Minimum Squared Error

Cl2



Today

=  Continue with Linear Discriminant Functions
= Last lecture: Perceptron Rule for weight learning

= This lecture: Minimum Squared Error (MSE) rule
= Pseudoinverse
= Gradient descent (Widrow-Hoff Procedure)
= Ho-Kashyap Procedure



LDF: Perceptron Criterion Function

= The perceptron criterion function

= try to find weight vector a s.t. aly; > 0O for all samples y;
= perceptron criterion function J,(@)= Y (-a'y)
Y€EYy

= only look at the misclassified samples
= will converge In the linearly separable case

= Problem:

= will not converge in the nonseparable
case

= {0 ensure convergence can set

) _ n®
K
= However we are not guaranteed that

we will stop at a good point
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LDF. Minimum Squared-Error Procedures

= |dea: convert to easier and better understooc

aty; > 0 for all samplesy;
solve system of linear inequalities

J

aly; = b, for all samplesy;
solve system of linear equations

= MSE procedure
= Choose positive constants by, b,,..., b,

problem

= try to find weight vector a s.t. a'y; = b, for all samples vy,

= |If we can find weight vector a such that a'y; = b, for all
samples y., then a is a solution because b,’s are positive

= consider all the samples (not just the misclassified ones)



LDF. MSE Margins

[
o

g(y)

= Since we want aly; = b;, we expect sample y; to be at distance
b, from the separating hyperplane (normalized by ||a||)

= Thus b, b,,..., b, give relative expected distances or
“margins” of samples from the hyperplane

= Should make b; small if sample | Is expected to be near
separating hyperplane, and make b; larger otherwise

In the absence of any additional information, there are good
reasonstosetb,=b,=...=b, =1



LDF: MSE Matrix Notation

] ( atyl = bl
= Need to solve n equations < :

ay,=b,
= |ntroduce matrix notation:

YO YOy
(0) yél) é) 0 b

12 a_l — ;2
: : a'd ;
YOy oy | LBy
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Y Y Y
% a b

= Thus need to solve a linear system Ya =D



LDF: Exact Solution is Rare

= Thus need to solve a linear system Ya =D
= Yisann by (d +1) matrix

= Exact solution can be found only If Y Is nonsingular
and square, in which case the inverse Y-1exists
= a=Y'b
= (number of samples) = (number of features + 1)
= almost never happens In practice
= In this case, guaranteed to find the separating hyperplane




LDF: Approximate Solution

= Typically Y Is overdetermined, that is it has more

rows (examples) than columns (features)

= If it has more features than examples, should reduce
dimensionality

b

Y [|a

= Need Ya = b, but no exact solution exists for an
overdetermined system of equation
= More equations than unknowns
= Find an approximate solution a, thatis Ya~Db

= Note that approximate solution a does not necessarily
give the separating hyperplane in the separable case

= But hyperplane corresponding to a may still be a good
solution, especially if there is no separating hyperplane



LDF: MSE Criterion Function

= Minimum squared error approach: find a which
minimizes the length of the error vector e

b
YAt

Ya

= Thus minimize the minimum squared error criterion

function:
@) a-br = Slay, b

= Unlike the perceptron criterion function, we can
optimize the minimum squared error criterion
function analytically by setting the gradient to O



LDF: Optimizing J.(a)

J,(a)=|va-b| _Z(""yi_bi)2

= Let’s compute the gradient:
Oh
08, dJ 1 d >
—| ¢ |==s= =N _"la'yv. —b

VJS(a) 5\]5 da i=1 a(ayl I)

0,

L] n d

=Y 2la'y, -b )—la'y. -b
— (ayl I)da(ayl |)



LDF: Pseudo Inverse Solution

vl .(a)=2Y'(Ya-b)

= Setting the gradient to O:
2Y'(Ya-b)=0 = Y'Ya=Y'b
= Matrix Y'Y iIs square (it has d +1 rows and columns)
and it is often non-singular

= |If YYY Is non-singular, its inverse exists and we can
solve for a uniquely:

a=(viy )y

pseudo inverse of Y

vy =6y )t =




LDF: Minimum Squared-Error Procedures

= |f b,=...=b,=1, MSE procedure is equivalent to finding a
hyperplane of best fit through the samples y,,...,y,

= Then we shift this line to the origin, If this line was a
good fit, all samples will be classified correctly



LDF: Minimum Squared-Error Procedures

= Only guaranteed the separating hyperplane if Ya >0

= that is If all elements of vector Ya =

= We have Ya=Db
b, +e, |
= ThatIs Ya-= :

b, +¢,

t
aYs y
. | are positive

X
ay,

where ¢ may be negative

= If g,..., & are small relative to b,,..., b, then each element
of Ya Is positive, and a gives a separating hyperplane

= If approximation is not good, & may be large and negative,
for some I, thus b, + & will be negative and a is not a

separating hyperplane

= Thus in linearly separable case, least squares solution
a does not necessarily gives separating hyperplane

= But it will give a “reasonable” hyperplane



LDF: Minimum Squared-Error Procedures

= We are free to choose b. May be tempted to make b
large as a way to insure Yax=b >0

= Does not work

= Let fbe a scalar, let'stry b instead of b

= |f a* Is a least squares solution to Ya = b, then for any
scalar g, least squares solutionto Ya= fb is pa*

argmin|Ya— o[ = ang min g2|Y (a/ 8)-b|
—argminlY (a/ g)-b| = pa*

= thus If for some 1th element of Ya Is less than O, that Is
yta <0, then yt (fa) <0,

= Relative difference between components of b matters,
but not the size of each individual component



LDF: How to choose b in MSE Procedure?

= So far we assumed that constants b,, b,,..., b, are
positive but otherwise arbitrary

= Good choiceis b,;=b,=...=b,=1. In this case,
1. MSE solution is basically identical

to Fischer’s linear discriminant
solution

2. MSE solution approaches the Bayes discriminant
function as the number of samples goes to infinity

gB(X)= P(Cl | X)_P(Cz | X)



LDF:. Example

Class 1:(69), (57)
Class 2: (59), (0 4)

Setvectorsy,,Y,, Y3, Y, by

adding extra feature and .

(9] o Ul (=] ~ oo O
T T T T T T

-1 0 1 2 3 4 5 6

“normalizing”
1 1 1| 1
ylz_g_ Yo =_§_ y3=_:g_ y4=__2_

1 6
Matrix Y Is then Y = % _g
1 0




LDF:. Example

% 10-
Choose b=|j :
1
. Bl
In matlab, a=Y\b solves the .
least squares problem 2
2.7
a=| 1.0 % 0 > s
-0.9
Note a Is an approximation to Ya = b, since no
exact solution exists 0.4] [1
1131
Ya=106|*|1
11| [1

This solution does give a separating hyperplane
since Ya >0



LDF:. Example

Class 1:(69), (57)
Class 2: (5 9), (0 10)

The last sample Is very far
compared to others from the
separating hyperplane

1 1 -1

Y1 = 8 Y, = ? Ys = :g
1 6 9]
Matrix Y = _% _g _g79
-1 0 -10




LDF:. Example

—1— 107 H
Choose b=|1

_1_ 8.5
In matlab, a=Y\b solves the

7.5F

least squares problem

3.2 | | |
a= 0.2 °% 0 2 4
-0.4
Note a Is an approximation to Ya = b, since no

exact solution exists - 0.2] [1
| 09]_|1
Ya=|_0.04|*|1
116 |[1]

This solution does not give a separating
hyperplane since aly, <0



LDF:. Example

= MSE pays to much attention to isolated “noisy”
examples (such examples are called outliers)

o MSE solution

outlier e

", desired solution

= No problems with convergence though, and
solution it gives ranges from reasonable to good



LDF:. Example

= we know that 4™ point is far far |
from separating hyperplane :

= |n practice we don’t know this
1

= Thus appropriate b=| 1

10
= |n Matlab, solve a=Y\b

-1.1
a=| 1.7
-0.9 " 091 17

0.9
* Note a is an approximation to Ya=b, va=| 52 |=

8
6
4
ol
0
2
i

e 0 2 4 6

N

= This solution does give the separating hype_rplaﬁe
since Ya >0



LDF: Gradient Descent for MSE solution

J,(a)=va-bf

= May wish to find MSE solution by gradient descent:

1. Computing the inverse of Y'Y may be too costly

2. Y'Y may be close to singular if samples are highly
correlated (rows of Y are almost linear
combinations of each other)

= computing the inverse of Y'Y is not numerically stable

= In the beginning of the lecture, computed the

gradient:
vl .(a)=2Y'(Ya-b)



LDF: Widrow-Hoff Procedure

vl .(a)=2Y'(Ya-b)

= Thus the update rule for gradient descent:
qk+1) — 5() _ n(k)Yt(Ya(k) B b)

= If % =5W/k weight vector a® converges to the MSE
solution a, that is Y{(Ya-b)=0

= Widrow-Hoff procedure reduces storage
requirements by considering single samples
sequentially:

al =a® -ty (yja® b))



LDF: Ho-Kashyap Procedure

= In the MSE procedure, if b Is chosen arbitrarily,
finding separating hyperplane is not guaranteed

= Suppose training samples are linearly separable.
Then there Is as and positive bs s.t.

Ya>=b®>>0

= If we knew bs could apply MSE procedure to find the
separating hyperplane

= |dea: find both as and bs
= Minimize the following criterion function, restricting to

ositive b:
P Ju(ab)=|va-b|
" Juk(a®,b%)=0



LDF: Ho-Kashyap Procedure

Ju(a,b)=[va-b[

= As usual, take partial derivatives w.r.t. aand b
V.)w =2Y'(Ya-b)=0
V,J. =-2(Ya-b)=0

= Use modified gradient descent procedure to find a
minimum of J,«(a,b)

= Alternate the two steps below until convergence:

1) Fix b and minimize J,(a,b) with respect to a
2) Fix a and minimize J(a,b) with respectto b



LDF: Ho-Kashyap Procedure

Va‘JHK=2Yt(Ya_b)=O VbJHK:_Z(Ya_b):O

= Alternate the two steps below until convergence:

1) Fix b and minimize J,(a,b) with respect to a
2) Fix a and minimize J(a,b) with respectto b

= Step (1) can be performed with pseudoinverse

= For fixed b minimum of J,, (a,b) with respect to a is
found by solving

2Y'(Ya-b)=0
= Thus
a=(Y'Y)'Y'b




LDF: Ho-Kashyap Procedure

= Step 2: fix a and minimize J(a,b) with respectto b

= We can’t use b =Ya because b has to be positive

= Solution: use modified gradient descent

= Regular gradient descent rule:
bt = p®) _ 5y, 3(a®), p®)

= |f any components of v, J are positive, b will
decrease and can possibly become negative

1 - 2] [-3]
p* =11|-2*-3|=| 7
1 -2 | 5




LDF: Ho-Kashyap Procedure

= start with positive b , follow negative gradient but
refuse to decrease any components of b

= This can be achieved by setting all the positive
components of v,J to O

k1) _ ) _ %[Vb‘] (a(k),b(k))— 1V, J (a("),b(k))|]

= here |v| denotes vector we get after applying absolute
value to all elements of v

S e

= Not doing steepest descent anymore, but we are
still doing descent and ensure that b Is positive




LDF: Ho-Kashyap Procedure

k1) _ ) _ %[Vb‘] (a(k),b(k))— 1V, (a("),b(k))|]

v,J=-2(Ya-b)=0

s Let e®oya®_p© —_Lyy (a0 p©)
2

= Then
b)) — @) _p 2[00 _ |2 ]
72

_pk) 4 U[e(k) +| e (k) |]




LDF: Ho-Kashyap Procedure

= The final Ho-Kashyap procedure:
0) Start with arbitrary a® and b® >0, letk =1
repeat steps (1) through (4)
1) e® =vyal) _p®
2) Solve for b**1) using a®) and b®)
p&+1) — pk) 4 U[e(k) +| e (k) |]

3) Solve for ak+l) using b&+1)
a(k"‘l) — (Y tY )—1Yt b(k+1)
4) k=k+1

until e®>=0 or k >k ., or bkl =pk

max

= For convergence, learning rate should be fixed
between 0<np <1



LDF: Ho-Kashyap Procedure

pk+1) _ k) L ﬂ[e(k) +| e (k) |]

What if e®) is negative for all components?
= pk+D =p& and corrections stop

Write e®) out:

el =va® _p® _y(yty )y p® _p®)
Multiply by Yt

Yte(k) =Yt(Y(Y tY )_1Ytb(k) . b(k)) =Ytb(k) _Ytb(k) — O
Thus Yte® =0



LDF: Ho-Kashyap Procedure

= Thus Yte®) =0

= Suppose training samples are linearly separable.
Then there Is as and positive bs s.t.

Ya’>=b®>0

= Multiply both sides by (e )t
0=(®)vas =(®)bs

= Either e®) =0 or one of its components is positive



LDF: Ho-Kashyap Procedure

* In the linearly separable case,

= ek) =0, found solution, stop
= one of components of el is positive, algorithm continues

* In non separable case,

= e® will have only negative components eventually, thus
found proof of nonseparability

= No bound on how many iteration need for the proof of
nonseparability



LDF: Ho-Kashyap Procedure Example

= Class 1: (6 9), (57) o m
= Class 1: (5 9), (0 10) o
- 6 o]
] I _ 1 5 V4 7
Matrlx Y - _1 _5 _9 50 1 2 3
-1 0 -10
_1_ _1_
= Start with al¥) = % and b® = %
o 1

= Use fixed learning n = 0.9
Spe
= Atthe start Ya®=| %g




LDF: Ho-Kashyap Procedure Example

= |teration 1:

e® _ya® _p@ _

solve for b? using a® and b®

a® =(y'y )y b® =

[ 16
13
~15

solve for a®® using b

e

b® =pb®+0.9[e® +]e®|] =

- 15

PR

12
16
-12.

+0.9




LDF: Ho-Kashyap Procedure Example

100 |
= Continue Iiterations until Ya> 0 A -

= |n practice, continue until minimum ol

component of Ya is less then 0.01 | .

6

= After 104 iterations converged to solution
~34.9 28 |
a{ 27.3} b=| 23

1
~11.3 147

= a does gives a separating hyperplane

27.2
22.5
0.14
1.48

Ya=




LDF: MSE for Multiple Classes

Suppose we have m classes
Define m linear discriminant functions

gi(x)=WitX + W, 1=1,....m

Given x, assign class c; if
g, (x)2g;(x)  Vj#i

Such classifier I1s called a linear machine

A linear machine divides the feature space into c
decision regions, with g;(x) being the largest
discriminant If x Is in the region R,



LDF:. Many Classes




LDF: MSE for Multiple Classes

We still use augmented feature vectors y,,..., Y,
Define m linear discriminant functions

gi(y)=ayy  i=1..m
Given y, assign class c; if
t t . .
ay =ay ES

For each class I, makes sense to seek weight
vector a,, S.t.

ay=1 Vy e class i

{a}y =0 Vy ¢ class i

If we find such a,,..., a,, the training error will be O



LDF: MSE for Multiple Classes

For each class I, find weight vector a,, s.t.
ay=1 Vy e class i
ay =0 Vy ¢ class i

We can solve for each a, independently

Let n, be the number of samples in class |

Let Y; be matrix whose rows are samples from
class I, so it has d +1 columns and n; rows

Let’s pile all samplesinn by d +1 matrix Y:

Y, [ sample from class1
Y% sample from class1

Y = 2 :

sample from classm

Y | sample from classm




LDF: MSE for Multiple Classes

= Let b; be a column vector of length n which is O
everywhere except rows corresponding to samples
from class I, where it is 1: -

b. =

1 rows corresponding
i to samples from class |
0

= We need to solve: Ya, =b, e

[ sample from class1 |
sample from class1

weights a,
|
O -k O

sample from classm
| sample from classm |




LDF: MSE for Multiple Classes

We need to solve Ya, = b,
Usually no exact solution since Y Is overdetermined

Use least squares to minimize norm of the error
vector || Ya; - b, |

LSE solution with pseudoinverse:
a =(Y'Y)'Y'b,

Thus we need to solve m LSE problems, one for
each class

Can write these m LSE problems in one matrix



LDF: MSE for Multiple Classes

= Let’s pile all b; as columns in n by ¢ matrix B
B=[b, - b,]

= Let's pile all &, as columns in d +1 by m matrix A

= m LSE pro

A

sample from
sample from
sample from
sample from
sample from
sample from

Y

la, -

a, |

nlems can be re
i class1]| [

class1
class 2
class 3
class 3
class 3

_csﬁcé\l CGE_
28 o

- | < =

20 o
O o ‘O

==z 2

oresented In
29%8 Tr1o0o0
seg| (399
n n —
e 001
DO 001
O O

| 2327 001
A B

YA = B:




LDF: MSE for Multiple Classes

= QOur objective function is:

I(A) = gHYai b

= J(A) Is minimized with the use of pseudoinverse

A=Yty )'yB



LDF: Summary

= Perceptron procedures

= find a separating hyperplane in the linearly separable case,
= do not converge in the non-separable case

= can force convergence by using a decreasing learning rate,
but are not guaranteed a reasonable stopping point

= MSE procedures

= converge Iin separable and not separable case

= may not find separating hyperplane if classes are linearly
separable

= use pseudoinverse if Y'Y iIs not singular and not too large
= use gradient descent (Widrow-Hoff procedure) otherwise

= Ho-Kashyap procedures
= always converge

= find separating hyperplane in the linearly separable case
= more costly



