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Limitations of K-means

• Hard assignments of data points to clusters – small shift 
of a data point can flip it to a different cluster

• Not clear how to choose the value of K
• Solution: replace ‘hard’ clustering of K-means with ‘soft’

probabilistic assignments
• Represents the probability distribution of the data as a 

Gaussian mixture model
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The Gaussian Distribution

• Multivariate Gaussian

• Define precision to be the inverse of the covariance

• In 1-dimension 

mean covariance
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Gaussian Mixtures

• Linear super-position of Gaussians

• Normalization and positivity require

• Can interpret the mixing coefficients as prior probabilities
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Example: Mixture of 3 Gaussians
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Contours of Probability Distribution
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Sampling from the Gaussian

• To generate a data point:
– first pick one of the components with probability 
– then draw a sample       from that component

• Repeat these two steps for each new data point



BCS Summer School, Exeter, 2003 Christopher M. Bishop

Example: Gaussian Mixture Density
• Mixture of 3 Gaussians
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Synthetic Data Set
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Fitting the Gaussian Mixture

• We wish to invert this process – given the data set, find 
the corresponding parameters:
– mixing coefficients
– means 
– covariances

• If we knew which component generated each data point, 
the maximum likelihood solution would involve fitting 
each component to the corresponding cluster

• Problem: the data set is unlabelled
• We shall refer to the labels as latent (= hidden) variables
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Synthetic Data Set Without Labels
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Posterior Probabilities

• We can think of the mixing coefficients as prior 
probabilities for the components

• For a given value of     we can evaluate the 
corresponding posterior probabilities, called 
responsibilities

• These are given from Bayes’ theorem by
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Posterior Probabilities (colour coded)
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Posterior Probability Map
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Maximum Likelihood for the GMM

• The log likelihood function takes the form

• Note: sum over components appears inside the log
• There is no closed form solution for maximum likelihood
• How to maximize the log likelihood

– solved by expectation-maximization (EM) algorithm
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EM Algorithm – Informal Derivation

• Let us proceed by simply differentiating the log likelihood
• Setting derivative with respect to      equal to zero gives

giving

which is simply the weighted mean of the data
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EM Algorithm – Informal Derivation

• Similarly for the covariances

• For mixing coefficients use a Lagrange multiplier to give

Average responsibility which component j takes for 
explaining the data points.

effective number of 
points assigned to 
cluster j.

Fraction of points 
assigned to 
component j
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EM Algorithm – Informal Derivation

• The solutions are not closed form since they are coupled
• Suggests an iterative scheme for solving them:

– Make initial guesses for the parameters
– Alternate between the following two stages:

1. E-step: evaluate responsibilities
2. M-step: update parameters using ML results
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EM – Latent Variable Viewpoint 

• Binary latent variables                   describing which 
component generated each data point 

• Conditional distribution of observed variable

• Prior distribution of latent variables

• Marginalizing over the latent variables we obtain
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Expected Value of Latent Variable

• From Bayes’ theorem  the posterior distribution:

• The expectation of znk under this posterior distribution
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Complete and Incomplete Data

complete incomplete

0 0.5 1
0

0.5

1

(a)
0 0.5 1

0

0.5

1

(b)



BCS Summer School, Exeter, 2003 Christopher M. Bishop

Latent Variable View of EM

• If we knew the values for the latent variables, we would 
maximize the complete-data log likelihood

which gives a trivial closed-form solution (fit each 
component to the corresponding set of data points)

• We don’t know the values of the latent variables
• However, for given parameter values we can compute 

the expected values of the latent variables
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Expected Complete-Data Log Likelihood

• Suppose we make a guess         for the parameter values 
(means, covariances and mixing coefficients)

• Use these to evaluate the responsibilities
• Consider expected complete-data log likelihood 

where responsibilities are computed using 
• We are implicitly ‘filling in’ latent variables with best guess
• Keeping the responsibilities fixed and maximizing with 

respect to the parameters give the previous results
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EM in General

1. Choose an initial setting for parameters θold.
2. E step: Evaluate p(Z|X, θold).
3. M step: Evaluate θnew given by

4. Check for convergence of either log likelihood or the 
parameter values. If the convergence criterion is not 
satisfied, then let 

θold← θnew

and return to step 2. 
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  where

Given p(X,Z|θ) over observed variables X and latent 
variables Z, the goal is to maximize p(X| θ) with respect to θ
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K-means Algorithm

• Goal: represent a data set in terms of K clusters each of 
which is summarized by a prototype

• Initialize prototypes, then iterate between two phases:
– E-step: assign each data point to nearest prototype
– M-step: update prototypes to be the cluster means
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Responsibilities

• Responsibilities assign data points to clusters

such that 

• Example: 5 data points and 3 clusters
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K-means Cost Function

prototypesresponsibilities

data
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Minimizing the Cost Function

• E-step: minimize    w.r.t.
– assigns each data point to nearest prototype

• M-step: minimize    w.r.t
– gives

– each prototype set to the mean of points in that cluster
• Convergence guaranteed since there is a finite number 

of possible settings for the responsibilities
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K-means Revisited

• Consider GMM with common covariances
• Take limit
• Responsibilities become binary 

• Expected complete-data log likelihood becomes 


