
Unsupervised Learning and 

Clustering 



Supervised vs. Unsupervised Learning 

 Up to now we considered supervised learning  
scenario, where we are given 

1. samples x1,…, xn 

2. class labels for all samples x1,…, xn 

 This is also called learning with teacher, since correct 
answer (the true class) is provided 

 

 Today we consider unsupervised learning 
scenario, where we are only given 

1. samples x1,…, xn  

 This is also called learning without teacher, since 
correct answer is not provided 

 do not split data into training and test sets 



Clustering  

 Seek “natural” clusters in the data 

 

 Clustering is a way to discover new 

categories (classes) 

 What is a good clustering? 

 internal (within the cluster) distances should be  small 

 external (intra-cluster) should be large 



What we Need for Clustering  
1. Proximity measure, either  

 similarity measure s(xi,xk): large if xi,xk are similar 

 dissimilarity(or distance) measure d(xi,xk): small if xi,xk are similar  

 

 
2. Criterion function to evaluate a clustering 

 

good clustering  
3. Algorithm to compute clustering 

 For example, by optimizing the criterion function 

large d, small s large s, small d 

bad clustering 



How Many Clusters? 

3 clusters or 2 clusters?           
 

 Possible approaches  

1. fix the number of clusters to k 

2. find the best clustering according to the criterion 

function (number of clusters may vary) 



Proximity Measures 

 good proximity measure is VERY application 

dependent 

 Clusters should be invariant under the transformations 

“natural” to the problem 

 For example for object recognition, should have 

invariance to rotation 

 For character recognition,  no invariance to rotation 

distance 0 

9 6 



Distance (dissimilarity) Measures 

 

 Manhattan (city block) distance 
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 approximation to Euclidean distance, 

cheaper to compute 
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 Chebyshev distance 

 
 approximation to Euclidean distance, 

cheapest to compute 

 

 

 
 translation invariant 

 

 



Similarity Measures 

 

 Correlation coefficient 

 

 

 

 Cosine similarity: 
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 the smaller the angle, the larger the 

similarity 
 scale invariant measure 
 popular in text retrieval 

 

  
 popular in image processing 
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SSE Criterion Function 

 Let ni  be the number of samples in Di, and define 

the mean of samples in is Di  
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 Then the sum-of-squared errors criterion function (to 

minimize) is: 
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 Note that the number of clusters, c, is fixed 



SSE Criterion Function 

 SSE criterion appropriate when data forms compact 

clouds that are relatively well separated 
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 SSE criterion favors equally sized clusters, and may 

not be appropriate when “natural” groupings have 

very different sizes 
large JSSE small JSSE 



Failure Example for JSSE 

larger JSSE 
smaller JSSE 

 The problem is that one of the “natural” clusters is 

not compact (the outer ring) 



Other Minimum Variance Criterion Functions 

 We can eliminate constant terms from 
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di = average Euclidian 
distance between all pairs 
of samples in Di 

 Can obtain other criterion functions by replacing      

||x - y||2  by any other measure of distance between 

points in Di 

 Alternatively can replace di  by the median, 

maximum, etc. instead of the average distance 

EJ

 We get an equivalent criterion function: 



Maximum Distance Criterion  

 Consider 
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smallest Jmax 

 Solves previous case  However Jmax is not robust to 

outliers 

smallest Jmax 



Iterative Optimization Algorithms 

 Now have both proximity measure and criterion 

function, need algorithm to find the optimal clustering 

 Exhaustive search is impossible, since there are 

approximately  cn/c!   possible partitions 

 Usually some iterative algorithm is used  

1. Find a reasonable initial partition 

2. Repeat: move samples from one group to another s.t. the 

objective function J is improved 

J = 777,777 

move  

 

samples to 
improve J 

 J =666,666 



K-means Clustering 

 for a different objective function, we need a different 

optimization algorithm, of course 

 We now consider an example of iterative 

optimization algorithm for the special case of JSSE 

objective function 
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 k-means is probably the most famous clustering 

algorithm 

 it has a smart way of moving from current partitioning to 

the next one 

 Fix number of clusters to k (c = k) 



K-means Clustering 

1. Initialize 
 pick k cluster centers arbitrary 
 assign each example to closest 

center 

x 

x x 

x 

x x 

x 

x x 

2. compute sample 

means for each cluster 

3. reassign all samples to the 

closest mean 

4. if clusters changed at step 3, go to step 2 

k = 3 



K-means Clustering 

 Thus the algorithm converges after a finite number 

of iterations of steps 2 and 3 

 However the algorithm is not guaranteed to find a 

global minimum 

1 

2 

x 

x 

2-means gets stuck  here global minimum of JSSE 



Hierarchical  Clustering 

 For some data, hierarchical clustering is more 

appropriate than “flat” clustering 

? 

 Hierarchical clustering 

 Up to now, considered “flat” clustering 



Hierarchical  Clustering: Dendogram 

 preferred way to represent a hierarchical clustering 

is a dendrogram 

 Binary tree 

 Level k corresponds to 

partitioning with n-k+1 

clusters 

 if need k clusters, take 

clustering from level n-k+1 

 If samples are in the same 

cluster at level k, they stay in the 

same cluster at higher levels 

 dendrogram typically shows the similarity of 

grouped clusters 



Example 



Hierarchical  Clustering 

 Algorithms for hierarchical clustering can be 

divided into two types: 

1. Agglomerative (bottom up) procedures 

 Start with n singleton  clusters 

 Form hierarchy by merging most similar clusters 

2. Divisive (top bottom) procedures 

 Start with all samples in one cluster 

 Form hierarchy by splitting the “worst” clusters 

2 
3 

4 5 6 



Divisive Hierarchical Clustering 

 Any “flat” algorithm which produces a fixed number 

of clusters can be used  

 set c = 2 



Agglomerative Hierarchical Clustering 

 initialize with each example in 
 singleton cluster 

while there is more than 1 cluster 

1. find 2 nearest clusters 
2. merge them 

 Four common ways to measure cluster distance 

1. minimum distance   ||||, min
,

min yxDDd
ji DyDx

ji 


2. maximum distance   ||||, max
,

max yxDDd
ji DyDx

ji 
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  ||||, jijimean DDd  4. mean distance 



Single Linkage or Nearest Neighbor 

 Agglomerative clustering with minimum distance 
  ||||, min

,
min yxDDd

ji DyDx
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 generates minimum spanning tree 
 encourages growth of elongated clusters 

1 2 
3 

4 5 

 disadvantage: very sensitive to noise 

noisy sample 

what we want at level with c=3 what we get at level with c=3 



Complete Linkage or Farthest Neighbor 

 Agglomerative clustering with maximum distance 
  ||||, max

,
max yxDDd

ji DyDx
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 encourages compact 

clusters 

 Does not work well if elongated clusters present 

1D
2D 3D

 32max ,DDd 21max ,DDd <     
 thus D1 and D2 are merged instead of D2 and D3  

1 

2 3 4 

5 



Average and Mean Agglomerative Clustering 

 Agglomerative clustering is more robust under the 

average or the mean cluster distance 
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 mean distance is cheaper to compute than the 

average distance  

 unfortunately, there is not much to say about 

agglomerative clustering theoretically, but it does 

work reasonably well in practice 



Agglomerative vs. Divisive 

 Agglomerative is faster to compute, in general 

 Divisive may be less “blind” to the global structure 

of the data 

Divisive 

when taking the first step 
(split), have access to all 
the data; can find the best 
possible split in 2 parts 

Agglomerative 

when taking the first step 
merging, do not consider 
the global structure of the 
data, only look at pairwise 
structure 



First (?) Application of Clustering 

 John Snow, a London physician plotted the 

location of cholera deaths on a map during an 

outbreak in the 1850s. 

 The locations indicated that cases were 

clustered around certain intersections where 

there were polluted wells -- thus exposing both 

the problem and the solution. 

From: Nina Mishra HP Labs 

 



Application of Clustering 

 Astronomy 

 SkyCat: Clustered 2x109 sky objects into stars, galaxies, 

quasars, etc based on radiation emitted in different 

spectrum bands. 

 

 

From: Nina Mishra HP Labs 

 



Applications of Clustering 

 Image segmentation 

 Find interesting “objects” in images to focus attention at 

From: Image Segmentation by Nested Cuts, O. Veksler, CVPR2000 



Applications of Clustering 

 Image Database Organization 
 for efficient search 



Applications of Clustering 

 Data Mining 

 Technology watch  
 Derwent Database, contains all patents filed in the 

last 10 years worldwide  
 Searching by keywords leads to thousands of 

documents 

 Find clusters in the database and find if there are any  
emerging technologies and what competition is up to 

 Marketing 

 Customer database 

 Find clusters of customers and tailor marketing 
schemes to them 

 



Applications of Clustering 

 gene expression profile clustering 

 similar expressions , expect similar function 
U18675 4CL -0.151 -0.207 0.126 0.359 0.208 0.091 -0.083 -0.209  

M84697 a-TUB 0.188 0.030 0.111 0.094 -0.009 -0.173 -0.119 -0.136  

M95595 ACC2 0.000 0.041 0.000 0.000 0.000 0.000 0.000 0.000  

X66719 ACO1 0.058 0.155 0.082 0.284 0.240 0.065 -0.159 -0.010  

U41998 ACT 0.096 -0.019 0.070 0.137 0.089 0.038 0.096 -0.070  

AF057044 ACX1 0.268 0.403 0.679 0.785 0.565 0.260 0.203 0.252  

AF057043 ACX2 0.415 0.000 -0.053 0.114 0.296 0.242 0.090 0.230  

U40856 AIG1 0.096 -0.106 -0.027 -0.026 -0.005 -0.052 0.054 0.006  

U40857 AIG2 0.311 0.140 0.257 0.261 0.158 0.056 -0.049 0.058  

AF123253 AIM1 -0.040 0.002 -0.202 -0.040 0.077 0.081 0.088 0.224 

X92510 AOS 0.473 0.560 0.914 0.625 0.375 0.387 0.019 0.141 

From:De Smet F., Mathys J., Marchal K., Thijs G., De Moor B. & Moreau Y. 2002.  

Adaptive Quality-based clustering of gene expression profiles, Bioinformatics, 18(6), 735-746.  

 



Applications of Clustering 

 Profiling Web Users 

 Use web access  logs to generate a feature vector for 

each user 

 Cluster users based on their feature vectors 

 Identify common goals for users 

 Shopping 

 Job Seekers 

 Product Seekers 

 Tutorials Seekers 

 Can use clustering results to improving web content and 

design 



Summary 

 Clustering (nonparametric unsupervised learning) 

is useful for discovering inherent structure in data 

 Clustering is immensely useful in different fields 

 Clustering comes naturally to humans (in up to 3 

dimensions), but not so to computers  

 It is very easy to design a clustering algorithm, but 

it is very hard to say if it does anything good 

 General purpose clustering does not exist, for best 

results, clustering should be tuned to application at 

hand 

 


