Parametric Density Estimation:

Maximum Likelihood Estimation

C6

Today

- Introduction to density estimation
 - Maximum Likelihood Estimation

Introducton

- Bayesian Decision Theory in previous lectures tells us how to design an optimal classifier if we knew:
 - *P*(*c*_i) (priors)
 - **P**(**x** | **c**_i) (class-conditional densities)
- Unfortunately, we rarely have this complete information!

Probability density methods

- Parametric methods assume we know the shape of the distribution, but not the parameters. Two types of parameter estimation:
 - Maximum Likelihood Estimation
 - Bayesian Estimation
- Non parametric methods the form of the density is entirely determined by the data without any model.

Independence Across Classes

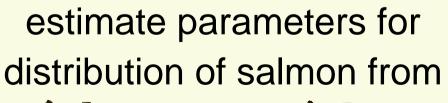
We have training data for each class

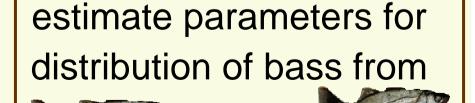
salmon

sea bass

sea bass

- When estimating parameters for one class, will only use the data collected for that class
 - reasonable assumption that data from class c_i gives no information about distribution of class c_i





Independence Across Classes

- For each class c_i we have a proposed density p_i(x | c_i) with unknown parameters θⁱ which we need to estimate
- Since we assumed independence of data across the classes, estimation is an identical procedure for all classes
- To simplify notation, we drop sub-indexes and say that we need to estimate parameters θ for density **p**(**x**)
 - the fact that we need to do so for each class on the training data that came from that class is implied

Maximum Likelihood Parameter Estimation

- Parameters
 θ are unknown but fixed (i.e. not random variables).
- Given the training data, choose the parameter value
 θ that makes the data most probable (i.e., maximizes the probability of obtaining the sample that has actually been observed)

Maximum Likelihood Parameter Estimation

• We have density p(x) which is completely specified by parameters $\theta = [\theta_1, ..., \theta_k]$

• If $p(\mathbf{x})$ is $N(\mu, \sigma^2)$ then $\theta = [\mu, \sigma^2]$

- To highlight that *p*(*x*) depends on parameters
 θ we will write *p*(*x*/*θ*)
 - Note overloaded notation, p(x|0) is not a conditional density
- Let D={x₁, x₂,..., x_n} be the *n* independent training samples in our data
 - If p(x) is $N(\mu, \sigma^2)$ then $x_1, x_2, ..., x_n$ are iid samples from $N(\mu, \sigma^2)$

Maximum Likelihood Parameter Estimation

 Consider the following function, which is called likelihood of *θ* with respect to the set of samples *D*

$$p(D|\theta) = \prod_{k=1}^{k=n} p(x_k | \theta) = F(\theta)$$

Maximum likelihood estimate (abbreviated MLE) of θ is the value of θ that maximizes the likelihood function p(D/θ)

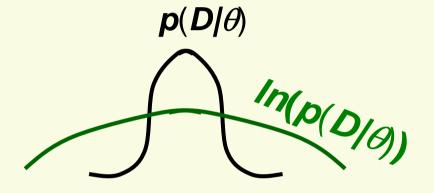
$$\hat{\theta} = \arg \max_{\theta} (p(D | \theta))$$

ML Parameter Estimation vs. ML Classifier

- Recall ML classifier datadecide class c_i which maximizes $p(x/c_i)$
- Compare with ML parameter estimation fixed data data $choose \theta$ that maximizes $p(D|\theta)$
- ML classifier and ML parameter estimation use the same principles applied to different problems

Maximum Likelihood Estimation (MLE)

- Instead of maximizing *p*(*D*/*θ*), it is usually easier to maximize *In*(*p*(*D*/*θ*))
- Since log is monotonic $\hat{\theta} = \underset{\theta}{argmax}(p(D|\theta)) =$ $= \underset{\theta}{argmax}(lnp(D|\theta))$



To simplify notation, In(p(D/0))=L(0)

$$\hat{\theta} = \arg \max_{\theta} L(\theta) = \arg \max_{\theta} \left(\ln \prod_{k=1}^{k=n} p(x_k \mid \theta) \right) = \arg \max_{\theta} \left(\sum_{k=1}^{n} \ln p(x_k \mid \theta) \right)$$

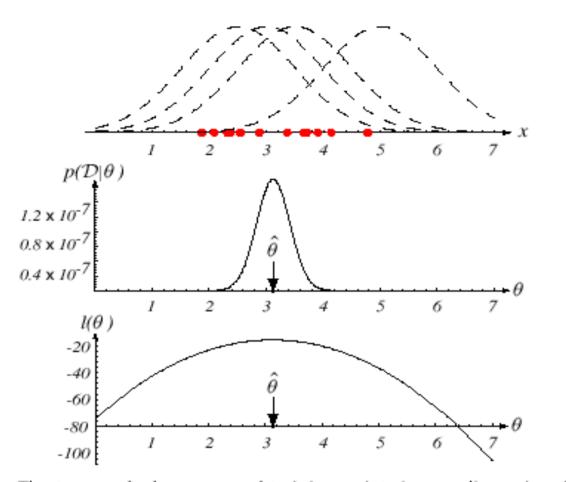


FIGURE 3.1. The top graph shows several training points in one dimension, known or assumed to be drawn from a Gaussian of a particular variance, but unknown mean. Four of the infinite number of candidate source distributions are shown in dashed lines. The middle figure shows the likelihood $p(\mathcal{D}|\theta)$ as a function of the mean. If we had a very large number of training points, this likelihood would be very narrow. The value that maximizes the likelihood is marked $\hat{\theta}$; it also maximizes the logarithm of the likelihood—that is, the log-likelihood $I(\theta)$, shown at the bottom. Note that even though they look similar, the likelihood $p(\mathcal{D}|\theta)$ is shown as a function of θ whereas the conditional density $p(x|\theta)$ is shown as a function of x. Furthermore, as a function of θ , the likelihood $p(\mathcal{D}|\theta)$ is not a probability density function and its area has no significance. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

MLE: Maximization Methods

- Maximizing *L(θ)* can be solved using standard methods from Calculus
- Let $\theta = (\theta_1, \theta_2, ..., \theta_p)^t$ and let ∇_{θ} be the gradient operator

$$\nabla_{\theta} = \left[\frac{\partial}{\partial \theta_{1}}, \frac{\partial}{\partial \theta_{2}}, \dots, \frac{\partial}{\partial \theta_{p}}\right]^{t}$$

Set of necessary conditions for an optimum is:

$$\nabla_{\theta} \boldsymbol{I} = \boldsymbol{0}$$

Also have to check that θ that satisfies the above condition is maximum, not minimum or saddle point.
 Also check the boundary of range of θ

MLE Example: Gaussian with unknown μ

- Fortunately for us, most of the ML estimates of any densities we would care about have been computed
- Let's go through an example anyway
- Let $p(x|\mu)$ be $N(\mu, \sigma^2)$ that is σ^2 is known, but μ is unknown and needs to be estimated, so $\theta = \mu$

$$\hat{\mu} = \arg \max_{\mu} L(\mu) = \arg \max_{\mu} \left(\sum_{k=1}^{n} \ln p(x_k \mid \mu) \right) =$$

$$= \arg \max_{\mu} \left(\sum_{k=1}^{n} \ln \left(\frac{1}{\sqrt{2\pi\sigma}} \exp \left(-\frac{(x_k - \mu)^2}{2\sigma^2} \right) \right) \right) =$$

$$= \arg \max_{\mu} \sum_{k=1}^{n} \left(-\ln \sqrt{2\pi\sigma} - \frac{(x_k - \mu)^2}{2\sigma^2} \right)$$

MLE Example: Gaussian with unknown μ

$$\arg\max_{\mu}(L(\mu)) = \arg\max_{\mu}\sum_{k=1}^{n} \left(-\ln\sqrt{2\pi\sigma} - \frac{(x_k - \mu)^2}{2\sigma^2}\right)$$

$$\frac{d}{d\mu}(L(\mu)) = \sum_{k=1}^{n} \frac{1}{\sigma^2} (x_k - \mu) = 0 \implies \sum_{k=1}^{n} x_k - n\mu = 0 \implies \hat{\mu} = \frac{1}{n} \sum_{k=1}^{n} x_k$$

- Thus the ML estimate of the mean is just the average value of the training data, very intuitive!
 - average of the training data would be our guess for the mean even if we didn't know about ML estimates

MLE for Gaussian with unknown μ , σ^2

 Similarly it can be shown that if *p*(*x*/μ,σ²) is *N*(μ, σ²), that is x both mean and variance are unknown, then again very intuitive result

$$\hat{\mu} = \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{k} \qquad \hat{\sigma}^{2} = \frac{1}{n} \sum_{k=1}^{n} (\mathbf{x}_{k} - \hat{\mu})^{2}$$

Similarly it can be shown that if *p*(*x*/ μ,Σ) is
 N(μ, Σ), that is *x* is a multivariate Gaussian with both mean and covariance matrix unknown, then

$$\hat{\mu} = \frac{1}{n} \sum_{k=1}^{n} \mathbf{X}_{k} \qquad \qquad \hat{\Sigma} = \frac{1}{n} \sum_{k=1}^{n} (\mathbf{X}_{k} - \hat{\mu}) (\mathbf{X}_{k} - \hat{\mu})^{t}$$

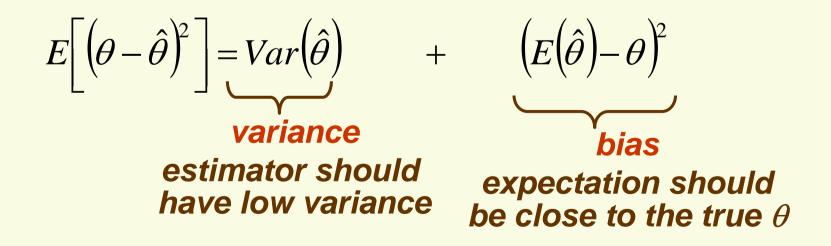
How to Measure Performance of MLE?

- How good is a ML estimate $\hat{\theta}$?
 - or actually any other estimate of a parameter?
- The natural measure of error would be $|\theta \hat{\theta}|$
- But $|\theta \hat{\theta}|$ is random, we cannot compute it before we carry out experiments
 - We want to say something meaningful about our estimate as a function of θ
- A way to solve this difficulty is to average the error, i.e. compute the mean absolute error

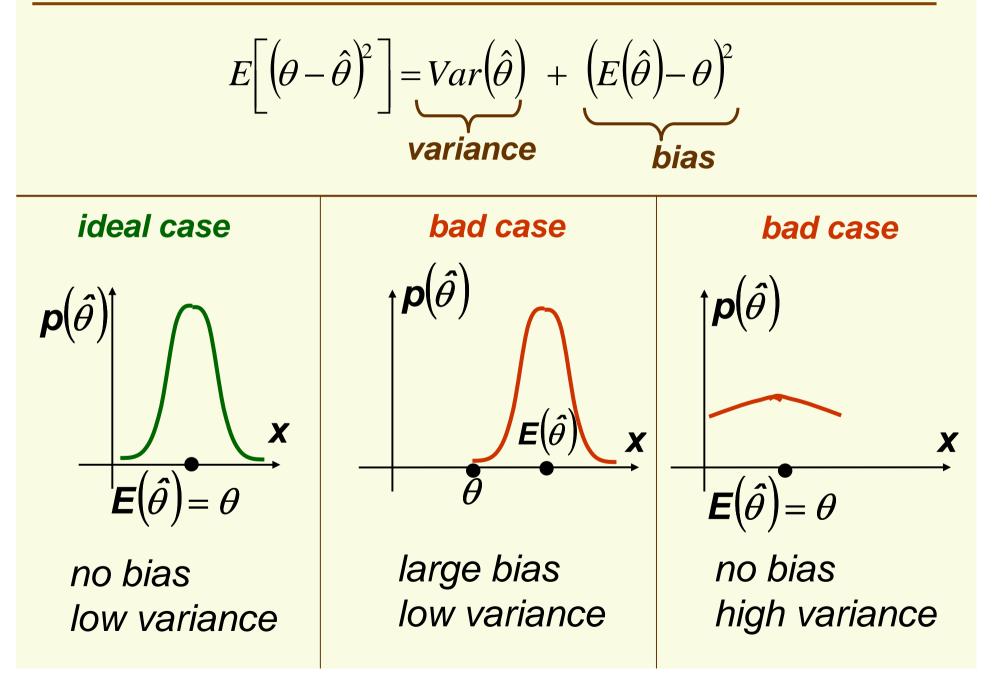
$$E[|\theta - \hat{\theta}|] = \int |\theta - \hat{\theta}| p(x_1, x_2, \dots, x_n) dx_1 dx_2 \dots dx_n$$

How to Measure Performance of MLE?s

- It is usually much easier to compute an almost equivalent measure of performance, the *mean* squared error: $E\left[\left(\theta - \hat{\theta}\right)^2\right]$
- Do a little algebra, and use $Var(X) = E(X^2) (E(X))^2$



How to Measure Performance of MLE?



Bias and Variance for MLE of the Mean

- Let's compute the bias for ML estimate of the mean $E[\hat{\mu}] = E\left[\frac{1}{n}\sum_{k=1}^{n} x_{k}\right] = \frac{1}{n}\sum_{k=1}^{n} E[x_{k}] = \frac{1}{n}\sum_{k=1}^{n} \mu = \mu$
 - Thus this estimate is unbiased!
- How about variance of ML estimate of the mean?

$$E[(\hat{\mu} - \mu)^{2}] = E\left[\frac{1}{n}\sum_{i=1}^{n}x_{i} - \mu\right]^{2} = E\left[\frac{1}{n}\sum_{i=1}^{n}(x_{i} - \mu)\right]^{2}$$
$$= \frac{1}{n^{2}}E\left[\sum_{i=1}^{n}\sum_{j=1}^{n}(x_{i} - \mu)(x_{j} - \mu)\right] = \frac{1}{n^{2}}\sum_{i=1}^{n}\sum_{j=1}^{n}E[(x_{i} - \mu)(x_{j} - \mu)]$$
$$= \frac{1}{n^{2}}n\sigma^{2} = \frac{\sigma^{2}}{n}$$

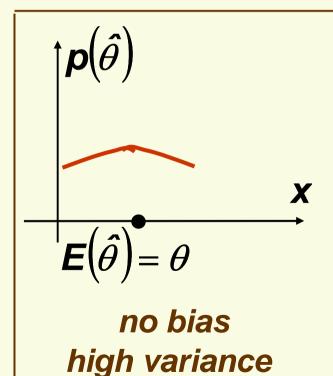
- Thus variance is very small for a large number of samples (the more samples, the smaller is variance)
- Thus the MLE of the mean is a very good estimator

Bias and Variance for MLE of the Mean

Suppose someone claims they have a new great estimator for the mean, just take the first sample!

$$\hat{\mu} = X_1$$

- Thus this estimator is unbiased: $E(\hat{\mu}) = E(\mathbf{x}_1) = \mu$
- However its variance is: $\boldsymbol{E}[(\hat{\mu} - \mu)^2] = \boldsymbol{E}[(\boldsymbol{x}_1 - \mu)^2] = \sigma^2$
- Thus variance can be very large and does not improve as we increase the number of samples

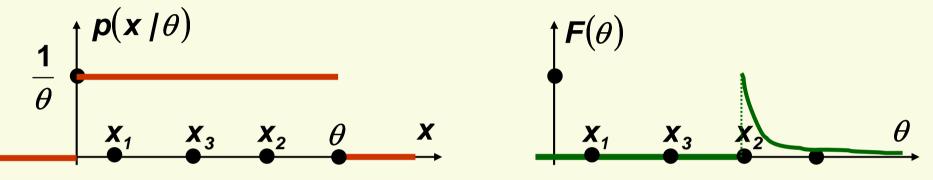


MLE Bias for Mean and Variance

- How about ML estimate for the variance? $E[\hat{\sigma}^{2}] = E\left[\frac{1}{n}\sum_{k=1}^{n}(x_{k}-\hat{\mu})^{2}\right] = \frac{n-1}{n}\sigma^{2} \neq \sigma^{2}$
 - Thus this estimate is biased!
 - This is because we used $\hat{\mu}$ instead of true μ
 - Bias $\rightarrow 0$ as $n \rightarrow$ infinity, asymptotically unbiased
 - Unbiased estimate $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{k=1}^n (\mathbf{x}_k \hat{\mu})^2$
- Variance of MLE of variance can be shown to go to 0 as n goes to infinity

MLE for Uniform distribution U[0,θ]

X is U[0, θ] if its density is 1/θ inside [0, θ] and 0 otherwise (uniform distribution on [0, θ])



• The likelihood is $F(\theta) = \prod_{k=1}^{k=n} p(x_k | \theta) = \begin{cases} \frac{1}{\theta^n} & \text{if } \theta \ge \max\{x_1, \dots, x_n\} \\ 0 & \text{if } \theta < \max\{x_1, \dots, x_n\} \end{cases}$

• Thus
$$\hat{\theta} = \arg \max_{\theta} \left(\prod_{k=1}^{k=n} p(x_k \mid \theta) \right) = \max\{x_1, \dots, x_n\}$$

 This is not very pleasing since for sure θ should be larger than any observed x!