
Why care about “complexity”?
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• We need a quantitative measure of complexity in order to be

able to relate the training error (which we can observe) and

the test error (that we’d like to optimize)
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Finite case

• We’ll start by considering only a finite number of possible

classifiers, h1(x), . . . , hM(x) (e.g., randomly chosen linear

classifiers)

• Key questions:

1. Given n training examples and M possible classifiers how

far can the training and test errors be?

2. How many training examples do we need so that the errors

are close?

The answers will depend on M .
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Finite case: definitions

Ên(i) =
1

n

n∑

t=1

= 0, 1
︷ ︸︸ ︷

Loss(yt, hi(xt)) = empirical error of hi(x)

E(i) = E(x,y)∼P { Loss(y, hi(x)) } = expected error of hi(x)
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Finite case: definitions

Ên(i) =
1

n

n∑

t=1

= 0, 1
︷ ︸︸ ︷

Loss(yt, hi(xt)) = empirical error of hi(x)

E(i) = E(x,y)∼P { Loss(y, hi(x)) } = expected error of hi(x)

• Suppose we choose the classifier that minimizes the training

error, în = argmini=1,...,M Ên(i), then

Training error = Ên(̂in)

Test error = E (̂in)
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Finite case: errors

• The training and test errors,

Training error = Ên(̂in)

Test error = E (̂in)

are necessarily close if we can show that the errors are close

for all the classifiers in our set:

|Ên(i)− E(i)| ≤ ǫ, for all i = 1, . . . , M

• We can now express our key questions more formally in terms

of n, M , and ǫ
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Finite case: key questions revisited

• Key questions (rewritten):

1. Given n training examples and M possible classifiers, what

is the smallest ǫ such that

max
i=1,...,M

|Ên(i)− E(i)| ≤ ǫ

2. For a given ǫ how many training examples do we need so

that

max
i=1,...,M

|Ên(i)− E(i)| ≤ ǫ

Since training examples are sampled at random from some

underlying distribution, we can only answer these questions

probabilistically.
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Finite case: errors
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Finite case: probabilistic statement

• We can relate n, M , and ǫ by requiring that with high

probability, the empirical errors of all the classifiers in our set

are ǫ-close to their expected errors:

P
(

max
i=1,...,M

|Ên(i)− E(i)| ≤ ǫ
)

≥ 1− δ

The probability is taken over the choice of the training set and

1− δ specifies our confidence in the probabilistic statement.
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Finite case: probabilistic statement

• We can relate n, M , and ǫ by requiring that with high

probability, the empirical errors of all the classifiers in our set

are ǫ-close to their expected errors:

P
(

max
i=1,...,M

|Ên(i)− E(i)| ≤ ǫ
)

≥ 1− δ

The probability is taken over the choice of the training set and

1− δ specifies our confidence in the probabilistic statement.

• Equivalently, we can bound the probability that the empirical

error of some classifier in our set deviates more than ǫ from

the expected error:

P
(

max
i=1,...,M

|Ên(i)− E(i)| > ǫ
)

≤ δ
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Finite case cont’d

• Let’s fix n, M , and ǫ and try to find δ so that

P

(

max
i=1,...,M

|Ên(i)− E(i)| > ǫ

)

≤ δ

still holds. The probability is take over the choice of the

training set.

By using the fact that P (A orB) ≤ P (A) + P (B) we get

P

(

max
i
|Ên(i)− E(i)| > ǫ

)

≤

M
∑

i=1

P

(

|Ên(i)− E(i)| > ǫ

)

≤

M
∑

i=1

2 exp(−2nǫ
2) (Chernoff)

= M · 2 exp(−2nǫ
2) = δ
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Finite case cont’d

• We are now able to relate n, M , ǫ, and δ:

M · 2 exp(−2nǫ2) = δ, or ǫ =

√

log(M) + log(2/δ)

2n

• We can restate our result in terms of a bound on the expected

error of any classifier in our set.

Theorem: With probability at least 1− δ over the choice of

the training set, for all i = 1, . . . , M

E(i) ≤ Ên(i) + ǫ(n, M, δ)

where ǫ = ǫ(n, M, δ) is a “complexity penalty”.
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Measures of complexity

• Typically the set of classifiers is not a finite nor a countable

set (e.g., the set of linear classifiers)

• There are still many ways of trying to capture the “effective”

number of classifiers in such a set:

– degrees of freedom (number of parameters)

– Vapnik-Chervonenkis (VC) dimension

– description length

etc.
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VC-dimension: preliminaries

• A set of classifiers F: For example, this could be the set

of all possible linear classifiers, where h ∈ F means that

h(x) = sign
(

w0 + w
T

1 x
)

for some values of the parameters w0,w1.
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VC-dimension: preliminaries

• Complexity: how many different ways can we label n

training points {x1, . . . ,xn} with classifiers h ∈ F?

In other words, how many distinct binary vectors

[h(x1) h(x2) . . . h(xn)]

do we get by trying out each h ∈ F in turn?

[ -1 1 . . . 1 ] h1

[ 1 -1 . . . 1 ] h2

. . .
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VC-dimension: shattering
• A set of classifiers F shatters n points {x1, . . . ,xn} if

[h(x1) h(x2) . . . h(xn)], h ∈ F

generates all 2n distinct labelings.

• Example: linear decision boundaries shatter (any) 3 points

in 2D
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VC-dimension: shattering cont’d

• We cannot shatter any set of 4 points in 2D with linear

classifiers. For example, we cannot generate the following

XOR-labeling:

x

x

x

x

+ -

+-

• More generally: the set of all d-dimensional linear classifiers

can shatter exactly d + 1 points
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VC-dimension: shattering cont’d

• We cannot shatter any set of 4 points in 2D with linear

classifiers. For example, we cannot generate the following

XOR-labeling:

x

x

x

x

+ -

+-

• More generally: the set of all d-dimensional linear classifiers

can shatter exactly d + 1 points

• Definition: The VC-dimension dV C of a set of classifiers F

is the number of points F can shatter
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Learning and VC-dimension

• We learn something only after we no longer can shatter the

training points (have more than dV C training examples)

Rationale: suppose we have n training examples and labels

(x1, y1), . . . , (xn, yn) and n < dV C. Does the training set

constrain our prediction for xn+1?

Because we expect to be able to shatter n+1 points (≤ dV C)

it follows that we can find h1, h2 ∈ F , both consistent with

training labels, but

h1(xn+1) = 1, h2(xn+1) = −1

We therefore cannot determine which label to predict for

xn+1.
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Learning and VC-dimension
• We learn something only after we no longer can shatter the

training points (have more than dV C training examples)
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Model selection

• We try to find the model with the best balance of complexity

and the fit to the training data

• Ideally, we would select a model from a nested sequence of

models of increasing complexity

Model 1 d1

Model 2 d2

Model 3 d3

where d1 ≤ d2 ≤ d3 ≤ . . .

• Basic model selection criterion:

Criterion = (empirical) score + Complexity penalty
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Structural risk minimization

• In structural risk minimization we define the models in terms

of VC-dimension (or refinements)

Model 1 dV C = d1

Model 2 dV C = d2

Model 3 dV C = d3

where d1 ≤ d2 ≤ d3 ≤ . . .

• The selection criterion: lowest upper bound on the expected

loss

Expected loss ≤ Empirical loss + Complexity penalty
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Example

• Models of increasing complexity

Model 1 K(x1,x2) = (1 + (xT
1
x2))

Model 2 K(x1,x2) = (1 + (xT
1
x2))

2

Model 3 K(x1,x2) = (1 + (xT
1
x2))

3

. . . . . .

• These are nested, i.e.,

F1 ⊆ F2 ⊆ F3 ⊆ . . .

where Fk refers to the set of possible decision boundaries

that the model k can represent.

• Still need to derive the criterion...
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Structural risk minimization cont’d

• For our zero-one loss (classification error), we can derive the

following complexity penalty (Vapnik 1995):

ǫ(n, δ, d) =

√

dV C(log(2n/dV C) + 1) + log(1/(4δ))

n

1. This is an increasing function of dV C

2. Increases as δ decreases

3. Decreases as a function of n

(this is not the only choice...)
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Structural risk minimization cont’d

• Competition of terms...

1. Empirical loss decreases with increasing dV C

2. Complexity penalty increases with increasing dV C
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• We find the minimum of the model score (bound).
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Structural risk minimization: example
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Structural risk minimization: example cont’d

• Number of training examples n = 50, confidence parameter

δ = 0.05.

Model dV C Empirical fit Complexity penalty ǫ(n, δ, dV C)

1st order 3 0.06 0.5501

2nd order 6 0.06 0.6999

4th order 15 0.04 0.9494

8th order 45 0.02 1.2849

• Structural risk minimization would select the simplest (linear)

model in this case.
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2.  (T/F ) If there exists a set of k instances that cannot be 

shattered by H, then VC(H) < k. 

3.  Give the VC dimension of the class: 

 H is the set of all perceptrons in 2D plane, i.e. 

4. H = Axis parallel rectangles in R2 

What is the VC dimension of H? 



Since, there can be at most 4 distinct                                                        

extreme points (smallest or largest                                                          

along some dimension) and these  

cannot be included (labeled +) 

 without including the 5th point. 

   

 Therefore VC(H) = 4 
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