Parametric Density Estimation:

Bayesian Estimation
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Bayesian Parameter Estimation

= Suppose we have some idea of the range

where parameters 8 shou

d be

= Shouldn’t we formalize such prior knowledge in
hopes that it will lead to better parameter

estimation?

= Let 8be a random variable with prior

distribution P(6)

= This is the key difference between ML and
Bayesian parameter estimation

= This key assumption allows us to fully exploit the

iInformation provided by the

data



Bayesian Parameter Estimation

= @is a random variable with prior p(6)
= Unlike MLE case, p(x|0) is a conditional density

= The training data D allow us to convert p(0) to a
posterior probability density p(6|D) .
= After we observe the data D, using Bayes rule we
can compute the posterior p(6|D)

= But @is not our final goal, our final goal Is the
unknown p(X)

= Therefore a better thing to do is to maximize p(x|D),
this is as close as we can come to the unknown p(x) !



Bayesian Estimation: Formula for  p(x|D)

= From the definition of joint distribution:
p(x |D)=[p(x,0|D)6

= Using the definition of conditional probabillity:
p(x |D)=[p(x |6,D)p(@|D)O

" But p(x| 8 D)=p(x] é) since p(x|8) is completely
specified by & KNown  unknown

p(x |D)= [ pG&I@)p(0 D) ¢

= Using Bayes formula,
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Bayesian Estimation vs. MLE

= So in principle p(x|D) can be computed

= |n practice, it may be hard to do integration analytically,
may have to resort to numerical methods

[1p(x, 16)p ()
p(x |D)=[p(x |6)—~= dog

jgl p(x, [8)p(6)d6

= Contrast this with the MLE solution which requires
differentiation of likelihood to get p(x | 6

= Differentiation is easy and can always be done analytically



Bayesian Estimation vs. MLE

support @receives
from the data

p(x 1D)=[p(x 16)p(61D)d0

proposed model
with certain 64

= The above equation implies that if we are less
certain about the exact value of 6, we should
consider a weighted average of p(x|8) over the
possible values of 0.

= Contrast this with the MLE solution which always
gives us a single model:

p(x 16)



Bayesian Estimation for Gaussian with

unknown u

= Let p(X| ©) be N(u, 02) that is 02 is known, but xis
unknown and needs to be estimated, so 6 = u

= Assume a prior over u: P(x) ~ N(x,5)

= 1, encodes some prior knowledge about the true
. 2 . .
mean 4 , while o, measures our prior uncertainty.

= The posterior distribution is:
P(x|D )oc p(D |x)plu)
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Bayesian Estimation for Gaussian with
unknown u

= Where factors that do not depend on y have
been absorbed into the constants o' and o”

= p(«|D )Is an exponent of a quadratic function of u
l.e. it Is a normal density.

= p(x|D ) remains normal for any number of training
samples.

= If we write 1 1(u—u Y
U— U
D )= expg —— "
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Bayesian Estimation for Gaussian with
unknown u

= then identifying the coefficients, we get

1 n 1 “, N~ U
=5t 2~ 2fun+_O

2 2
c° o, o, O o

.1 .
where 4 ==2 % is the sample mean

k=1

= Solving explicitly for &, and o we obtain:

no: |- o’
U, = > > |+ — > L, our best guess after
No, +o o, +o observing n samples

2 __2
2 __ 0p0 uncertainty about the guess,

G - - -
" no;+o° decreases monotonically with n




Bayesian Estimation for Gaussian with
unknown u

= Each additional observation decreases our
uncertainty about the true value of 4 .

= As nincreases, p(#|D) becomes more and
more sharply peaked, approaching a Dirac delta
function as n approaches infinity. This behavior is
known as Bayesian Learning.

pimlzy, ... . ox)




Bayesian Estimation for Gaussian with
unknown u

2

no: |- ,_ O
Hy = H Ko
" Anoi+c’) " noi+o?

= Ingeneral, #, is alinear combination of z and , ,
with coefficients that are non-negative and sum to 1.

» Thus #, lies somewhere between £, and 4o .

" If 6,20, g, > u, as N—>©

= If 0,=0 , oura priori certainty that « =4, isso
strong that no number of observations can change our
opinion.

= |f o,~0, apriori guess is very uncertain, and we
take My, = K,




Bayesian Estimation: Example for U[0, d

= Let X be UJ0,d. Recall p(x| &=1/60inside [0,d], else O

p(x | 6)

E
0

0
®

. p(6)

X

10

10 ¢

= Suppose we assume a U|[0,10] prior on 4
= good prior to use if we just know the range of @but don't

know anything else



Bayesian Estimation: Example for U[0, d

= We need to compute p(x |D)= jp(x 16)p(6 D)6

 using p(6|p)=POIORE)  ang p(©16)=T] p(x, I6)

[p6)p(6)0
= When computing MLE of 6, we had

1
2(D[6)= for @ > max{ x,,..., X} p(¢9|D)
o otherwise ic p(@)
10
= Thus X, X3 X,\10 ¢
1
2(9|D)< { for max{ X,,.., X,}<6<10
O otherwise
= where c Is the normalizing constant, i.e. ¢ = 10 - d0
I &



Bayesian Estimation: Example for U[0, d

= We need to compute p(x |D)= jp(x 16)p(6 D)6

cel—nfor max{ X,,..,X,}<6<10

p(@|D)=+
0 otherwise |
1] p(x | 6) p(¢9|D)
0 0
G X X, X3 X3\10
@ >
= \We have 2 cases:
1. case X < maX{Xl, Xoyerry X } constant
1 iIndependent of x
p(x |D)= I{ Ha

2. case x > max{xl, x2, , Xp }
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Bayesian Estimation: Example for U[0, d

ML p(x |9)
a$ . Bayes p(x |D)
X, X X 10
*—o

X

= Note that even after x >max {X4, X,,..., X,, }, Bayes
density is not zero, which makes sense

= curious fact: Bayes density is not uniform, i.e. does
not have the functional form that we have assumed!



ML vs. Bayesian Estimation with Broad Prior

Suppose p(6) is flat and broad (close to uniform prior)
pP(4D) tends to sharpen If there is a lot of data

p(@ID)
p(6)
A4

6 0
Thus p(D|8) <p(4D)p (8 will have the same sharp
peak as p(4D)

N\
But by definition, peak of p(D|&) Is the ML estimate 4
The integral is dominated by the peak:

p(x D)= [p(x |8)p(6 D)6 ~p(x [8)[p(01D)6 =p(x | §)

Thus as n goes to infinity, Bayesian estimate will
approach the density corresponding to the MLE!




ML vs. Bayesian Estimation

= Number of training data

= The two methods are equivalent assuming infinite
number of training data (and prior distributions that do
not exclude the true solution).

= For small training data sets, they give different results
IN Most cases.

= Computational complexity

= ML uses differential calculus or gradient search for
maximizing the likelihood.

= Bayesian estimation requires complex multidimensional
Integration techniques.



ML vs. Bayesian Estimation

= Solution complexity

= Easier to interpret ML solutions (i.e., must be of
the assumed parametric form).

= A Bayesian estimation solution might not be of
the parametric form assumed. Hard to interpret,
returns weighted average of models.

= Prior distribution

= |f the prior distribution p(B) is uniform, Bayesian
estimation solutions are equivalent to ML
solutions.



ML vs. Bayesian Estimation

= Broad or asymmetric p(6/D)

= In this case, the two methods will give different
solutions.

= Bayesian methods will explicitly exploit such
Information.

= General comments

= There are strong theoretical and
methodological arguments supporting Bayesian
estimation.

= In practice, ML estimation is simpler and can
lead to comparable performance.



