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Bayesian Decision Theory
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Bayesian Decision Theory

� Know probability distribution of the 
categories  
� Almost never the case in real life!

� Nevertheless useful since other cases can be 
reduced to this one after some work

� Do not even need training data
� Can design optimal classifier



Bayesian Decision theory 
Fish Example:
� Each fish is in one of 2 states: sea bass or salmon

� Let ω denote the state of nature
� ω = ω1 for sea bass
� ω = ω2 for salmon

� The state of nature is unpredictable  ω is a variable that 
must be described probabilistically.
� If the catch produced as much salmon as sea bass the next fish is 

equally likely to be sea bass or salmon.

� Define:

� P(ω1 ) : a priori probability that the next fish is sea 
bass

� P(ω2 ): a priori probability that the next fish is 
salmon.
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Bayesian Decision theory

� If other types of fish are irrelevant: 

P( ω1 ) + P( ω2 ) = 1.
Prior probabilities reflect our prior knowledge 

(e.g. time of year, fishing area, …)
� Simple decision Rule:

�Make a decision without seeing the fish.

�Decide ω1 if P( ω1 ) > P( ω2 ); ω2 otherwise.
�OK if deciding for one fish
�If several fish,  all assigned to same class

In general, we have some features and 
more information.



Cats and Dogs

� Suppose we have these conditional probability 
mass functions for cats and dogs
� P(small ears | dog) = 0.1, P(large ears | dog) = 0.9

� P(small ears | cat) = 0.8, P(large ears | cat) = 0.2

� Observe an animal with large ears
� Dog or a cat?

� Makes sense to say dog because probability of 
observing large ears in a dog is much larger than 
probability of observing large ears in a cat

� Pr[large ears | dog] = 0.9 > 0.2= Pr[large ears | cat] = 0.2

� We choose the event of larger probability, i.e. 
maximum likelihood event
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Example: Fish Sorting

� Respected fish expert says that 
� Salmon’ length has distribution  N(5,1)

� Sea bass’s length has distribution N(10,4)

� Recall if r.v. is                then it’s density is
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Class Conditional Densities 
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Likelihood function 

� Fix length, let fish class vary.  Then we get 
likelihood function (it is not density and not 
probability mass)
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Likelihood vs. Class Conditional Density

length7

Suppose a fish has length 7.  How do we classify it?

p(l | class)



ML (maximum likelihood) Classifier
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� Instead, we choose class which maximizes likelihood

� We would like to choose salmon if 
[[[[ ]]]] [[[[ ]]]]bass|7lengthPrsalmon|7lengthPr ====>>>>====

� However, since length is a continuous r.v.,   

[[[[ ]]]] [[[[ ]]]] 0bass|7lengthPrsalmon|7lengthPr ================

� ML classifier: for an observed l:

(((( )))) (((( ))))bass|lp?salmon|lp
>>>>

<<<<

salmon

bass
in words: if p(l | salmon) > p(l | bass), 
classify as salmon, else classify as bass
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7

p( 7 |bass)

p( 7 |salmon)

Thus we choose 
the class (bass) 
which is more 
likely to have given 
the observation

ML (maximum likelihood) Classifier
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classify as salmon classify as sea bass

Decision Boundary

length6.70
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How Prior Changes Decision Boundary?

� Without priors

� How should this change with prior?
� P(salmon) = 2/3

� P(bass) = 1/3

6.70

salmon sea bass

? ?

length

6.70

salmon sea bass
length
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Bayes Decision Rule

1. Have likelihood functions                  
p(length | salmon) and p(length | bass)

2. Have priors P(salmon) and P(bass)

� Question: Having observed fish of certain 
length, do we classify it as salmon or bass?

� Natural Idea:
� salmon if
� bass if 

(((( )))) (((( ))))length|bassPlength|salmonP >>>>

(((( )))) (((( ))))length|salmonPlength|bassP >>>>
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Posterior

� P(salmon | length) and P(bass | length)          
are called posterior distributions, because 
the data (length) was revealed (post data)

� How to compute posteriors? Not obvious

� From Bayes rule:
( ) ( )

( )lengthlengthlengthlengthpppp
salmonsalmonsalmonsalmonPPPPsalmonsalmonsalmonsalmonlengthlengthlengthlengthpppplengthlengthlengthlengthP (salmonP (salmonP (salmonP (salmon

||||||||    =)

(((( )))) (((( )))) (((( ))))
(((( ))))lengthp

bassPbass|lengthp
length|bassP ====

� Similarly:
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MAP (maximum a posteriori) classifier

(((( )))) (((( ))))
(((( ))))

(((( )))) (((( ))))
(((( ))))lengthp

bassPbass|lengthp
?

lengthp
salmonPsalmon|lengthp

<<<<

>>>>
salmon
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(((( )))) (((( )))) (((( )))) (((( ))))bassPbass|lengthp?salmonPsalmon|lengthp
<<<<

>>>>salmon
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(((( )))) (((( ))))lengthbassPlengthsalmonP |?|
<<<<

>>>>
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Back to Fish Sorting Example
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� Likelihood

� Priors: P(salmon) = 2/3,  P(bass) = 1/3
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� Solve inequality

6.70

salmon sea bass
length7.18

new decision 
boundary

� New decision boundary makes sense since 
we expect to see more salmon



Prior P(s)=2/3 and P(b)= 1/3  vs. 
Prior P(s)=0.999 and P(b)= 0.001

7.1 8.9 length

salmon
bass



Likelihood vs Posteriors

length

P(salmon|l) P(bass|l)

p(l|salmon)

p(l|bass)

likelihood
p(l|fish class)

density with 
respect to 

length, area 
under the 
curve is 1

posterior P(fish class| l) 
mass function with respect to fish class, so for 

each l, P(salmon| l )+P(bass| l ) = 1 



More on Posterior

(((( )))) (((( )))) (((( ))))
(((( ))))lP

cPc|lP
l|cP ====

Prior
(given)

posterior density
(our goal)

likelihood
(given)

normalizing factor, often do not even need 
it for classification since P(l) does not 
depend on class c. If we do need it, from 
the law of total probability:

Notice this formula consists of likelihoods 
and priors, which are given

(((( )))) (((( )))) (((( )))) (((( )))) (((( ))))basspbass|lpsalmonpsalmon|lplP ++++====
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More on Priors

� Prior comes from prior knowledge, no data 
has been seen yet

� If there is a reliable source prior knowledge, 
it should be used

� Some problems cannot even be solved 
reliably without a good prior



More on Map Classifier

(((( )))) (((( )))) (((( ))))
(((( ))))lP

cPc|lP
l|cP ====

posterior likelihood prior

� If P(salmon)=P(bass) (uniform prior) MAP classifier 
becomes ML classifier (((( )))) (((( ))))c|lPl|cP ∝∝∝∝

(((( )))) (((( )))) (((( ))))cPc|lPl|cP ∝∝∝∝

� Do not care about P(l) when maximizing P(c|l )
proportional

� If for some observation l, P(l|salmon)=P(l|bass), then 
this observation is uninformative and decision is 
based solely on the prior (((( )))) (((( ))))cPl|cP ∝∝∝∝
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Justification for MAP Classifier
� Let’s compute probability of error for the 

MAP estimate:

(((( )))) (((( ))))l|bassP?l|salmonP
<<<<

>>>>

bass

salmon

� For any particular l, probability of error

Pr[error| l ]=
if we decide salmonP(bass|l)

if  we decide bassP(salmon|l)

Thus MAP classifier is optimal  for each 
individual l !



Justification for MAP Classifier
� We are interested to minimize error not just for 

one l, we really want to minimize the average 
error over all l

[[[[ ]]]] (((( )))) [[[[ ]]]] (((( ))))dllpl|errorPrdll,errorperrorPr ∫∫∫∫∫∫∫∫
∞∞∞∞

∞∞∞∞−−−−

∞∞∞∞

∞∞∞∞−−−−

========

� If Pr[error| l ]is as small as possible, the integral is 
small as possible

Thus MAP classifier minimizes the probability of error!

� But Bayes rule makes  Pr[error| l ] as small as 
possible



More General Case

� Have more than one feature [[[[ ]]]]d21 x,...,x,xx ====

{{{{ }}}}m21 c,...,c,c� Have more than 2 classes

� Let’s generalize a little bit
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More General Case

� As before, for each j we have
� is likelihood of observation x given that 

the true class is
� is prior probability of class  

� is posterior probability of class       given 
that we observed data x

(((( ))))jcP
jc

(((( ))))jc|xp

jc
(((( ))))x|cP j jc

� Evidence, or probability density for data 

(((( )))) (((( )))) (((( ))))∑∑∑∑
====

====
m

1j
jj cPc|xpxp



need to make this
as small as possible

Minimum Error Rate Classification

� Want to minimize average probability of error 

[[[[ ]]]] (((( )))) [[[[ ]]]] (((( ))))dxxpx|errorPrdxx,errorperrorPr ∫∫∫∫∫∫∫∫ ========

[[[[ ]]]] (((( ))))x|cP1x|errorPr i−−−−==== ic� if we decide class 

[[[[ ]]]]x|errorPr� is minimized with MAP classifier
� Decide on class ci if 

(((( )))) (((( )))) ijx|cPx|cP ji ≠≠≠≠∀∀∀∀>>>>
MAP classifier is optimal

If we want to minimize the 
probability of error

1

P(c1|x) P(c2|x)
P(c3|x)

1-P(c1|x) 1-P(c2|x)
1-P(c3|x)
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General Bayesian Decision Theory

� Suppose some mistakes are more costly 
than others (classifying a benign tumor as 
cancer is not as bad as classifying cancer 
as benign tumor)

{{{{ }}}}k21 ,...,, αααααααααααα

� In close cases we may want to refuse to 
make a decision (let human expert handle 
tough case)
� allow actions

� Allow loss functions                 describing loss 
occurred when taking action      when the true 
class is 

(((( ))))ji c|ααααλλλλ
iαααα

jc



Conditional Risk

� Suppose we observe x and wish to take 
action  iαααα

� If the true class is    , by definition, we incur 
loss  (((( ))))ji c|ααααλλλλ

jc

� Probability that the true class is      after 
observing x is 

jc
(((( ))))x|cP j

(((( )))) (((( )))) (((( ))))∑∑∑∑
====

====
m

1j
jjii x|cPc|x|R ααααλλλλαααα

� The expected loss associated with taking 
action      is called conditional risk and it is:iαααα



Conditional Risk

(((( )))) (((( )))) (((( ))))∑∑∑∑
====

====
m

1j
jjii x|cPc|x|R ααααλλλλαααα

sum over disjoint events 
(different classes)

probability of  
class      given 
observation x

jc

penalty for 
taking action       
if observe x

iαααα

jc

part of overall penalty 
which comes from event 
that  true class is 



Example: Zero-One loss function

� action     is decision that true class is

(((( )))) (((( )))) (((( ))))======== ∑∑∑∑
====

m

1j
jjii x|cPc|x|R ααααλλλλαααα

(((( ))))x|cP1 i−−−−====

� MAP classifier is Bayes decision rule under 
zero-one loss function

(((( ))))


 ======== otherwise

jiifc ji 1
0|ααααλλλλ (no mistake)

(mistake)

(((( ))))====∑∑∑∑
≠≠≠≠ ji

j x|cP

� Thus MAP classifier optimizes R(ααααi|x)
(((( )))) (((( )))) ijx|cPx|cP ji ≠≠≠≠∀∀∀∀>>>>

iciαααα

[[[[ ]]]]icdecideiferrorPr====



Overall Risk
� Decision rule is a 

function αααα(x) which for 
every x specifies action 
out of {{{{ }}}}k21 ,...,, αααααααααααα

need to make this as small as possible

(((( )))) (((( ))))(((( )))) (((( ))))dxxpx|xRR ∫∫∫∫==== αααααααα

� The average risk for αααα(x) 

� Bayes decision rule αααα(x)  for every x is the action 
which minimizes the conditional risk

(((( )))) (((( )))) (((( ))))∑∑∑∑
====

====
m

1j
jjii x|cPc|x|R ααααλλλλαααα

� Bayes decision rule αααα(x)  is optimal, i.e. gives the 
minimum possible overall risk R*

X

{{{{ }}}}k21 ,...,, αααααααααααα
x1
x2

x3

αααα(x1)

αααα(x2)

αααα(x3)



Bayes Risk: Example
� Salmon is more tasty and expensive than sea bass

(((( ))))
(((( ))))

2
5 2

2
1

|
−−−−

−−−−
====

l

esalmonlp
ππππ

(((( ))))
(((( ))))

4*2
10 2

22
1

|
−−−−

−−−−
====

l

ebasslp
ππππ

� Likelihoods

(((( )))) 2bass|salmonsb ======== λλλλλλλλ classify bass as salmon
(((( )))) 1salmon|bassbs ======== λλλλλλλλ classify salmon as bass

0bbss ======== λλλλλλλλ no mistake, no loss

(((( )))) (((( )))) (((( )))) (((( ))))l|bPl|bPl|sPl|salmonR sbsbss λλλλλλλλλλλλ ====++++====

� Priors  P(salmon)= P(bass)

(((( )))) (((( )))) (((( )))) (((( ))))l|sPl|bPl|sPl|bassR bsbbbs λλλλλλλλλλλλ ====++++====

� Risk (((( )))) (((( )))) (((( ))))∑∑∑∑
====

====
m

1j
jj x|cPc|x|R ααααλλλλαααα (((( )))) (((( ))))l|bPl|sP bs αααααααα λλλλλλλλ ++++====



Bayes Risk: Example
(((( )))) (((( ))))l|bPl|salmonR sbλλλλ==== (((( )))) (((( ))))l|sPl|bassR bsλλλλ====

� Bayes decision rule (optimal for our loss function)

(((( )))) (((( ))))l|sP?l|bP bssb λλλλλλλλ
>>>>

<<<< salmon

bass

� Need to solve (((( ))))
(((( )))) sb

bs

l|sP
l|bP

λλλλ
λλλλ

<<<<

(((( )))) (((( )))) (((( ))))
(((( )))) (((( )))) (((( ))))

(((( ))))
(((( )))) sb

bs

s|lP
b|lP

sPs|lPlp
lpbPb|lP

λλλλ
λλλλ

<<<<====

� Or, equivalently, since priors are equal:



Bayes Risk: Example
(((( ))))
(((( )))) sb

bs

s|lP
b|lP

λλλλ
λλλλ

<<<<� Need to solve

(((( ))))

(((( ))))
1

exp221

exp22

2
5l

8
10l

2

2

<<<<

⋅⋅⋅⋅

⋅⋅⋅⋅
−−−−

−−−−

−−−−
−−−−

ππππ

ππππ

� Substituting likelihoods and losses 
(((( ))))

(((( ))))
1

exp

exp

2
5l

8
10l

2

2

<<<<
−−−−

−−−−

−−−−
−−−−

⇔⇔⇔⇔

(((( ))))

(((( ))))
(((( ))))1ln

exp

exp
ln

2
5l

8
10l

2

2

<<<<
















−−−−
−−−−

−−−−
−−−−

⇔⇔⇔⇔

(((( )))) (((( ))))
0

2
5l

8
10l 22

<<<<
−−−−

++++
−−−−

−−−−

⇔⇔⇔⇔

⇔⇔⇔⇔ ⇔⇔⇔⇔ 0l20l3 2 <<<<−−−− ⇔⇔⇔⇔ 6.6667l0 <≤

6.67

salmon sea bass
length6.70

new decision 
boundary
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fixed number
Independent of x

likelihood
ratio

Likelihood Ratio Rule

� In 2 category case, use likelihood ratio rule

(((( ))))
(((( ))))

(((( ))))
(((( ))))1

2

1121

2212

2

1

cP
cP

c|xP
c|xP

λλλλλλλλ
λλλλλλλλ

−−−−
−−−−

>>>>

� If above inequality holds, decide c1

� Otherwise decide c2



Discriminant Functions

� All decision rules have the same structure: 
at observation x choose class     s.t.

(((( )))) (((( )))) ijxgxg ji ≠≠≠≠∀∀∀∀>>>>
ic

� ML decision rule: (((( )))) (((( ))))ii c|xPxg ====

� MAP decision rule: (((( )))) (((( ))))x|cPxg ii ====

� Bayes decision rule: (((( )))) (((( ))))x|cRxg ii −−−−====

discriminant
function
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Decision Regions

� Discriminant functions split the feature 
vector space X into decision regions

(((( )))) {{{{ }}}}i2 gmaxxg ====

1c

3c
1c

2c
3c
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Important Points 

� If we know probability distributions for the 
classes, we can design the optimal 
classifier

� Definition of “optimal” depends on the 
chosen loss function
� Under the minimum error rate (zero-one loss 

function
� No prior: ML classifier is optimal
� Have prior: MAP classifier is optimal

� More general loss function
� General Bayes classifier is optimal


