weight vector a s.t. for all samples y1,…, yn

0
0

)(>>>>==== ∑∑∑∑
====

d

k

k
iki

t yaya

(((())))2y

� In general, there are many such solutions a

a

a

best a

)1(y

LDF: Solution Region

� Solution region for a: set of all possible solutions
� defined in terms of normal a to the separating hyperplane

(((())))2y

)1(y

a

Optimization
� Need to minimize a function of many variables

(((()))) (((())))dxxJxJ ,...,1====

� We know how to minimize J(x)
� Take partial derivatives and set them to zero

(((())))

(((()))) 0
1

====∇∇∇∇====

∂∂∂∂
∂∂∂∂

xJ

xJ
x

M

gradient

(((())))
(((()))) 0====∇∇∇∇====

∂∂∂∂
∂∂∂∂

xJ

xJ
x d

M

� However solving analytically is not always easy
� Would you like to solve this system of nonlinear equations?

(((())))
(((()))) (((())))

====++++++++

====++++++++

0xlogxxcos

0exxsin
2
4

5

2
4

x33
2

2
1

x3
2

2
1

� Sometimes it is not even possible to write down an analytical
expression for the derivative, we will see an example later today

Optimization: Gradient Descent
� Gradient points in direction of steepest increase of

J(x), and in direction of steepest decrease
(((())))xJ∇∇∇∇

(((())))a
dx
dJ−−−−J(x)

one dimension two dimensions

(((())))aJ∇∇∇∇−−−−

(((())))xJ∇∇∇∇−−−−

a x
a

a

(((())))a
dx
dJ−−−−

a

(((())))a
dx
dJ−−−−

Optimization: Gradient Descent

x((((1)

J(x)

x

x((((2)

s((((1)

(((())))(((())))2xJ∇∇∇∇−−−−

(((()))))1(xJ∇∇∇∇−−−−

x((((3) x((((k)

(((())))(((()))) 0xJ k ====∇∇∇∇s ((((2)

Gradient Descent for minimizing any function J(x)
set k = 1 and x (1) to some initial guess for the weight vector

while (((()))) (((())))(((()))) εεεεηηηη >>>>∇∇∇∇ kk xJ

x(k+1)= x(k) – η η η η (k) (update rule)(((())))xJ∇∇∇∇

choose learning rate ηηηη(k)

k = k + 1

Optimization: Gradient Descent

� Gradient descent is guaranteed to find only a local
minimum
J(x)

x

global minimum

� Nevertheless gradient descent is very popular
because it is simple and applicable to any function

x((((1) x((((2) x((((3) x((((k)

Optimization: Gradient Descent
� Main issue: how to set parameter ηηηη (learning rate)

� If ηηηη is too small, need too many iterations

J(x)

x

� If ηηηη is too large may
overshoot the minimum
and possibly never find it
(if we keep overshooting)

J(x)

x
x((((1) x((((2)

LDF: Criterion Function

� Find weight vector a s.t. for all samples y1,…, yn

0
0

)(>>>>==== ∑∑∑∑
====

d

k

k
iki

t yaya

� Need criterion function J(a) which is minimized when
a is a solution vector

� Let YM be the set of examples misclassified by a
(((()))) {{{{ }}}}0ya.t.sysampleaY t <<<<====

� First natural choice: number of misclassified examples
(((()))) (((())))aYaJ M====

(((()))) {{{{ }}}}0ya.t.sysampleaY i
t

iM <<<<====

� piecewise constant, gradient
descent is useless

a

J(a)

LDF: Perceptron Criterion Function

� Better choice: criterion function
(((()))) (((())))∑∑∑∑

∈∈∈∈

−−−−====
MYy

t
p yaaJ

� If y is misclassified, 0≤≤≤≤yat

� Thus (((()))) 0≥≥≥≥aJ p

a

J(a)
� Jp(a) is piecewise linear

and thus suitable for
gradient descent

LDF: Perceptron Batch Rule

� Gradient of Jp(a) is (((()))) (((())))∑∑∑∑
∈∈∈∈

−−−−====∇∇∇∇
MYy

p yaJ

� YM are samples misclassified by a(k)

� It is not possible to solve analytically
because of YM

(((()))) 0aJ p ====∇∇∇∇

(((()))) (((())))∑∑∑∑
∈∈∈∈

−−−−====
MYy

t
p yaaJ

�� for Jp(a) is:
(((()))) (((()))) (((()))) ∑∑∑∑

∈∈∈∈

++++ ++++====
MYy

kkk yaa ηηηη1

� It is called rule because it is based on all
misclassified examples

LDF: Perceptron Single Sample Rule

� Thus for Jp(a)
is: (((()))) (((()))) (((())))

M
kkk yaa ηηηη++++====++++1

� note that yM is one sample misclassified by a(k)

� Geometric Interpretation:

� must have a consistent way of visiting samples

� Geometric Interpretation:
� yM misclassified by a(k)

(((())))(((()))) 0≤≤≤≤M

tk ya yM
� yM is on the wrong side of

decision hyperplane
� adding ηηηηyM to a moves new

decision hyperplane in the right
direction with respect to yM

ηηηηyM

LDF: Perceptron Single Sample Rule
(((()))) (((()))) (((())))

M
kkk yaa ηηηη++++====++++1

yM yM

yk

η η η η is too large, previously
correctly classified sample
yk is now misclassified

yk

η η η η is too small, yM is still
misclassified

LDF: Perceptron Example

features grade
name good

attendance?
tall? sleeps in

class?
chews
gum?

Jane yes (1) yes (1) no (-1) no (-1) A

Steve yes (1) yes (1) yes (1) yes (1) F

Mary no (-1) no (-1) no (-1) yes (1) F

Peter yes (1) no (-1) no (-1) yes (1) A

� class 1 : students who get grade A
� class 2 : students who get grade F

LDF Example: Augment feature vector

features grade
name extra good

attendance?
tall? sleeps in

class?
chews
gum?

Jane 1 yes (1) yes (1) no (-1) no (-1) A

Steve 1 yes (1) yes (1) yes (1) yes (1) F

Mary 1 no (-1) no (-1) no (-1) yes (1) FMary 1 no (-1) no (-1) no (-1) yes (1) F

Peter 1 yes (1) no (-1) no (-1) yes (1) A

� convert samples x1,…, xn to augmented samples
y1,…, yn by adding a new dimension of value 1

LDF: Perform “Normalization”

features grade
name extra good

attendance?
tall? sleeps in

class?
chews
gum?

Jane 1 yes (1) yes (1) no (-1) no (-1) A

Steve -1 yes (-1) yes (-1) yes (-1) yes (-1) F

Mary -1 no (1) no (1) no (1) yes (-1) F

� Replace all examples from class c2 by their negative

2cyyy iii ∈∈∈∈∀∀∀∀−−−−→→→→

� Seek weight vector a s.t. ii
t yya ∀∀∀∀>>>> 0

Mary -1 no (1) no (1) no (1) yes (-1) F

Peter 1 yes (1) no (-1) no (-1) yes (1) A

LDF: Use Single Sample Rule

features grade
name extra good

attendance?
tall? sleeps in

class?
chews
gum?

Jane 1 yes (1) yes (1) no (-1) no (-1) A

Steve -1 yes (-1) yes (-1) yes (-1) yes (-1) F

Mary -1 no (1) no (1) no (1) yes (-1) F

� Sample is misclassified if 0
4

0

)(<<<<==== ∑∑∑∑
====k

k
iki

t yaya

� gradient descent single sample rule: (((()))) (((()))) (((())))
M

kk1k yaa ηηηη++++====++++

(((()))) (((())))
M

kk yaa ++++====++++1� Set fixed learning rate to ηηηη(k)= 1:

Peter 1 yes (1) no (-1) no (-1) yes (1) A

LDF: Gradient decent Example

� set equal initial weights a(1)=[0.25, 0.25, 0.25, 0.25]

name aty misclassified?

Jane 0.25*1+0.25*1+0.25*1+0.25*(-1)+0.25*(-1) >0 no

� visit all samples sequentially, modifying the weights
for after finding a misclassified example

Jane 0.25*1+0.25*1+0.25*1+0.25*(-1)+0.25*(-1) >0 no

Steve 0.25*(-1)+0.25*(-1)+0.25*(-1)+0.25*(-1)+0.25*(-1)<0 yes

� new weights
(((()))) (((()))) [[[[]]]]++++====++++==== 25.025.025.025.025.012

Myaa

[[[[]]]] ====−−−−−−−−−−−−−−−−−−−−++++ 11111

[[[[]]]]75.075.075.075.075.0 −−−−−−−−−−−−−−−−−−−−====

LDF: Gradient decent Example

name aty misclassified?

Mary -0.75*(-1)-0.75*1 -0.75 *1 -0.75 *1 -0.75*(-1) <0 yes

(((()))) [[[[]]]]75.075.075.075.075.02 −−−−−−−−−−−−−−−−−−−−====a

� new weights
(((()))) (((()))) [[[[]]]]++++−−−−−−−−−−−−−−−−−−−−====++++==== 75.075.075.075.075.023

Myaa

[[[[]]]] ====−−−−−−−−++++ 11111

[[[[]]]]75.125.025.025.075.1 −−−−−−−−====

LDF: Gradient decent Example

name aty misclassified?

Peter -1.75 *1 +0.25* 1+0.25* (-1) +0.25 *(-1)-1.75*1 <0 yes

(((()))) [[[[]]]]75.125.025.025.075.13 −−−−−−−−====a

� new weights
(((()))) (((()))) [[[[]]]]++++−−−−−−−−====++++==== 75.125.025.025.075.134

Myaa

[[[[]]]] ====−−−−−−−−++++ 11111

[[[[]]]]75.075.075.025.175.0 −−−−−−−−−−−−−−−−====

LDF: Gradient decent Example

name aty misclassified?

Jane -0.75 *1 +1.25*1 -0.75*1 -0.75 *(-1) -0.75 *(-1)>0 no

Steve -0.75*(-1)+1.25*(-1) -0.75*(-1) -0.75*(-1)-0.75*(-1)>0 no

Mary -0.75 *(-1)+1.25*1-0.75*1 -0.75 *1 –0.75*(-1) >0 no

Peter -0.75 *1+ 1.25*1-0.75* (-1)-0.75* (-1) -0.75 *1 >0 no

(((()))) [[[[]]]]75.075.075.025.175.04 −−−−−−−−−−−−−−−−====a

Peter -0.75 *1+ 1.25*1-0.75* (-1)-0.75* (-1) -0.75 *1 >0 no

� Thus the discriminant function is
(((()))) (((()))) (((()))) (((()))) (((()))) (((())))43210 *75.0*75.0*75.0*25.1*75.0 yyyyyyg −−−−−−−−−−−−++++−−−−====

� Converting back to the original features x:
(((()))) (((()))) (((()))) (((()))) (((()))) 75.0*75.0*75.0*75.0*25.1 4321 −−−−−−−−−−−−−−−−==== xxxxxg

LDF: Gradient decent Example

� Converting back to the original features x:
(((()))) (((()))) (((()))) (((()))) Agradexxxx ⇒⇒⇒⇒>>>>−−−−−−−−−−−− 75.0*75.0*75.0*75.0*25.1 4321

(((()))) (((()))) (((()))) (((()))) Fgradexxxx ⇒⇒⇒⇒<<<<−−−−−−−−−−−− 75.0*75.0*75.0*75.0*25.1 4321

good
attendance

tall sleeps in class chews gum

� This is just one possible solution vector � This is just one possible solution vector

� If we started with weights a(1)=[0,0.5, 0.5, 0, 0],
solution would be [-1,1.5, -0.5, -1, -1]

� In this solution, being tall is the least important feature

(((()))) (((()))) (((()))) (((()))) Agrade1xxx*5.0x*5.1 4321 ⇒⇒⇒⇒>>>>−−−−−−−−−−−−
(((()))) (((()))) (((()))) (((()))) Fgrade1xxx*5.0x*5.1 4321 ⇒⇒⇒⇒<<<<−−−−−−−−−−−−

LDF: Nonseparable Example
� Suppose we have 2 features

and samples are:
� Class 1: [2,1], [4,3], [3,5]
� Class 2: [1,3] and [5,6]

� These samples are not
separable by a line

� Still would like to get approximate separation by a � Still would like to get approximate separation by a
line, good choice is shown in green
� some samples may be “noisy”, and it’s ok if they are on

the wrong side of the line
� Get y1, y2 , y3 , y4 by adding extra feature and

“normalizing”

====

1
2
1

y 1

====

3
4
1

y 2

====

5
3
1

y 3

−−−−
−−−−
−−−−

====
6
5
1

y 5

−−−−
−−−−
−−−−

====
3
1
1

y 4

LDF: Nonseparable Example

� Let’s apply Perceptron single
sample algorithm

� initial equal weights (((()))) [[[[]]]]111a 1 ====

� fixed learning rate ηηηη = 1
� this is line x(1)+x(2)+1=0

(((()))) (((())))
M

kk yaa ++++====++++1

====

1
2
1

y 1

====

3
4
1

y 2

====

5
3
1

y 3

−−−−
−−−−
−−−−

====
6
5
1

y 5

−−−−
−−−−
−−−−

====
3
1
1

y 4

� y t
1a(1) = [1 1 1]*[1 2 1]t > 0 b

� y t
2a(1) = [1 1 1]*[1 4 3]t > 0 b

� y t
3a(1) = [1 1 1]*[1 3 5]t > 0 b

Myaa ++++====

LDF: Nonseparable Example
(((()))) [[[[]]]]111a 1 ====

====

1
2
1

y 1

====

3
4
1

y 2

====

5
3
1

y 3

−−−−
−−−−
−−−−

====
6
5
1

y 5

−−−−
−−−−
−−−−

====
3
1
1

y 4

� y t
4a(1)=[1 1 1]*[-1 -1 -3]t = -5< 0

(((()))) (((())))
M

kk yaa ++++====++++1

(((()))) (((()))) [[[[]]]] [[[[]]]] [[[[]]]](((()))) (((()))) [[[[]]]] [[[[]]]] [[[[]]]]200311111yaa M
12 −−−−====−−−−−−−−−−−−++++====++++====

� y t
5 a(2)=[0 0 -2]*[-1 -5 -6]t = 12 > 0 b

� y t
1 a(2)=[0 0 -2]*[1 2 1]t < 0

(((()))) (((()))) [[[[]]]] [[[[]]]] [[[[]]]]121121200yaa M
23 −−−−====++++−−−−====++++====

LDF: Nonseparable Example
(((()))) [[[[]]]]121a 3 −−−−====

====

1
2
1

y 1

====

3
4
1

y 2

====

5
3
1

y 3

−−−−
−−−−
−−−−

====
6
5
1

y 5

−−−−
−−−−
−−−−

====
3
1
1

y 4

(((()))) (((())))
M

kk yaa ++++====++++1

� y t
2 a(3)=[1 4 3]*[1 2 -1]t =6 > 0 b

(((()))) (((()))) [[[[]]]] [[[[]]]] [[[[]]]]410311121yaa M
34 −−−−====−−−−−−−−−−−−++++−−−−====++++====

� y t
3 a(3)=[1 3 5]*[1 2 -1]t > 0 b

� y t
4 a(3)=[-1 -1 -3]*[1 2 -1]t = 0

LDF: Nonseparable Example
(((()))) [[[[]]]]410a 4 −−−−====

====

1
2
1

y 1

====

3
4
1

y 2

====

5
3
1

y 3

−−−−
−−−−
−−−−

====
6
5
1

y 5

−−−−
−−−−
−−−−

====
3
1
1

y 4

(((()))) (((())))
M

kk yaa ++++====++++1

� y t
2 a(3)=[1 4 3]*[1 2 -1]t =6 > 0 b

(((()))) (((()))) [[[[]]]] [[[[]]]] [[[[]]]]410311121yaa M
34 −−−−====−−−−−−−−−−−−++++−−−−====++++====

� y t
3 a(3)=[1 3 5]*[1 2 -1]t > 0 b

� y t
4 a(3)=[-1 -1 -3]*[1 2 -1]t = 0

LDF: Nonseparable Example

� we can continue this forever
� there is no solution vector a satisfying for all i

0yaya
5

0k

)k(
iki

t >>>>==== ∑∑∑∑
====

� need to stop but at a good point:

� solutions at iterations
900 through 915.
Some are good
some are not.

� How do we stop at a
good solution?

LDF: Convergence of Perceptron rules
� If classes are linearly separable, and use fixed

learning rate, that is for some constant c, ηηηη((((k)))) =c
� both single sample and batch perceptron rules converge to

a correct solution (could be any a in the solution space)
� If classes are not linearly separable:

� algorithm does not stop, it keeps looking for solution which
does not exist

� by choosing appropriate learning rate, can always ensure
convergence: (((()))) ∞∞∞∞→→→→→→→→ kask 0ηηηη

� for example inverse linear learning rate: (((())))
(((())))

k
k

1ηηηη
ηηηη ====

� for inverse linear learning rate convergence in the linearly
separable case can also be proven

� no guarantee that we stopped at a good point, but is popular
in practice.

LDF: Perceptron Rule and Gradient decent

� Linearly separable data
� perceptron rule with gradient decent works well

� Linearly non-separable data
� need to stop perceptron rule algorithm at a good point, this

maybe tricky

Single Sample RuleBatch Rule

� Smoother gradient
because all samples are
used

Single Sample RuleBatch Rule

� easier to analyze

� Concentrates more than
necessary on any isolated
“noisy” training examples

