
Some slides are due to Robin Dhamankar

Boosting

Some slides are due to Robin Dhamankar
Vandi Verma & Sebastian Thrun



Boosting: motivation

� It is usually hard to design an accurate classifier which 
generalizes well

� However it is usually easy to find many “rule of thumb” 
weak classifiers
� A classifier is weak if it is only slightly better than random � A classifier is weak if it is only slightly better than random 

guessing

� Can we combine several weak classifiers to produce an 
accurate classifier?
� Question people have been working on since 1980’s



Ada Boost

� Let’s assume we have 2-class classification problem, with 
yi∈ {-1,1}

� Ada boost will produce a discriminant function: 

( ) ( ) 0   , t
1

≥=∑
=

αα
T

t
tt xfxg

where f (x) is the “weak” classifier

� The final classifier is sign of
� Given x, each weak classifier votes for a label          using      

votes allocated to it. The ensemble then classifies the 
example according to which label receives the most votes.

� Note that                     whenever the votes are normalized to 
sum to one. So,               only if all the weak classifiers 
agree that the label should be y = 1.

( )xft tα

where ft(x) is the “weak” classifier

( )xg

( ) [ ]1,1−∈xg

( ) 1=xg



Idea Behind Ada Boost

� Algorithm is iterative
� Maintains distribution of weights over the training 

examples
� Initially distribution of weights is uniform
� At successive iterations, the weight of misclassified 

examples is increased, forcing the weak learner to 
focus on the hard examples in the training set



More Comments on Ada Boost

� Ada boost is very simple to implement, provided you 
have an implementation of a “weak learner”

� Will work as long as the “basic” classifier ft(x) is at 
least slightly better than random 

� Can be applied to boost any classifier, not � Can be applied to boost any classifier, not 
necessarily weak



Ada Boost (slightly modified from the original version)

� d(x) is the distribution of weights over the N training 
points ∑ d(xi)=1

� Initially assign uniform weights d0(xi) = 1/N for all xi

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)
� Compute the error rate  ε as � Compute the error rate  εt  as 
εt= ∑i=1…N dt(xi ) · I[yi  ≠ ft(xi )]

� assign weight αt the classifier  ft‘s  in the final hypothesis
αt = ½ log ((1 – εt )/εt )

� For each xi , dt+1(xi ) = dt(xi ) · exp(-αt yi  ft(xi ))
� Normalize dt+1(xi ) so that ∑i=1 dt+1(xi ) = 1

� fFINAL(x) =sign [ ∑ αt ft (x) ]



Ada Boost

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)
� Compute εt the error rate as 
εt= ∑ dt(xi ) · I[yi  ≠ ft(xi )]

� assign weight αt the classifier  ft‘s  in the final hypothesis
αt = ½ log ((1 – εt )/εt )

� For each x , d (x ) = d (x ) · exp(-α y f (x ))� For each xi , dt+1(xi ) = dt(xi ) · exp(-αt yi ft(xi ))
� Normalize dt+1(xi ) so that  ∑t+1d(xi ) = 1

� fFINAL(x) =sign [ ∑ αt ft (x) ]

� If the classifier does not take weighted samples, this 
step can be achieved by sampling from the training 
samples according to the distribution dt(x)



Ada Boost

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)

� Compute εt  the error rate as 
εt= ∑ dt(xi ) · I[yi  ≠ ft(xi )]

� assign weight αt  the classifier  ft‘s  in the final hypothesis
αt = ½ log ((1 – εt )/εt )t t t 

� For each xi , dt+1(xi ) = dt(xi ) · exp(-αt yi ft(xi ))
� Normalize dt+1(xi ) so that  ∑ dt+1(xi ) = 1

� fFINAL(x) =sign [ ∑ αt ft (x) ]

� Since the weak classifier is better than random, we 
expect εt < 1/2



Weighted error (εt )
� The weighted error achieved by a new simple classifier  

ft(x) relative to weights dt(x) tends to increase with t, i.e., 
with each boosting iteration (though not monotonically).

� The reason for this is that since the weights concentrate 
on examples that are difficult to classify correctly, 
subsequent base learners face harder classification tasks.



Weighted error (εt )

� It can be shown that the weighted error of the simple 
classifier  ft(x) relative to updated weights dt+1(x) is exactly 
0.5. 

� This means that the simple classifier introduced at the t-th 
boosting iteration will be useless (at chance level) for the 
next boosting iteration. So the boosting algorithm would next boosting iteration. So the boosting algorithm would 
never introduce the same simple classifier twice in a row.

� It could, however, reappear later on (relative to a different 
set of weights)



Ada Boost
� At each iteration t :

� Find best weak classifier ft(x) using weights dt(x)
� Compute εt the error rate as 
εt= ∑ d(xi ) · I(yi  ≠ ft(xi )

� assign weight αt  the classifier  ft‘s  in the final hypothesis
αt = ½ log ((1 – εt )/εt )

� For each xi , dt+1(xi ) = dt(xi ) · exp(-αt yi ft(xi ))
� Normalize d (x ) so that  ∑ d (x ) = 1

6

� Normalize dt+1(xi ) so that  ∑ dt+1(xi ) = 1
� fFINAL(x) =sign [ ∑ αtft (x) ]

� Recall that  εt < ½
� Thus (1- εt)/ εt > 1  ⇒ αt > 0
� The smaller is εt, the larger is αt, and thus the more 

importance (weight) classifier ft(x) gets in the final classifier 
fFINAL(x) =sign [ ∑ αt ft (x) ]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5



Ada Boost

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)
� Compute εt   the error rate as 
εt= ∑ dt (xi ) · I(yi  ≠ ft(xi )

� assign weight αt   the classifier  ft‘s  in the final hypothesis
αt = ½ log ((1 – εt )/εt )

� For each xi , dt+1(xi ) = dt(xi ) · exp(-αt yi  ft(xi ))
� Normalize d (x ) so that  ∑d (x ) = 1� Normalize dt+1(xi ) so that  ∑dt+1(xi ) = 1

� fFINAL(x) =sign [ ∑ αt ft (x) ]

� Weight of misclassified examples is increased and the 
new dt+1(xi)’s are normalized to be a distribution again



Ada Boost

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)
� Compute εt   the error rate as 
εt= ∑ dt (xi ) · I(yi  ≠ ft(xi )

� assign weight αt   the classifier  ft‘s  in the final hypothesis
αt = ½ log ((1 – εt )/εt )

� For each xi , dt+1(xi ) = dt(xi ) · exp(-αt yi ft(xi ))
� Normalize dt+1(xi ) so that  ∑dt+1(xi ) = 1� Normalize dt+1(xi ) so that  ∑dt+1(xi ) = 1

� fFINAL(x) =sign [ ∑ αt ft (x) ]



Ensemble training error

� It can be shown that the training error drops 
exponentially fast, if each weak classifier is slightly 
better than random

(((( ))))∑∑∑∑−−−−≤≤≤≤
t ttrainErr 22exp γγγγ∑∑∑∑t

� Here γγγγt = εεεεt – 1/2, where εεεεt is classification error at 
round t (weak classifier ft ) 



AdaBoost  Example 
from “A Tutorial on Boosting” by Yoav Freund and Rob Schapire

Original Training set : equal weights to all training 
samples

Note: in the following slides, ht(x) is used instead of ft(x), 
and D instead of d



AdaBoost Example

ROUND 1



AdaBoost Example

ROUND 2



AdaBoost Example

ROUND 3



AdaBoost Example

fFINAL(x)=



AdaBoost Comments

� But we are really interested in the generalization 
properties of fFINAL(x), not the training error

� AdaBoost was shown to have excellent generalization 
properties in practice.

� It can be shown that boosting “aggressively” 
increases the margins of training examples, as increases the margins of training examples, as 
iterations proceed
� margins continue to increase even when training error 

reaches zero
� Helps to explain empirically observed phenomena: test error 

continues to drop even after training error reaches zero



The Margin Distribution

epoch 5 100 1000

training error 0.0 0.0 0.0

test error 8.4 3.3 3.1

%margins≤0.5 7.7 0.0 0.0

Minimum margin 0.14 0.52 0.55



Practical Advantages of AdaBoost

� fast
� simple
� Has only one parameter to tune (T)

� flexible: can be combined with any classifier � flexible: can be combined with any classifier 
� provably effective (assuming weak learner)

• shift in mind set: goal now is merely to find hypotheses 
that are better than random guessing

� finds outliers
� The hardest examples are frequently the “outliers”



Caveats

� performance depends on data & weak learner
� AdaBoost can fail if

� weak hypothesis too complex (overfitting)
� weak hypothesis too weak (γt→0 too quickly),� weak hypothesis too weak (γt→0 too quickly),

� underfitting
� Low margins → overfitting

� empirically, AdaBoost seems especially 
susceptible to noise


