
Decision Trees

Introduction

 Intuitive to classify a pattern through sequence of

questions.

 Next question depends on the answer to the

current question.

 Particularly useful for nonmetric data

 The answers could be yes/no, true/false,

 property set_of_values.

Decision Tree Representation

 Decision trees classify instances by sorting them

down the tree from the root node to some leaf

node, which provides the classification of the

instance.

 Each node in the tree specifies a test of some

attribute of the instance, and each branch

descending from that node corresponds to one of

the possible values for this attribute.

Decision Tree Representation

Outlook

sunny overcast rain

Humidity Yes Wind

high normal

Yes No

strong weak

Yes No

attribute

value

output

Each internal node: test one attribute Xi

Each branch from a node: selects one value for Xi

Each leaf node: predicts Y

Decision Tree Representation: Example

Outlook

sunny overcast rain

Humidity Yes Wind

high normal

Yes No

strong weak

Yes No

(Outlook=Sunny, Temp=Hot, Humidity=High, Wind=Strong)
Instance:

Classification :

 Play tennis: Yes/No

Decision Tree Representation: Example

Outlook

sunny overcast rain

Humidity Yes Wind

high normal

Yes No

strong weak

Yes No

(Outlook=Sunny, Temp=Hot, Humidity=High, Wind=Strong)
Instance:

Building a Decision Tree

I. First test all attributes and select the one that

would function as the “best” root;

II. Main Loop:

1. A← the “best” decision attribute for the next node

2. Assign A as decision attribute for node

3. For each value of A, create new descendant of

node

4. Sort training examples to leaf node

5. Continue this process until the training examples

are perfectly classified

Greedy search for an acceptable decision tree

Attribute selection

Which attribute should be taken next, A1or A2? Which test?

 We seek an attribute that makes the data reaching the

immediate descendent nodes as pure as possible.

 More convenient to define impurity of a node.

 Let i(N) define the impurity of a node N: in all classes we

want i(N) =0 if all the patterns that reach the node belong to

the same category, i(N) to be large if all the categories are

equally presented.

Entropy Impurity

The most popular measure is entropy impurity

n

i

jj wPwPNi
1

2)(log)()(
Fraction of patterns at

node A that are in

category wj

Entropy H(X) of a random variable X

)(log)()(
1

2 iXPiXPXH
n

i

Comes from

)(log)()(log)()(wPwPwPwPXH

0)(1)(,0)(XHwPwP

1)(5.0)(,5.0)(XHwPwP

Example of two classes

Plot of H for P+ =1-P

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Information Gain

 Information Gain measured the expected

reduction of entropy due to sorting on attribute A

)()()(
)(

v

AValuesv

v
Ni

S

S
NiAGain

Subset of S for

which A=v

Choose the attribute that most reduces the

impurity of the node

Patterns that

reach the node
…

A
1v

2v kv

S

1S

2S
kS

Example

Day

Outlook

Temperature

Humidity

Wind

PlayTennis

D1

Sunny

Hot

High

Weak

No

 D2

Sunny

Hot

High

Strong

No

 D3

Overcast

Hot

High

Weak

Yes

 D4

Rain

Mild

High

Weak

Yes

 D5

Rain

Cool

Normal

Weak

Yes

 D6

Rain

Cool

Normal

Strong

No

 D7

Overcast

Cool

Normal

Strong

Yes

 D8

Sunny

Mild

High

Weak

No

 D9

Sunny

Cool

Normal

Weak

Yes

 D10

Rain

Mild

Normal

Weak

Yes

D11

Sunny

Mild

Normal

Strong

Yes

D12

Overcast

Mild

High

Strong

Yes

D13

Overcast

Hot

Normal

Weak

Yes

D14

Rain

Mild

High

Strong

No

Training set:

Example

 Let E([X+,Y-]) represent that there are X positive
training elements and Y negative elements.

 Therefore the Entropy for the training data, E(S),
can be represented as E([9+,5-]) because of the
14 training examples 9 of them are yes and 5 of
them are no.

 Let’s start off by calculating the Entropy of the
Training Set.

 E(S) = E([9+,5-]) = (-9/14 log2 9/14) + (-5/14 log2
5/14)= 0.94

Example (cont)

 Next we will need to calculate the information gain

G(S,A) for each attribute A where A is taken from

the set {Outlook, Temperature, Humidity, Wind}.

 The information gain for Outlook is:
 G(S,Outlook) = E(S) – [5/14 * E(Outlook=sunny) + 4/14 *

E(Outlook = overcast) + 5/14 * E(Outlook=rain)]

 = E([9+,5-]) – [5/14*E(2+,3-) + 4/14*E([4+,0-]) + 5/14*E([3+,2-])]

 = 0.94 – [5/14*0.971 + 4/14*0.0 + 5/14*0.971]

 = 0.246

Example (cont)

 The information gain for Temperature is:

 G(S,Temperature) = 0.94 – [4/14*E(Temperature=hot) +

 6/14*E(Temperature=mild) +

 4/14*E(Temperature=cool)]

 G(S,Temperature) = 0.94 – [4/14*E([2+,2-]) +

6/14*E([4+,2-]) + 4/14*E([3+,1-])]

 = 0.94 – [4/14 + 6/14*0.918 + 4/14*0.811]

 = 0.029

 The information gain for Humidity is:

 G(S,Humidity) = 0.94 – [7/14*E(Humidity=high) +

7/14*E(Humidity=normal)]

 = 0.94 – [7/14*E([3+,4-]) + 7/14*E([6+,1-])]

 = 0.94 – [7/14*0.985 + 7/14*0.592]

 = 0.1515

 The information gain for Wind is:

 G(S,Wind) = 0.94 – [8/14*0.811 + 6/14*1.00]

 = 0.048

Example (cont)

Example (cont)

 Outlook is our winner!

Example (cont)

 Now that we have discovered the root of our decision tree

we must now recursively find the nodes that should go

below Sunny, Overcast, and Rain.

 G(Outlook=Rain, Humidity) = 0.971 –

[2/5*E(Outlook=Rain ^ Humidity=high) +

3/5*E(Outlook=Rain ^Humidity=normal] = 0.02

 G(Outlook=Rain,Wind) = 0.971- [3/5*0 + 2/5*0]

 = 0.971

Example (cont)

 Now our decision tree looks like:

Which Tree Should We Output?

 ID3 performs heuristic

search through space of

decision trees from

simplest to increasingly

complex, guided by the

information gain.

 It stops at smallest

 acceptable tree.

Occam’s razor: prefer the

simplest hypothesis that

fits the data

Ockham’s razor

Why simple trees should be preferred?

1. The number of simple hypothesis that may

accidentally fit the data is small, so chances that

simple hypothesis uncover some interesting

knowledge about the data are larger.

2. Simpler trees do not partition the feature space into

too many small boxes, and thus may generalize

better, while complex trees may end up with a

separate box for each training data sample.

Overfitting in DT

 Consider adding noisy example

 Sunny, Hot, Normal, Strong, PlayTennis=No

 How it effects the earlier tree?

 Noise in data or small number of training

examples lead to overfitting

Avoiding overfitting

How to avoid overfitting?

 Stop growing earlier, before it perfectly classifies
the training data.

 Grow full tree, then post-prune the tree.

How to select “best” tree:

 Measure performance over separate validation
data set.

 Trade complexity for accuracy: minimize

 size(tree)+size(misclassifications(tree))

 …

DT Pruning

 One way to deal with overfitting in decision trees
is to prune the tree

 This means to make it smaller by removing nodes
that don't turn out to be helpful

 Use a greedy hill-climbing search to prune a tree:
 for each interior (non-leaf) node n

 remove the subtree at n

 replace it with a leaf node marked + or -, according to the
majority of the training examples that fall into that subtree.

 evaluate the performance of the new decision tree on the
validation set

 store the pruned tree with the best performance

 repeat until no improvement is made from removing
any interior node

 if a pruned tree has the same performance as the
current tree, then use the pruned tree.

Rule Post-Pruning (used in C4.5)

 Grow the tree until the training data is fit as well

as possible.

 Convert the learned tree into an equivalent set of

rules, by creating one rule per each path.

 Eliminate unnecessary rule antecedents to

simplify the rules.

 Rules with only one antecedent cannot be further

simplified, so we only consider those with two or more.

 To simplify a rule, eliminate antecedents that have no

effect on the conclusion reached by the rule.

 Sort final rules into desired sequence for use.

Converting Tree to Rules

Outlook

sunny overcast rain

Humidity Yes Wind

high normal

Yes

strong weak

Yes No No

IF (Outlook=Sunny) AND (Humidity=High)

THEN PlayTennis=No

IF (Outlook=Sunny) AND (Humidity=Normal)

THEN PlayTennis=Yes

