Parametric Density Estimation:

Bayesian Estimation

C7

Bayesian Parameter Estimation

- Suppose we have some idea of the range where parameters θ should be
 - Shouldn't we formalize such prior knowledge in hopes that it will lead to better parameter estimation?
- Let θ be a random variable with prior distribution $P(\theta)$
 - This is the key difference between ML and Bayesian parameter estimation
 - This key assumption allows us to fully exploit the information provided by the data

Bayesian Parameter Estimation

- θ is a random variable with prior $\boldsymbol{p}(\theta)$
 - Unlike MLE case, $p(x|\theta)$ is a conditional density
- The training data D allow us to convert $p(\theta)$ to a posterior probability density $p(\theta|D)$.
 - After we observe the data D, using Bayes rule we can compute the posterior p(θ|D)
- But θ is not our final goal, our final goal is the unknown p(x)
- Therefore a better thing to do is to maximize p(x|D), this is as close as we can come to the unknown p(x)!

Bayesian Estimation: Formula for p(x|D)

From the definition of joint distribution:

$$p(x \mid D) = \int p(x, \theta \mid D) d\theta$$

Using the definition of conditional probability:

$$p(x \mid D) = \int p(x \mid \theta, D)p(\theta \mid D)d\theta$$

But $p(x|\theta, D) = p(x|\theta)$ since $p(x|\theta)$ is completely specified by θ **known unknown**

$$p(x \mid D) = \int p(x \mid \theta) p(\theta \mid D) d\theta$$

Using Bayes formula,

$$p(\theta \mid D) = \frac{p(D \mid \theta)p(\theta)}{\int p(D \mid \theta)p(\theta)d\theta} \qquad p(D \mid \theta) = \prod_{k=1}^{n} p(x_k \mid \theta)$$

Bayesian Estimation vs. MLE

- So in principle p(x/D) can be computed
 - In practice, it may be hard to do integration analytically, may have to resort to numerical methods

$$p(x \mid D) = \int p(x \mid \theta) \frac{\prod_{k=1}^{n} p(x_{k} \mid \theta) p(\theta)}{\int \prod_{k=1}^{n} p(x_{k} \mid \theta) p(\theta) d\theta} d\theta$$

- Contrast this with the MLE solution which requires differentiation of likelihood to get $p(x \mid \hat{\theta})$
 - Differentiation is easy and can always be done analytically

Bayesian Estimation vs. MLE

support θ receives from the data $p(x \mid D) = \int p(x \mid \theta) p(\theta \mid D) d\theta$ proposed model with certain θ

- The above equation implies that if we are less certain about the exact value of θ , we should consider a weighted average of $p(\mathbf{x}|\theta)$ over the possible values of θ .
- Contrast this with the MLE solution which always gives us a single model:

$$p(x \mid \hat{\theta})$$

- Let $p(x|\mu)$ be $N(\mu, \sigma^2)$ that is σ^2 is known, but μ is unknown and needs to be estimated, so $\theta = \mu$
- Assume a prior over μ : $p(\mu) \sim N(\mu_0, \sigma_0^2)$
- μ_0 encodes some prior knowledge about the true mean μ , while σ_0^2 measures our prior uncertainty.
- The posterior distribution is:

$$p(\mu \mid D) \propto p(D \mid \mu)p(\mu)$$

$$= \alpha ' \exp \left[-\frac{1}{2} \left(\sum_{k=1}^{n} \left(\frac{x_k - \mu}{\sigma} \right)^2 + \left(\frac{\mu - \mu_0}{\sigma_0} \right)^2 \right) \right]$$

$$= \alpha \operatorname{"exp} \left[-\frac{1}{2} \left[\left(\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2} \right) \mu^2 - 2 \left(\frac{1}{\sigma^2} \sum_{k=1}^n x_k + \frac{\mu_0}{\sigma_0^2} \right) \mu \right] \right]$$

- Where factors that do not depend on μ have been absorbed into the constants α and α
- $p(\mu \mid D)$ is an exponent of a quadratic function of μ i.e. it is a normal density.
- $p(\mu \mid D)$ remains normal for any number of training samples.
- If we write $p(\mu \mid D) = \frac{1}{\sqrt{2\pi}\sigma_n} \exp \left[-\frac{1}{2} \left(\frac{\mu \mu_n}{\sigma_n} \right)^2 \right]$

$$\alpha'' \exp \left[-\frac{1}{2} \left[\left(\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2} \right) \mu^2 - 2 \left(\frac{1}{\sigma^2} \sum_{k=1}^n x_k + \frac{\mu_0}{\sigma_0^2} \right) \mu \right] \right]$$

then identifying the coefficients, we get

$$\frac{1}{\sigma_n^2} = \frac{n}{\sigma^2} + \frac{1}{\sigma_0^2} \qquad \frac{\mu_n}{\sigma_n^2} = \frac{n}{\sigma^2} \hat{\mu}_n + \frac{\mu_0}{\sigma_0^2}$$

where $\hat{\mu}_n = \frac{1}{n} \sum_{k=1}^n x_k$ is the sample mean

• Solving explicitly for μ_n and σ_n^2 we obtain:

$$\mu_n = \left(\frac{n\sigma_0^2}{n\sigma_0^2 + \sigma^2}\right)\hat{\mu}_n + \frac{\sigma^2}{n\sigma_0^2 + \sigma^2}\mu_0 \text{ our best guess after observing n samples}$$

$$\sigma_n^2 = \frac{\sigma_0^2 \sigma^2}{n\sigma_0^2 + \sigma^2}$$
 uncertainty about the guess, decreases monotonically with n

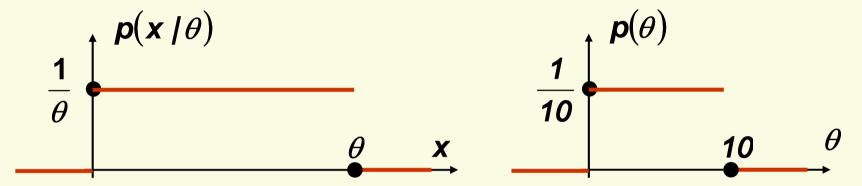
- Each additional observation decreases our uncertainty about the true value of μ .
- As n increases, $p(\mu|D)$ becomes more and more sharply peaked, approaching a Dirac delta function as n approaches infinity. This behavior is known as Bayesian Learning.



$$\mu_n = \left(\frac{n\sigma_0^2}{n\sigma_0^2 + \sigma^2}\right)\hat{\mu}_n + \frac{\sigma^2}{n\sigma_0^2 + \sigma^2}\mu_0$$

- In general, μ_n is a linear combination of $\hat{\mu}_n$ and μ_0 , with coefficients that are non-negative and sum to 1.
- Thus μ_n lies somewhere between $\hat{\mu}_n$ and μ_0 .
- If $\sigma_0 \neq 0$, $\mu_n \to \hat{\mu}_n$ as $n \to \infty$
- If $\sigma_0 = 0$, our a priori certainty that $\mu = \mu_0$ is so strong that no number of observations can change our opinion.
- If $\sigma_0 \approx \sigma$, a priori guess is very uncertain, and we take $\mu_n = \hat{\mu}_n$

Let X be U[$0,\theta$]. Recall $p(x|\theta)=1/\theta$ inside [$0,\theta$], else 0



- Suppose we assume a U[0,10] prior on θ
 - good prior to use if we just know the range of θ but don't know anything else

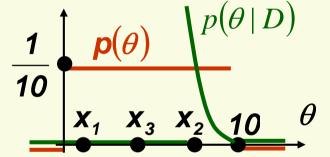
• We need to compute $p(x \mid D) = \int p(x \mid \theta)p(\theta \mid D)d\theta$

• using
$$p(\theta \mid D) = \frac{p(D \mid \theta)p(\theta)}{\int p(D \mid \theta)p(\theta)d\theta}$$
 and $p(D \mid \theta) = \prod_{k=1}^{n} p(x_k \mid \theta)$

• When computing MLE of θ , we had

$$p(D \mid \theta) = \begin{cases} \frac{1}{\theta^n} & \text{for } \theta \ge \max\{x_1, ..., x_n\} \\ 0 & \text{otherwise} \end{cases}$$

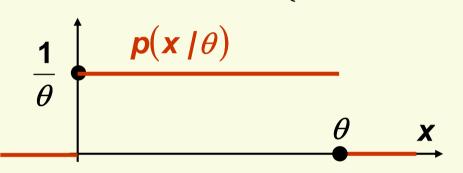
Thus

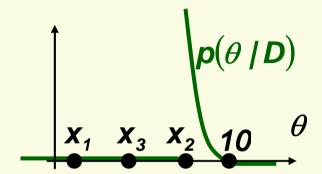


$$p(\theta \mid D) = \begin{cases} c \frac{1}{\theta^n} & \text{for max} \{x_1, ..., x_n\} \le \theta \le 10 \\ 0 & \text{otherwise} \end{cases}$$

where
$$c$$
 is the normalizing constant, i.e. $c = \frac{1}{\int_{max\{x_1,...,x_n\}}^{10} \frac{d\theta}{\theta^n}}$

• We need to compute $p(x \mid D) = \int p(x \mid \theta) p(\theta \mid D) d\theta$ $p(\theta \mid D) = \begin{cases} c \frac{1}{\theta^n} & \text{for max} \{x_1, ..., x_n\} \le \theta \le 10 \\ 0 & \text{otherwise} \end{cases}$



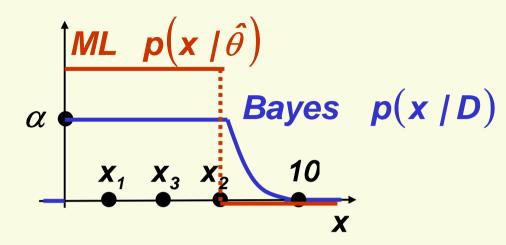


constant

- We have 2 cases:
- 1. case $x < \max\{x_1, x_2, ..., x_n\}$

$$p(x \mid D) = \int_{\max\{x_1, \dots, x_n\}}^{10} c \frac{1}{\theta^{n+1}} d\theta = \alpha$$

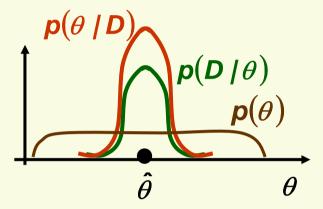
2. case $x > \max\{x_1, x_2, ..., x_n\}$ $p(x/D) = \int_{x}^{10} c \frac{1}{\theta^{n+1}} d\theta = \frac{c}{-n\theta^n} \Big|_{x}^{10} = \frac{c}{nx^n} - \frac{c}{n10^n}$



- Note that even after $x > \max \{x_1, x_2, ..., x_n\}$, Bayes density is not zero, which makes sense
- curious fact: Bayes density is not uniform, i.e. does not have the functional form that we have assumed!

ML vs. Bayesian Estimation with Broad Prior

- Suppose $p(\theta)$ is flat and broad (close to uniform prior)
- $p(\theta|D)$ tends to sharpen if there is a lot of data



- Thus p(D|θ) ∞ p(θ|D)p(θ) will have the same sharp peak as p(θ|D)
- But by definition, peak of $p(D|\theta)$ is the ML estimate $\hat{\theta}$
- The integral is dominated by the peak:

$$p(x \mid D) = \int p(x \mid \theta) p(\theta \mid D) d\theta \approx p(x \mid \hat{\theta}) \int p(\theta \mid D) d\theta = p(x \mid \hat{\theta})$$

Thus as n goes to infinity, Bayesian estimate will approach the density corresponding to the MLE!

ML vs. Bayesian Estimation

Number of training data

- The two methods are equivalent assuming infinite number of training data (and prior distributions that do not exclude the true solution).
- For small training data sets, they give different results in most cases.

Computational complexity

- ML uses differential calculus or gradient search for maximizing the likelihood.
- Bayesian estimation requires complex multidimensional integration techniques.

ML vs. Bayesian Estimation

- Solution complexity
 - Easier to interpret ML solutions (i.e., must be of the assumed parametric form).
 - A Bayesian estimation solution might not be of the parametric form assumed. Hard to interpret, returns weighted average of models.
- Prior distribution
 - If the prior distribution p(θ) is uniform, Bayesian estimation solutions are equivalent to ML solutions.

ML vs. Bayesian Estimation

- Broad or asymmetric p(θ/D)
 - In this case, the two methods will give different solutions.
 - Bayesian methods will explicitly exploit such information.
- General comments
 - There are strong theoretical and methodological arguments supporting Bayesian estimation.
 - In practice, ML estimation is simpler and can lead to comparable performance.