
Unsupervised Learning and 

Clustering 



Supervised vs. Unsupervised Learning 

 Up to now we considered supervised learning  
scenario, where we are given 

1. samples x1,…, xn 

2. class labels for all samples x1,…, xn 

 This is also called learning with teacher, since correct 
answer (the true class) is provided 

 

 Today we consider unsupervised learning 
scenario, where we are only given 

1. samples x1,…, xn  

 This is also called learning without teacher, since 
correct answer is not provided 

 do not split data into training and test sets 



Clustering  

 Seek “natural” clusters in the data 

 

 Clustering is a way to discover new 

categories (classes) 

 What is a good clustering? 

 internal (within the cluster) distances should be  small 

 external (intra-cluster) should be large 



What we Need for Clustering  
1. Proximity measure, either  

 similarity measure s(xi,xk): large if xi,xk are similar 

 dissimilarity(or distance) measure d(xi,xk): small if xi,xk are similar  

 

 
2. Criterion function to evaluate a clustering 

 

good clustering  
3. Algorithm to compute clustering 

 For example, by optimizing the criterion function 

large d, small s large s, small d 

bad clustering 



How Many Clusters? 

3 clusters or 2 clusters?           
 

 Possible approaches  

1. fix the number of clusters to k 

2. find the best clustering according to the criterion 

function (number of clusters may vary) 



Proximity Measures 

 good proximity measure is VERY application 

dependent 

 Clusters should be invariant under the transformations 

“natural” to the problem 

 For example for object recognition, should have 

invariance to rotation 

 For character recognition,  no invariance to rotation 

distance 0 

9 6 



Distance (dissimilarity) Measures 

 

 Manhattan (city block) distance 
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 Euclidean distance 
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 approximation to Euclidean distance, 

cheaper to compute 
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 Chebyshev distance 

 
 approximation to Euclidean distance, 

cheapest to compute 

 

 

 
 translation invariant 

 

 



Similarity Measures 

 

 Correlation coefficient 

 

 

 

 Cosine similarity: 
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 the smaller the angle, the larger the 

similarity 
 scale invariant measure 
 popular in text retrieval 

 

  
 popular in image processing 
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SSE Criterion Function 

 Let ni  be the number of samples in Di, and define 

the mean of samples in is Di  
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 Then the sum-of-squared errors criterion function (to 

minimize) is: 
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 Note that the number of clusters, c, is fixed 



SSE Criterion Function 

 SSE criterion appropriate when data forms compact 

clouds that are relatively well separated 
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 SSE criterion favors equally sized clusters, and may 

not be appropriate when “natural” groupings have 

very different sizes 
large JSSE small JSSE 



Failure Example for JSSE 

larger JSSE 
smaller JSSE 

 The problem is that one of the “natural” clusters is 

not compact (the outer ring) 



Other Minimum Variance Criterion Functions 

 We can eliminate constant terms from 
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di = average Euclidian 
distance between all pairs 
of samples in Di 

 Can obtain other criterion functions by replacing      

||x - y||2  by any other measure of distance between 

points in Di 

 Alternatively can replace di  by the median, 

maximum, etc. instead of the average distance 

EJ

 We get an equivalent criterion function: 



Maximum Distance Criterion  

 Consider 
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 Solves previous case  However Jmax is not robust to 

outliers 

smallest Jmax 



Iterative Optimization Algorithms 

 Now have both proximity measure and criterion 

function, need algorithm to find the optimal clustering 

 Exhaustive search is impossible, since there are 

approximately  cn/c!   possible partitions 

 Usually some iterative algorithm is used  

1. Find a reasonable initial partition 

2. Repeat: move samples from one group to another s.t. the 

objective function J is improved 

J = 777,777 

move  

 

samples to 
improve J 

 J =666,666 



K-means Clustering 

 for a different objective function, we need a different 

optimization algorithm, of course 

 We now consider an example of iterative 

optimization algorithm for the special case of JSSE 

objective function 
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 k-means is probably the most famous clustering 

algorithm 

 it has a smart way of moving from current partitioning to 

the next one 

 Fix number of clusters to k (c = k) 



K-means Clustering 

1. Initialize 
 pick k cluster centers arbitrary 
 assign each example to closest 

center 

x 

x x 

x 

x x 

x 

x x 

2. compute sample 

means for each cluster 

3. reassign all samples to the 

closest mean 

4. if clusters changed at step 3, go to step 2 

k = 3 



K-means Clustering 

 Thus the algorithm converges after a finite number 

of iterations of steps 2 and 3 

 However the algorithm is not guaranteed to find a 

global minimum 

1 

2 

x 

x 

2-means gets stuck  here global minimum of JSSE 



Hierarchical  Clustering 

 For some data, hierarchical clustering is more 

appropriate than “flat” clustering 

? 

 Hierarchical clustering 

 Up to now, considered “flat” clustering 



Hierarchical  Clustering: Dendogram 

 preferred way to represent a hierarchical clustering 

is a dendrogram 

 Binary tree 

 Level k corresponds to 

partitioning with n-k+1 

clusters 

 if need k clusters, take 

clustering from level n-k+1 

 If samples are in the same 

cluster at level k, they stay in the 

same cluster at higher levels 

 dendrogram typically shows the similarity of 

grouped clusters 



Example 



Hierarchical  Clustering 

 Algorithms for hierarchical clustering can be 

divided into two types: 

1. Agglomerative (bottom up) procedures 

 Start with n singleton  clusters 

 Form hierarchy by merging most similar clusters 

2. Divisive (top bottom) procedures 

 Start with all samples in one cluster 

 Form hierarchy by splitting the “worst” clusters 

2 
3 

4 5 6 



Divisive Hierarchical Clustering 

 Any “flat” algorithm which produces a fixed number 

of clusters can be used  

 set c = 2 



Agglomerative Hierarchical Clustering 

 initialize with each example in 
 singleton cluster 

while there is more than 1 cluster 

1. find 2 nearest clusters 
2. merge them 

 Four common ways to measure cluster distance 
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Single Linkage or Nearest Neighbor 

 Agglomerative clustering with minimum distance 
  ||||, min

,
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 generates minimum spanning tree 
 encourages growth of elongated clusters 
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 disadvantage: very sensitive to noise 

noisy sample 

what we want at level with c=3 what we get at level with c=3 



Complete Linkage or Farthest Neighbor 

 Agglomerative clustering with maximum distance 
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 encourages compact 

clusters 

 Does not work well if elongated clusters present 

1D
2D 3D

 32max ,DDd 21max ,DDd <     
 thus D1 and D2 are merged instead of D2 and D3  
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Average and Mean Agglomerative Clustering 

 Agglomerative clustering is more robust under the 

average or the mean cluster distance 
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 mean distance is cheaper to compute than the 

average distance  

 unfortunately, there is not much to say about 

agglomerative clustering theoretically, but it does 

work reasonably well in practice 



Agglomerative vs. Divisive 

 Agglomerative is faster to compute, in general 

 Divisive may be less “blind” to the global structure 

of the data 

Divisive 

when taking the first step 
(split), have access to all 
the data; can find the best 
possible split in 2 parts 

Agglomerative 

when taking the first step 
merging, do not consider 
the global structure of the 
data, only look at pairwise 
structure 



First (?) Application of Clustering 

 John Snow, a London physician plotted the 

location of cholera deaths on a map during an 

outbreak in the 1850s. 

 The locations indicated that cases were 

clustered around certain intersections where 

there were polluted wells -- thus exposing both 

the problem and the solution. 

From: Nina Mishra HP Labs 

 



Application of Clustering 

 Astronomy 

 SkyCat: Clustered 2x109 sky objects into stars, galaxies, 

quasars, etc based on radiation emitted in different 

spectrum bands. 

 

 

From: Nina Mishra HP Labs 

 



Applications of Clustering 

 Image segmentation 

 Find interesting “objects” in images to focus attention at 

From: Image Segmentation by Nested Cuts, O. Veksler, CVPR2000 



Applications of Clustering 

 Image Database Organization 
 for efficient search 



Applications of Clustering 

 Data Mining 

 Technology watch  
 Derwent Database, contains all patents filed in the 

last 10 years worldwide  
 Searching by keywords leads to thousands of 

documents 

 Find clusters in the database and find if there are any  
emerging technologies and what competition is up to 

 Marketing 

 Customer database 

 Find clusters of customers and tailor marketing 
schemes to them 

 



Applications of Clustering 

 gene expression profile clustering 

 similar expressions , expect similar function 
U18675 4CL -0.151 -0.207 0.126 0.359 0.208 0.091 -0.083 -0.209  

M84697 a-TUB 0.188 0.030 0.111 0.094 -0.009 -0.173 -0.119 -0.136  

M95595 ACC2 0.000 0.041 0.000 0.000 0.000 0.000 0.000 0.000  

X66719 ACO1 0.058 0.155 0.082 0.284 0.240 0.065 -0.159 -0.010  

U41998 ACT 0.096 -0.019 0.070 0.137 0.089 0.038 0.096 -0.070  

AF057044 ACX1 0.268 0.403 0.679 0.785 0.565 0.260 0.203 0.252  

AF057043 ACX2 0.415 0.000 -0.053 0.114 0.296 0.242 0.090 0.230  

U40856 AIG1 0.096 -0.106 -0.027 -0.026 -0.005 -0.052 0.054 0.006  

U40857 AIG2 0.311 0.140 0.257 0.261 0.158 0.056 -0.049 0.058  

AF123253 AIM1 -0.040 0.002 -0.202 -0.040 0.077 0.081 0.088 0.224 

X92510 AOS 0.473 0.560 0.914 0.625 0.375 0.387 0.019 0.141 

From:De Smet F., Mathys J., Marchal K., Thijs G., De Moor B. & Moreau Y. 2002.  

Adaptive Quality-based clustering of gene expression profiles, Bioinformatics, 18(6), 735-746.  

 



Applications of Clustering 

 Profiling Web Users 

 Use web access  logs to generate a feature vector for 

each user 

 Cluster users based on their feature vectors 

 Identify common goals for users 

 Shopping 

 Job Seekers 

 Product Seekers 

 Tutorials Seekers 

 Can use clustering results to improving web content and 

design 



Summary 

 Clustering (nonparametric unsupervised learning) 

is useful for discovering inherent structure in data 

 Clustering is immensely useful in different fields 

 Clustering comes naturally to humans (in up to 3 

dimensions), but not so to computers  

 It is very easy to design a clustering algorithm, but 

it is very hard to say if it does anything good 

 General purpose clustering does not exist, for best 

results, clustering should be tuned to application at 

hand 

 


