Minimum Squared Error

C12

Today

- Continue with Linear Discriminant Functions
 - Last lecture: Perceptron Rule for weight learning
 - This lecture: Minimum Squared Error (MSE) rule
 - Pseudoinverse
 - Gradient descent (Widrow-Hoff Procedure)
 - Ho-Kashyap Procedure

LDF: Perceptron Criterion Function

- The perceptron criterion function
 - try to find weight vector \mathbf{a} s.t. $\mathbf{a}^t \mathbf{y}_i > 0$ for all samples \mathbf{y}_i
 - perceptron criterion function $J_p(a) = \sum_{y \in Y_M} (-a^t y)$
 - only look at the misclassified samples
 - will converge in the linearly separable case
- Problem:
 - will not converge in the nonseparable case
 - to ensure convergence can set

$$\eta^{(k)} = \frac{\eta^{(1)}}{k}$$

 However we are not guaranteed that we will stop at a good point

Idea: convert to easier and better understood problem

 $a^t y_i > 0$ for all samples y_i solve system of linear inequalities

 $a^t y_i = b_i$ for all samples y_i solve system of linear equations

- MSE procedure
 - Choose **positive** constants $b_1, b_2, ..., b_n$
 - try to find weight vector \mathbf{a} s.t. $\mathbf{a}^t \mathbf{y}_i = \mathbf{b}_i$ for all samples \mathbf{y}_i
 - If we can find weight vector \mathbf{a} such that $\mathbf{a}^t \mathbf{y}_i = \mathbf{b}_i$ for all samples \mathbf{y}_i , then \mathbf{a} is a solution because \mathbf{b}_i 's are positive
 - consider all the samples (not just the misclassified ones)

LDF: MSE Margins

- Since we want $\mathbf{a}^t \mathbf{y}_i = \mathbf{b}_i$, we expect sample \mathbf{y}_i to be at distance \mathbf{b}_i from the separating hyperplane (normalized by $||\mathbf{a}||$)
- Thus $b_1, b_2, ..., b_n$ give relative expected distances or "margins" of samples from the hyperplane
- Should make b_i small if sample i is expected to be near separating hyperplane, and make b_i larger otherwise
- In the absence of any additional information, there are good reasons to set $b_1 = b_2 = \dots = b_n = 1$

LDF: MSE Matrix Notation

• Need to solve \mathbf{n} equations $\begin{cases} \mathbf{a}^t \mathbf{y}_1 = \mathbf{b}_1 \\ \vdots \\ \mathbf{a}^t \mathbf{v}_n = \mathbf{b}_n \end{cases}$

$$\begin{cases} \mathbf{a}^t \mathbf{y}_1 = \mathbf{b}_1 \\ \vdots \\ \mathbf{a}^t \mathbf{y}_n = \mathbf{b}_1 \end{cases}$$

Introduce matrix notation:

$$\begin{bmatrix} y_{1}^{(0)} & y_{1}^{(1)} & \cdots & y_{1}^{(d)} \\ y_{2}^{(0)} & y_{2}^{(1)} & \cdots & y_{2}^{(d)} \\ \vdots & & & \vdots \\ y_{n}^{(0)} & y_{n}^{(1)} & \cdots & y_{n}^{(d)} \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{d} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{bmatrix}$$

Thus need to solve a linear system Ya = b

LDF: Exact Solution is Rare

- Thus need to solve a linear system Ya = b
 - **Y** is an **n** by (**d** +1) matrix
- Exact solution can be found only if Y is nonsingular and square, in which case the inverse Y⁻¹ exists
 - $a = Y^{-1}b$
 - (number of samples) = (number of features + 1)
 - almost never happens in practice
 - in this case, guaranteed to find the separating hyperplane

LDF: Approximate Solution

 Typically Y is overdetermined, that is it has more rows (examples) than columns (features)

If it has more features than examples, should reduce dimensionality

dimensionality

- Need Ya = b, but no exact solution exists for an overdetermined system of equation
 - More equations than unknowns
- Find an approximate solution a, that is Ya ≈ b
 - Note that approximate solution a does not necessarily give the separating hyperplane in the separable case
 - But hyperplane corresponding to a may still be a good solution, especially if there is no separating hyperplane

LDF: MSE Criterion Function

 Minimum squared error approach: find a which minimizes the length of the error vector e

$$e = Ya - b$$

Thus minimize the minimum squared error criterion function:

$$J_s(a) = ||Ya - b||^2 = \sum_{i=1}^n (a^t y_i - b_i)^2$$

 Unlike the perceptron criterion function, we can optimize the minimum squared error criterion function analytically by setting the gradient to 0

LDF: Optimizing $J_s(a)$

$$J_s(a) = ||Ya - b||^2 = \sum_{i=1}^n (a^t y_i - b_i)^2$$

Let's compute the gradient:

The Let's compute the gradient.

$$\nabla J_{s}(a) = \begin{bmatrix} \frac{\partial J_{s}}{\partial a_{0}} \\ \vdots \\ \frac{\partial J_{s}}{\partial a_{d}} \end{bmatrix} = \frac{dJ_{s}}{da} = \sum_{i=1}^{n} \frac{d}{da} (a^{t}y_{i} - b_{i})^{2}$$

$$= \sum_{i=1}^{n} 2(a^{t}y_{i} - b_{i}) \frac{d}{da} (a^{t}y_{i} - b_{i})$$

$$= \sum_{i=1}^{n} 2(a^{t}y_{i} - b_{i})y_{i}$$

$$= 2Y^{t}(Ya - b)$$

LDF: Pseudo Inverse Solution

$$\nabla J_s(a) = 2Y^t(Ya - b)$$

Setting the gradient to 0:

$$2Y^{t}(Ya-b)=0 \Rightarrow Y^{t}Ya=Y^{t}b$$

- Matrix Y^tY is square (it has d + 1 rows and columns)
 and it is often non-singular
- If Y'Y is non-singular, its inverse exists and we can solve for a uniquely:

$$\mathbf{a} = (\mathbf{Y}^t \mathbf{Y})^{-1} \mathbf{Y}^t \mathbf{b}$$
pseudo inverse of \mathbf{Y}

$$((\mathbf{Y}^t \mathbf{Y})^{-1} \mathbf{Y}^t) \mathbf{Y} = (\mathbf{Y}^t \mathbf{Y})^{-1} (\mathbf{Y}^t \mathbf{Y}) = \mathbf{I}$$

• If $b_1 = \dots = b_n = 1$, MSE procedure is equivalent to finding a hyperplane of best fit through the samples y_1, \dots, y_n

 Then we shift this line to the origin, if this line was a good fit, all samples will be classified correctly

- Only guaranteed the separating hyperplane if Ya > 0
 - that is if all elements of vector $\mathbf{Y}\mathbf{a} = \begin{bmatrix} \mathbf{a}^t \mathbf{y}_1 \\ \vdots \\ \mathbf{a}^t \mathbf{y}_n \end{bmatrix}$ are positive
- We have Ya ≈ b
- That is $\mathbf{Ya} = \begin{vmatrix} \mathbf{b_1} + \varepsilon_1 \\ \vdots \\ \mathbf{b_n} + \varepsilon_n \end{vmatrix}$ where ε may be negative
 - If $\varepsilon_1, \ldots, \varepsilon_n$ are small relative to b_1, \ldots, b_n , then each element of Ya is positive, and a gives a separating hyperplane
 - If approximation is not good, ε_i may be large and negative, for some i, thus $b_i + \varepsilon_i$ will be negative and a is not a separating hyperplane
- Thus in linearly separable case, least squares solution a does not necessarily gives separating hyperplane
- But it will give a "reasonable" hyperplane

- We are free to choose b. May be tempted to make b large as a way to insure Ya ≈ b > 0
- Does not work
 - Let β be a scalar, let's try βb instead of b
 - if a^* is a least squares solution to Ya = b, then for any scalar β , least squares solution to $Ya = \beta b$ is βa^*

$$\underset{a}{\operatorname{arg min}} \|\mathbf{Y}\mathbf{a} - \beta \mathbf{b}\|^{2} = \underset{a}{\operatorname{arg min}} \beta^{2} \|\mathbf{Y}(\mathbf{a}/\beta) - \mathbf{b}\|^{2}$$
$$= \underset{a}{\operatorname{arg min}} \|\mathbf{Y}(\mathbf{a}/\beta) - \mathbf{b}\|^{2} = \beta \mathbf{a}^{*}$$

- thus if for some *i*th element of Ya is less than 0, that is $y^t_i a < 0$, then $y^t_i (\beta a) < 0$,
- Relative difference between components of b matters, but not the size of each individual component

LDF: How to choose b in MSE Procedure?

- So far we assumed that constants $b_1, b_2, ..., b_n$ are positive but otherwise arbitrary
- Good choice is $b_1 = b_2 = \dots = b_n = 1$. In this case,
- MSE solution is basically identical to Fischer's linear discriminant solution

2. MSE solution approaches the Bayes discriminant function as the number of samples goes to infinity

$$g_B(x) = P(c_1 \mid x) - P(c_2 \mid x)$$

- Class 1: (6 9), (5 7)
- Class 2: (5 9), (0 4)
- Set vectors y_1 , y_2 , y_3 , y_4 by adding extra feature and "normalizing"

$$\mathbf{y}_1 = \begin{bmatrix} \mathbf{1} \\ \mathbf{6} \\ \mathbf{9} \end{bmatrix} \quad \mathbf{y}_2 = \begin{bmatrix} \mathbf{1} \\ \mathbf{5} \\ \mathbf{7} \end{bmatrix} \quad \mathbf{y}_3 = \begin{bmatrix} -1 \\ -5 \\ -9 \end{bmatrix} \quad \mathbf{y}_4 = \begin{bmatrix} -1 \\ 0 \\ -4 \end{bmatrix}$$

• Matrix Y is then
$$Y = \begin{vmatrix} 1 & 6 & 9 \\ 1 & 5 & 7 \\ -1 & -5 & -9 \\ -1 & 0 & -4 \end{vmatrix}$$

• Choose
$$b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

In matlab, a= Y\b solves the least squares problem

$$a = \begin{bmatrix} 2.7 \\ 1.0 \\ -0.9 \end{bmatrix}$$

Note a is an approximation to Ya = b, since no exact solution exists
[0.4] [1]

$$Ya = \begin{bmatrix} 0.4 \\ 1.3 \\ 0.6 \\ 1.1 \end{bmatrix} \neq \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

 This solution does give a separating hyperplane since Ya > 0

- Class 1: (6 9), (5 7)
- Class 2: (5 9), (0 10)
- The last sample is very far compared to others from the separating hyperplane

$$\mathbf{y_1} = \begin{bmatrix} \mathbf{1} \\ \mathbf{6} \\ \mathbf{9} \end{bmatrix} \quad \mathbf{y_2} = \begin{bmatrix} \mathbf{1} \\ \mathbf{5} \\ \mathbf{7} \end{bmatrix} \quad \mathbf{y_3} = \begin{bmatrix} -1 \\ -5 \\ -9 \end{bmatrix} \quad \mathbf{y_4} = \begin{bmatrix} -1 \\ 0 \\ -10 \end{bmatrix}$$

• Matrix
$$\mathbf{Y} = \begin{bmatrix} 1 & 6 & 9 \\ 1 & 5 & 7 \\ -1 & -5 & -9 \\ -1 & 0 & -10 \end{bmatrix}$$

$$y_4 = \begin{bmatrix} -1 \\ 0 \\ -10 \end{bmatrix}$$

• Choose
$$b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

In matlab, a= Y\b solves the least squares problem

$$a = \begin{bmatrix} 3.2 \\ 0.2 \\ -0.4 \end{bmatrix}$$

$$\mathbf{Ya} = \begin{bmatrix} 0.2 \\ 0.9 \\ -0.04 \\ 1.16 \end{bmatrix} \neq \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

 This solution does not give a separating hyperplane since a^ty₃ < 0

 MSE pays to much attention to isolated "noisy" examples (such examples are called outliers)

 No problems with convergence though, and solution it gives ranges from reasonable to good

- we know that 4th point is far far from separating hyperplane
 - In practice we don't know this
- Thus appropriate $b = \begin{bmatrix} 1 \\ 1 \\ 10 \end{bmatrix}$
- In Matlab, solve **a**= **Y****b**

$$a = \begin{bmatrix} -1.1 \\ 1.7 \\ -0.9 \end{bmatrix}$$

- Note **a** is an approximation to Ya = b, $Ya = \begin{bmatrix} 0.9 \\ 1.0 \\ 0.8 \\ 10.0 \end{bmatrix} \neq \begin{bmatrix} 1 \\ 1 \\ 1 \\ 10 \end{bmatrix}$
- This solution does give the separating hyperplane since Ya > 0

LDF: Gradient Descent for MSE solution

$$J_s(a) = \|Ya - b\|^2$$

- May wish to find MSE solution by gradient descent:
 - 1. Computing the inverse of Y^tY may be too costly
 - 2. Y'Y may be close to singular if samples are highly correlated (rows of Y are almost linear combinations of each other)
 - computing the inverse of Y'Y is not numerically stable
- In the beginning of the lecture, computed the gradient:

$$\nabla J_s(a) = 2Y^t(Ya - b)$$

LDF: Widrow-Hoff Procedure

$$\nabla J_s(a) = 2Y^t(Ya - b)$$

Thus the update rule for gradient descent:

$$\boldsymbol{a}^{(k+1)} = \boldsymbol{a}^{(k)} - \eta^{(k)} \boldsymbol{Y}^{t} (\boldsymbol{Y} \boldsymbol{a}^{(k)} - \boldsymbol{b})$$

- If $\eta^{(k)} = \eta^{(1)} I k$ weight vector $\mathbf{a}^{(k)}$ converges to the MSE solution \mathbf{a} , that is $\mathbf{Y}^t(\mathbf{Y}\mathbf{a}-\mathbf{b})=0$
- Widrow-Hoff procedure reduces storage requirements by considering single samples sequentially:

$$a^{(k+1)} = a^{(k)} - \eta^{(k)} y_i (y_i^t a^{(k)} - b_i)$$

- In the MSE procedure, if b is chosen arbitrarily, finding separating hyperplane is not guaranteed
- Suppose training samples are linearly separable.
 Then there is a and positive b s.t.

$$Ya^s = b^s > 0$$

- If we knew b^s could apply MSE procedure to find the separating hyperplane
- Idea: find both as and bs
- Minimize the following criterion function, restricting to positive \mathbf{b} : $J_{\mu\kappa}(\mathbf{a},\mathbf{b}) = \|\mathbf{Y}\mathbf{a} \mathbf{b}\|^2$
- $J_{HK}(a^s, b^s) = 0$

$$J_{HK}(a,b) = ||Ya - b||^2$$

As usual, take partial derivatives w.r.t. a and b

$$\nabla_{a}J_{HK} = 2Y^{t}(Ya - b) = 0$$
$$\nabla_{b}J_{HK} = -2(Ya - b) = 0$$

- Use modified gradient descent procedure to find a minimum of $J_{HK}(\boldsymbol{a},\boldsymbol{b})$
- Alternate the two steps below until convergence:
 - 1) Fix **b** and minimize $J_{HK}(a,b)$ with respect to **a**
 - 2) Fix \boldsymbol{a} and minimize $\boldsymbol{J}_{HK}(\boldsymbol{a},\boldsymbol{b})$ with respect to \boldsymbol{b}

$$\nabla_{a}J_{HK} = 2Y^{t}(Ya - b) = 0 \qquad \nabla_{b}J_{HK} = -2(Ya - b) = 0$$

- Alternate the two steps below until convergence:
 - 1) Fix **b** and minimize $J_{HK}(a,b)$ with respect to **a**
 - 2) Fix **a** and minimize $J_{HK}(a,b)$ with respect to **b**
- Step (1) can be performed with pseudoinverse
 - For fixed b minimum of J_{HK}(a,b) with respect to a is found by solving

$$2Y^{t}(Ya-b)=0$$

Thus

$$\mathbf{a} = (\mathbf{Y}^t \mathbf{Y})^{-1} \mathbf{Y}^t \mathbf{b}$$

- Step 2: fix a and minimize J_{HK}(a,b) with respect to b
- We can't use b = Ya because b has to be positive
- Solution: use modified gradient descent
- Regular gradient descent rule:

$$\boldsymbol{b}^{(k+1)} = \boldsymbol{b}^{(k)} - \eta^{(k)} \nabla_b \boldsymbol{J} (\boldsymbol{a}^{(k)}, \boldsymbol{b}^{(k)})$$

• If any components of $\nabla_b J$ are positive, b will decrease and can possibly become negative

$$b^{(k+1)} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - 2 * \begin{bmatrix} 2 \\ -3 \\ -2 \end{bmatrix} = \begin{bmatrix} -3 \\ 7 \\ 5 \end{bmatrix}$$

- start with positive b, follow negative gradient but refuse to decrease any components of b
- This can be achieved by setting all the positive components of $\nabla_{\mathbf{p}} \mathbf{J}$ to $\mathbf{0}$

$$b^{(k+1)} = b^{(k)} - \eta \frac{1}{2} \left[\nabla_b J(a^{(k)}, b^{(k)}) - I \nabla_b J(a^{(k)}, b^{(k)}) \right]$$

 here |v| denotes vector we get after applying absolute value to all elements of v

$$b^{(k+1)} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - 2 * \frac{1}{2} \begin{bmatrix} 2 \\ -3 \\ -2 \end{bmatrix} - \begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ -6 \\ -4 \end{bmatrix} = \begin{bmatrix} 1 \\ 7 \\ 5 \end{bmatrix}$$

 Not doing steepest descent anymore, but we are still doing descent and ensure that b is positive

$$b^{(k+1)} = b^{(k)} - \eta \frac{1}{2} \left[\nabla_b J(a^{(k)}, b^{(k)}) - / \nabla_b J(a^{(k)}, b^{(k)}) / \right]$$
$$\nabla_b J = -2(Ya - b) = 0$$

• Let
$$\mathbf{e}^{(k)} = Ya^{(k)} - b^{(k)} = -\frac{1}{2} \nabla J_b(a^{(k)}, b^{(k)})$$

Then

$$b^{(k+1)} = b^{(k)} - \eta \frac{1}{2} \left[-2e^{(k)} - |2e^{(k)}| \right]$$
$$= b^{(k)} + \eta \left[e^{(k)} + |e^{(k)}| \right]$$

- The final Ho-Kashyap procedure:
 - 0) Start with arbitrary $a^{(1)}$ and $b^{(1)} > 0$, let k = 1 repeat steps (1) through (4)

1)
$$e^{(k)} = Ya^{(k)} - b^{(k)}$$

- 2) Solve for $b^{(k+1)}$ using $a^{(k)}$ and $b^{(k)}$ $b^{(k+1)} = b^{(k)} + \eta \left[e^{(k)} + |e^{(k)}| \right]$
- 3) Solve for $a^{(k+1)}$ using $b^{(k+1)}$ $a^{(k+1)} = (Y^tY)^{-1}Y^t b^{(k+1)}$
- 4) k = k + 1until $e^{(k)} >= 0$ or $k > k_{max}$ or $b^{(k+1)} = b^{(k)}$
- For convergence, learning rate should be fixed between 0 < η < 1

$$b^{(k+1)} = b^{(k)} + \eta [e^{(k)} + |e^{(k)}|]$$

- What if $e^{(k)}$ is negative for all components?
 - $b^{(k+1)} = b^{(k)}$ and corrections stop
- Write **e**(**k**) out:

$$e^{(k)} = Ya^{(k)} - b^{(k)} = Y(Y^tY)^{-1}Y^tb^{(k)} - b^{(k)}$$

• Multiply by Y^t:

$$\mathbf{Y}^{t}\mathbf{e}^{(k)} = \mathbf{Y}^{t}\left(\mathbf{Y}(\mathbf{Y}^{t}\mathbf{Y})^{-1}\mathbf{Y}^{t}\mathbf{b}^{(k)} - \mathbf{b}^{(k)}\right) = \mathbf{Y}^{t}\mathbf{b}^{(k)} - \mathbf{Y}^{t}\mathbf{b}^{(k)} = \mathbf{0}$$

• Thus $Y^t e^{(k)} = 0$

- Thus $Y^t e^{(k)} = 0$
- Suppose training samples are linearly separable.
 Then there is a and positive b s.t.

$$Ya^s = b^s > 0$$

• Multiply both sides by $(e^{(k)})^t$

$$\mathbf{0} = \left(\mathbf{e}^{(k)}\right)^t \mathbf{Y} \mathbf{a}^s = \left(\mathbf{e}^{(k)}\right)^t \mathbf{b}^s$$

• Either $e^{(k)} = 0$ or one of its components is positive

- In the linearly separable case,
 - $e^{(k)} = 0$, found solution, stop
 - one of components of $e^{(k)}$ is positive, algorithm continues

- In non separable case,
 - $e^{(k)}$ will have only negative components eventually, thus found proof of nonseparability
 - No bound on how many iteration need for the proof of nonseparability

LDF: Ho-Kashyap Procedure Example

- Class 1: (6 9), (5 7)
- Class 1: (5 9), (0 10)

Matrix
$$\mathbf{Y} = \begin{bmatrix} 1 & 6 & 9 \\ 1 & 5 & 7 \\ -1 & -5 & -9 \\ -1 & 0 & -10 \end{bmatrix}$$

• Start with
$$\mathbf{a}^{(1)} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 and $\mathbf{b}^{(1)} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

• Use fixed learning $\eta = 0.9$

• At the start
$$Ya^{(1)} = \begin{bmatrix} 16 \\ 13 \\ -15 \\ -11 \end{bmatrix}$$

LDF: Ho-Kashyap Procedure Example

Iteration 1:

$$\mathbf{e}^{(1)} = \mathbf{Y}\mathbf{a}^{(1)} - \mathbf{b}^{(1)} = \begin{bmatrix} 16 \\ 13 \\ -15 \\ -11 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 15 \\ 12 \\ -16 \\ -12 \end{bmatrix}$$

• solve for $b^{(2)}$ using $a^{(1)}$ and $b^{(1)}$

$$b^{(2)} = b^{(1)} + 0.9 \Big[e^{(1)} + / e^{(1)} / \Big] = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + 0.9 \begin{bmatrix} 15 \\ 12 \\ -16 \\ -12 \end{bmatrix} + \begin{bmatrix} 15 \\ 12 \\ 16 \\ 12 \end{bmatrix} = \begin{bmatrix} 28 \\ 22.6 \\ 1 \\ 1 \end{bmatrix}$$

solve for a⁽²⁾ using b⁽²⁾

$$a^{(2)} = (Y^{t}Y)^{-1}Y^{t} b^{(2)} = \begin{bmatrix} -2.6 & 4.7 & 1.6 & -0.5 \\ 0.16 & -0.1 & -0.1 & 0.2 \\ 0.26 & -0.5 & -0.2 & -0.1 \end{bmatrix} * \begin{vmatrix} 28 \\ 22.6 \\ 1 \\ 1 \end{vmatrix} = \begin{bmatrix} 34.6 \\ 2.7 \\ -3.8 \end{bmatrix}$$

LDF: Ho-Kashyap Procedure Example

- Continue iterations until Ya > 0
 - In practice, continue until minimum component of *Ya* is less then 0.01

After 104 iterations converged to solution

$$a = \begin{bmatrix} -34.9 \\ 27.3 \\ -11.3 \end{bmatrix} \qquad b = \begin{bmatrix} 28 \\ 23 \\ 1 \\ 147 \end{bmatrix}$$

a does gives a separating hyperplane

- Suppose we have *m* classes
- Define m linear discriminant functions

$$g_i(x) = w_i^t x + w_{i0}$$
 $i = 1,...,m$

Given x, assign class c_i if

$$g_i(x) \ge g_i(x) \quad \forall j \ne i$$

- Such classifier is called a linear machine
- A linear machine divides the feature space into c decision regions, with g_i(x) being the largest discriminant if x is in the region R_i

LDF: Many Classes

- We still use augmented feature vectors $y_1, ..., y_n$
- Define m linear discriminant functions

$$g_i(y) = a_i^t y$$
 $i = 1,...,m$

Given y, assign class c_i if

$$a_i^t y \geq a_j^t y \qquad \forall j \neq i$$

For each class i, makes sense to seek weight vector a_i, s.t.

$$\begin{cases} a_i^t y = 1 & \forall y \in \text{class i} \\ a_i^t y = 0 & \forall y \notin \text{class i} \end{cases}$$

• If we find such a_1, \ldots, a_m the training error will be 0

For each class i, find weight vector a_i, s.t.

$$\begin{cases} a_i^t y = 1 & \forall y \in \text{class i} \\ a_i^t y = 0 & \forall y \notin \text{class i} \end{cases}$$

- We can solve for each a_i independently
- Let n_i be the number of samples in class i
- Let Y_i be matrix whose rows are samples from class i, so it has d+1 columns and n_i rows
- Let's pile all samples in n by d+1 matrix Y:

$$\mathbf{Y} = \begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \\ \vdots \\ \mathbf{Y}_m \end{bmatrix} = \begin{bmatrix} sample \ from \ class 1 \\ sample \ from \ class m \\ sample \ from \ class m \\ sample \ from \ class m \end{bmatrix}$$

Let b_i be a column vector of length n which is 0 everywhere except rows corresponding to samples from class i, where it is 1: \(\int_0\)\

$$b_{i} = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$$
 rows corresponding to samples from class i

• We need to solve: $Ya_i = b_i$

- We need to solve $Ya_i = b_i$
- Usually no exact solution since Y is overdetermined
- Use least squares to minimize norm of the error vector || Ya_i b_i ||
- LSE solution with pseudoinverse:

$$\mathbf{a}_i = (\mathbf{Y}^t \mathbf{Y})^{-1} \mathbf{Y}^t \mathbf{b}_i$$

- Thus we need to solve m LSE problems, one for each class
- Can write these m LSE problems in one matrix

Let's pile all b_i as columns in n by c matrix B

$$\boldsymbol{B} = \begin{bmatrix} \boldsymbol{b}_1 & \cdots & \boldsymbol{b}_n \end{bmatrix}$$

Let's pile all a_i as columns in d+1 by m matrix A

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}^1 & \cdots & \mathbf{a}^m \end{bmatrix} = \begin{bmatrix} w & w & w \\ w & w & w \\ w & w & w \end{bmatrix}$$

m LSE problems can be represented in YA = B:

Y A B

Our objective function is:

$$J(A) = \sum_{i=1}^{m} ||Ya_i - b_i||^2$$

J(A) is minimized with the use of pseudoinverse

$$\mathbf{A} = \left(\mathbf{Y}^t \mathbf{Y}\right)^{-1} \mathbf{Y} \mathbf{B}$$

LDF: Summary

Perceptron procedures

- find a separating hyperplane in the linearly separable case,
- do not converge in the non-separable case
- can force convergence by using a decreasing learning rate, but are not guaranteed a reasonable stopping point

MSE procedures

- converge in separable and not separable case
- may not find separating hyperplane if classes are linearly separable
- use pseudoinverse if Y'Y is not singular and not too large
- use gradient descent (Widrow-Hoff procedure) otherwise

Ho-Kashyap procedures

- always converge
- find separating hyperplane in the linearly separable case
- more costly