Unsupervised Learning and
Clustering



Supervised vs. Unsupervised Learning

= Up to now we considered supervised learning
scenario, where we are given
1. samples x,..., X,
2. class labels for all samples x4,..., X,

= This is also called learning with teacher, since correct
answer (the true class) is provided

= Today we consider unsupervised learning
scenario, where we are only given
1. samples x,..., X,

= This is also called learning without teacher, since
correct answer is not provided

= do not split data into training and test sets



Clustering

= Seek "natural” clusters in the data

= What is a good clustering?
= Internal (within the cluster) distances should be small
= external (intra-cluster) should be large

= Clustering Is a way to discover new
categories (classes)



What we Need for Clustering

1. Proximity measure, either
= similarity measure s(x;,X,): large if x;,x, are similar
= dissimilarity(or distance) measure d(x;,x,): small if x;,x, are similar

large d, small s large s, small d
O O *—©O

good clustering bad clusterlng

3. Algorithm to compute clustering
= For example, by optimizing the criterion function



How Many Clusters?
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3 clusters or 2 clusters?

= Possible approaches
1. fix the number of clusters to k

2. find the best clustering according to the criterion
function (number of clusters may vary)



Proximity Measures

= good proximity measure is VERY application
dependent

= Clusters should be invariant under the transformations
“natural” to the problem

= For example for object recognition, should have
Invariance to rotation

distance O

= For character recognition, no invariance to rotation
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Distance (dissimilarity) Measures

= Euclidean distance

d

d(xi’xj)=\/Z(ka)—X,(k))z

k=1

= translation invariant

=  Manhattan (city block) distance

d(xi, )Z\X X1

= approximation to Euclldean distance,
cheaper to compute

= Chebyshev distance

d(xi,x ) T%|X —x 8

= approximation to Euclidean distance,

cheapest to compute

s

.




Similarity Measures

= Cosine similarity:

X! X
s(xi,xj)

X |l IIX |

= the smaller the angle, the larger the
similarity

= scale invariant measure

= popular in text retrieval

= Correlation coefficient
= popular in image processing

3 () =% Yx© = x )
s(xi,xj) =

-6 |

k=1




SSE Criterion Function

= Letn; bethe number of samples in D;, and define
the mean of samples in is D,

1
Hi —n_zx

= Then the sum-of-squared errors criterion function (to

minimize) Is: c
) JSSE=ZZ”X_M I°
i=1 xeDb,
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= Note that the number of clusters, c, Is fixed



SSE Criterion Function

Jsse =Z Z” X—u |I°
i=1 xeDb;

SSE criterion appropriate when data forms compact
clouds that are relatively well separated

O
SSE criterion favors equally sized clusters, and may
not be appropriate when “natural” groupings have

very different sizes

large Jgoe small Jgge




Fallure Example for Jecp
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= The problem is that one of the “natural” clusters is
not compact (the outer ring)



Other Minimum Variance Criterion Functions
=  \We can eliminate constant terms from

Jsse =ZZ” X —u|l°

|=1 XEDi

= We get an equivalent criterion function:

) =52n [nlzzz”x—ynZ]

i yEDiXGDi

d, = average Euclidian
distance between all pairs
of samples in D,
= Can obtain other criterion functions by replacing
lIX - y||? by any other measure of distance between
points in D,
= Alternatively can replace d; by the median,
maximum, etc. instead of the average distance



Maximum Distance Criterion

= Consider Jmax=leni maxllx—yllz]

_y EDi ,XGDi

= Solves previous case = However J_, ., IS not robust to
outliers
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lterative Optimization Algorithms

= Now have both proximity measure and criterion
function, need algorithm to find the optimal clustering

= Exhaustive search is impossible, since there are
approximately c"/c! possible partitions

= Usually some iterative algorithm is used

1. Find a reasonable initial partition

2. Repeat: move samples from one group to another s.t. the
objective function J is improved

move

samples to
Improve J

J=777,777 J =666,666




K-means Clustering

= We now consider an example of iterative

optimization algorithm for the special case of Jgg
objective function

k
Jsse =Z Z” X —u |I°

|=1 XEDi

= for a different objective function, we need a different
optimization algorithm, of course

=  Fix number of clusters to k (¢ = k)

= k-means is probably the most famous clustering
algorithm

= |t has a smart way of moving from current partitioning to
the next one



K-means Clustering

1. Initialize
= pick k cluster centers arbitrary

= assign each example to closest
center

2. compute sample
means for each cluster

--------------------------------------------------------------------------------------------------------------------------------------------------------

3. reassign all samples to the
closest mean

4. If clusters changed at step 3, go to step 2



K-means Clustering

= Thus the algorithm converges after a finite number
of iterations of steps 2 and 3

= However the algorithm is not guaranteed to find a

global minimum
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Hierarchical Clustering

Up to now, considered “flat” clustering

o "a ..... . ::."6 . ':.:: - 6 "n,"‘-
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= For some data, hierarchical clustering is more

appropriate than “flat” clustering

= Hierarchical clustering




Hierarchical Clustering: Dendogram

= preferred way to represent a hierarchical clustering
IS a dendrogram

= Binary tree

= Level k corresponds to
partitioning with n-k+1
clusters

= If need k clusters, take
clustering from level n-k+1

= |f samples are in the same
cluster at level k, they stay in the
same cluster at higher levels
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= dendrogram typically shows the similarity of
grouped clusters



Example
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Hierarchical Clustering

= Algorithms for hierarchical clustering can be
divided into two types:
1. Agglomerative (bottom up) procedures
= Start with n singleton clusters
= Form hierarchy by merging most similar clusters
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2. Divisive (top bottom) procedures
= Start with all samples in one cluster
= Form hierarchy by splitting the “worst” clusters



Divisive Hierarchical Clustering

= Any “flat” algorithm which produces a fixed number
of clusters can be used

= setc=2




Agglomerative Hierarchical Clustering
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initialize with each example in 9 @;
singleton cluster

while there is more than 1 cluster

1. find 2 nearest clusters (@@
2. merge them

Four common ways to measure cluster o

1. minimum distance d_.(D..D,)= min Il x-y |

XGDhyEDj

2. maximum distance dmax(DnDj)= max |l x-y

XEDhyEDj
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3. average distance davg(Di,Dj)= ! DDl x=yl



Single Linkage or Nearest Neighbor

: Agglomeratlve clusterlng with minimum distance
mln I x =yl

= generates minimum spannlng tree

= encourages growth of elongated clusters
= disadvantage: very sensitive to noise

what we want at level Wlth c=3 | what we get at Ievel Wlth c=3
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Complete Linkage or Farthest Neighbor

= Agglomerative clustering with maximum distance
dmax(Di ’Dj)= maX ” X—=y ”

XEDi ,y GDJ

= encourages compact
clusters

= Does not work well if elongated clusters present

- dmax(Dl’DZ) < dmax(DZ’DS)
= thus D, and D, are merged instead of D, and D



Average and Mean Agglomerative Clustering

Agglomerative clustering is more robust under the
average or the mean cluster distance

davg(Di’Dj)= ! ZZ”X_YH

nl nJ XeDi yGDJ

dpnean(Di:D; )=l 4 — a4, ||

mean distance is cheaper to compute than the
average distance

unfortunately, there is not much to say about
agglomerative clustering theoretically, but it does
work reasonably well in practice



Agglomerative vs. Divisive

= Agglomerative is faster to compute, in general

= Divisive may be less “blind” to the global structure
of the data

Divisive Agglomerative
when taking the first step when taking the first step
(split), have access to all merging, do not consider
the data; can find the best the global structure of the
possible split in 2 parts data, only look at pairwise

structure

RRPP




First (?) Application of Clustering

= John Snow, a London physician plotted the
location of cholera deaths on a map during an
outbreak in the 1850s.

= The locations indicated that cases were
clustered around certain intersections where
there were polluted wells -- thus exposing both
the problem and the solution.
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From: Nina Mishra HP Labs



Application of Clustering

= Astronomy

= SkyCat: Clustered 2x10° sky objects into stars, galaxies,
guasars, etc based on radiation emitted in different
spectrum bands.

From: Nina Mishra HP Labs



Applications of Clustering

= |mage segmentation
= Find interesting “objects” in images to focus attention at

From: Image Segmentation by Nested Cuts, O. Veksler, CVPR2000



Applications of Clustering

Image Database Organization
= for efficient search




Applications of Clustering

= Data Mining

= Technology watch
= Derwent Database, contains all patents filed in the
last 10 years worldwide

= Searching by keywords leads to thousands of
documents

= Find clusters in the database and find If there are any
emerging technologies and what competition is up to

= Marketing
= Customer database

= Find clusters of customers and tailor marketing
schemes to them



Applications of Clustering

= gene expression profile clustering
= similar expressions , expect similar function

U186754CL -0.157 -0.207 0.126 0.359 0.208 0.091 -0.083 -0.209
ME4697 a-TUB 0.188 0.030 0.111 0.094 -0.009 -0.173 -0.119 -0.136
M95595 ACC2 0.000 0.041 0.000 0.000 0.000 0.000 0.000 0.000
X66719ACOT 0.058 0.155 0.082 0.284 0.240 0.065 -0.159 -0.010
U41998 ACT 0.096 -0.019 0.070 0.137 0.089 0.038 0.096 -0.070
AF057044 ACXT1 0.268 0.403 0.679 0.785 0.565 0.260 0.203 0.252
AF057043 ACX2 0.415 0.000-0.053 0.114 0.296 0.242 0.090 0.230
U40856 AIG1 0.096 -0.106 -0.027 -0.026 -0.005 -0.052 0.054 0.006
U40857 AIG2 0.311 0.140 0.257 0.267 0.158 0.056 -0.049 0.058
AF123253 AIM1 -0.040 0.002 -0.202 -0.040 0.077 0.081 0.088 0.224
X92510 A0S 0.473 0.560 0.9714 0.625 0.375 0.387 0.019 0.141

cluster3 53 genes

clusterl 521 genes cluster?2 566 genes

From:De Smet F., Mathys J., Marchal K., Thijs G., De Moor B. & Moreau Y. 2002.
Adaptive Quality-based clustering of gene expression profiles, Bioinformatics, 18(6), 735-746.



Applications of Clustering

=  Profiling Web Users

= Use web access logs to generate a feature vector for
each user

= Cluster users based on their feature vectors
= |dentify common goals for users

= Shopping

= Job Seekers

=  Product Seekers

= Tutorials Seekers

= Can use clustering results to improving web content and
design



Summary

Clustering (nonparametric unsupervised learning)
Is useful for discovering inherent structure in data

Clustering is immensely useful in different fields

Clustering comes naturally to humans (in up to 3
dimensions), but not so to computers

It iIs very easy to design a clustering algorithm, but
it Is very hard to say If it does anything good

General purpose clustering does not exist, for best

results, clustering should be tuned to application at
hand



