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MDA



Data Representation vs. Data Classification

= PCA finds the most accurate data representation
In a lower dimensional space
= Project data in the directions of maximum variance
= However the directions of maximum variance may
be useless for classification
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= Fisher Linear Discriminant projects to a line which
preserves direction useful for data classification



Fisher Linear Discriminant

= Main idea: find projection to a line s.t. samples
from different classes are well separated

Example in 2D

bad line to project to, good line to project to,
classes are mixed up classes are well separated



Fisher Linear Discriminant

= Suppose we have 2 classes and d-dimensional

samples x4,...,X,, where

= n,; samples come from the first class
= n, samples come from the second class

= consider projection on a line
= Let the line direction be given by unit vector v

= Thus the projection of sample
X; onto a line in direction v IS
given by vix;




Fisher Linear Discriminant

How to measure separation between projections of
different classes?

Let z, and g, be the means of projections of

classes 1 and 2
Let 1, and &, be the means of classes 1 and 2

I, — I,| seems like a good measure
— Z VX, =Vv' Zx =v'y,
1 X;eCl 1 X;eCl

similarly, o,=V'u,



Fisher Linear Discriminant
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= Howgoodis |y —ﬂz\ as a measure of separation?
= The larger | - /2 ,], the better is the expected separation
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= the vertical axes is a better line than the horizontal
axes to project to for class separability

=  however ‘[11 — ﬁz‘ > ‘:Zil - :ZiZ‘



Fisher Linear Discriminant

The problem with |z - 7z,| is that it does not
consider the variance of the classes
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Fisher Linear Discriminant

= We need to normalize |z, — iz,| by a factor which is
proportional to variance

. 18
= 1D samples z,,...,z,. Sample meanis  x =-> 7z,
i=1

= Define their scatter as

n

S :Z(Zi _,Uz)2

=1
= Thus scatter Is just sample variance multiplied by n

= scatter measures the same thing as variance, the spread
of data around the mean

= scatter Is just on different scale than variance
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larger scatter smaller scatter



Fisher Linear Discriminant

Fisher Solution: normalize |z, — &,| by scatter

Lety, = viX;, l.e. y, ‘s are the projected samples

Scatter for projected samples of class 1 Is

§12 = Z(Yi _/:71)2

y;eClass 1

Scatter for projected samples of class 2 is

§22= Z(Yi_ﬁz)z

y;eClass 2



Fisher Linear Discriminant

= We need to normalize by both scatter of class 1 and
scatter of class 2

= Thus Fisher linear discriminant is to project on line
In the direction v which maximizes

want projected means are far from each other
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want scatter in class 1 to be as want scatter in class 2 to be as
small as possible, i.e. samples small as possible, i.e. samples
of class 1 cluster around the  of class 2 cluster around the
projected mean pu, projected mean g,




Fisher Linear Discriminant
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= Ifwe find v which makes J(v) large, we are
guaranteed that the classes are well separated

projected means arjeJar from each other
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small s Implies that
prOJected samples of
class 1 are clustered
around projected mean

—

small s, implies that

projected samples of
class 2 are clustered
around projected mean



Fisher Linear Discriminant Derivation

J(v) (ﬂ1 +:L;2)2

= All we need to do now Is to express J explicitly as a

function of v and maximize it

= straightforward but need linear algebra and Calculus (the derivation is
shown in the next few slides.)

= The solution is found by generalized eigenvalue
problem /5 v = 1S, v

between class scatter matrix S, = (g, — 1, N, — 1, )

within the class scatter matrix S,, =S, + S,

S, = Z(Xi_:ul)(xi_lul)t S, = Z(Xi_,uz)(xi_,uz)t

x;eClass 1 x; eClass 2



Fisher Linear Discriminant Derivation

J(v) (ﬂ1 +:L;2)2

= Define the separate class scatter matrices S; and
S, for classes 1 and 2. These measure the scatter

of original samples x; (before projection)

S, = Z(Xi _,u1)(xi _ﬂl)t

X;eClass 1

S, = Z(Xi _,Uz)(xi _,Uz)t

X; eClass 2



Fisher Linear Discriminant Derivation

=  Now define the within the class scatter matrix
Sy =S,+S,

* Recallthat §2= > (y, - 4)?

y;eClass 1

= Usingy,=vix, and #, =V 'y,

§12= Z(Vtxi_vt:ul)z

B BN
i y.eCZIa:sS((lxi - /Ul)tv )t ((Xi B 'ul)tv)

= th(xi_ﬂ1)(xi_ﬂ1)tv=Vt51V

y,eClass 1



Fisher Linear Discriminant Derivation

Similarly s; =v'S,v

-~ 2 ~ 2 t t t
Therefore s, +s, =v Syv +v'S,v =v'S,V
Define between the class scatter matrix

Se = (11— 11, Nt — 11,
Sz measures separation between the means of two
classes (before projection)

Let's rewrite the separations of the projected means
— — 2
(B~ i, ) =y v )
=V (a1, Nty = 1, )V
=Vv'S,v



Fisher Linear Discriminant Derivation

= Thus our objective function can be written:

I(v)= ( ) V'SV

‘+sZ  v'S,V

=  Maximize J(v) by taklng the derivative w.r.t. v and
sefting itto O

(dv S v)vtSWv _(ddVVtSWVthSBV
J( )=

(vtSWv)2
- (2Sgv V'S, v —(2S, v V'Sgv — g
- (vtSWv)2




Fisher Linear Discriminant Derivation

= Needtosolve Vv'S,v(S,v)-v'S,v(S,v)=0

V'S,V (Sgv) V'Sgv(SyV) _
V'S,V V'S,V

:Sv—m(s V) _
LY SV 2
= SgVv = AS, Vv
¢ )

Y
generalized eigenvalue problem

—




Fisher Linear Discriminant Derivation

SgVv = A5,V
= If S, has full rank (the inverse exists), can convert
this to a standard eigenvalue problem
SyS.V = AV

= Turn’s out that we don’t have to solve for
eigenvalues; the solution is:

vV =Syt (e = p1,)




Fisher Linear Discriminant Example

= Data
= Class 1 has 5 samples c,=[(1,2),(2,3),(3,3),(4,5),(5,9)]
= Class 2 has 6 samples c,=[(1,0),(2,1),(3,1),(3,2),(5,3),(6,5)]

Arrange data In 2 separate matrices
(12 10

C,=|: : C, =|: :
ERE 6 5

b
5
4
3r o
2
1
0
1

Notice that PCA performs very
poorly on this data because the
direction of largest variance is not
helpful for classification



Fisher Linear Discriminant Example

= First compute the mean for each class
u, = mean (c,)=[3 3.6] u, =mean (c,)=[3.3 2]

= Compute scatter matrices S; and S, for each class

S, =4=xcov (c,)= [émo gg} S, =5=cov (c,)= [qég %g}

= Within the class scatter:

27.3 24
Sw =91+ :[ 24 23.2}

= it has full rank, don’t have to solve for eigenvalues

= The inverse of S, is S;;! =inv (S,, )= [_O(fgl _094‘;1}

= Finally, the optimal line direction v
_ - 0.79
v =Syt - i )= [ 0.89 }



Fisher Linear Discriminant Example

. . 6
= Notice, as long as the line | . o o
has the right direction, its ~ ,°

exact position does not .| A
matter | o e
= | ast step Is to compute ) o
the actual 1D vector vy. 4 | NG
Let’s do it separately for : - - :
each class
Y,=vici=[-079 0.89]5 = 2|=[0.98 - 0.48]
Y,=vie,=[-079 0.89]l3 i &|=[-0.79 ~0.31]




Multiple Discriminant Analysis (MDA)

= Can generalize FLD to multiple classes
= In case of ¢ classes, can reduce dimensionality to
1, 2, 3,..., c-1 dimensions

= Project sample x; to a linear subspace y; = VX,
= Vs called projection matrix




Multiple Discriminant Analysis (MDA)

= Let = n; bythe number of samples of class i
= and i be the sample mean of class |
=  Uube the total mean of all samples

_1 |
ZX ﬂ_aniXI

| X eclass i

det (V 'S,V )
det (V's,V )
= within the class scatter matrix Sw s

ZS—Z Z(Xk :ui)(xk_:ui)t

i=1 x, eclass i

= Objective function: J(V )=

= pbetween the class scatter matrix Sg is

/SB = Z; N (u — ) — 1)

maximum rank is c -1



Multiple Discriminant Analysis (MDA)

= QObjective function:
det (V 'S,V )

TV)= et (Vis,V)

= |t can be shown that “scatter” of the samples is
directly proportional to the determinant of the scatter
matrix
= the larger det(S), the more scattered samples are
= det(S) is the product of eigenvalues of S

= Thus we are seeking transformation V which maximizes the
between class scatter and minimizes the within-class scatter



Multiple Discriminant Analysis (MDA)

V)= det (V 'S,V )

det (V's,V )
First solve the generalized eigenvalue problem:
SgVv = AS, Vv

At most c-1 eigenvalues are nonzero.
Letv,, V,,..., V., be the corresponding eigenvectors

The optimal projection matrix V to a subspace of
dimension k Is given by the eigenvectors
corresponding to the largest k eigenvalues

Thus can project to a subspace of dimension at
most c-1



