Linear Discriminant Functions

C11

Linear discriminant functions on Road Map

- No probability distribution (no shape or parameters are known)
- Labeled data $\stackrel{\text { atimon }}{\text { base }}$ ammon
- The shape of discriminant functions is known

- Need to estimate parameters of the discriminant function (parameters of the line in case of linear discriminant)

Linear Discriminant Functions: Basic Idea

- Have samples from 2 classes $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$
- Assume 2 classes can be separated by a linear boundary $\boldsymbol{I}(\theta)$ with some unknown parameters θ
- Fit the "best" boundary to data by optimizing over parameters θ. How?
- Minimize a criterion function.
- Obvious choice: Minimize classification error on training data. (Does not guarantee small test error)

Parametric Methods vs. Discriminant Functions

Assume the shape of density for classes is known $\boldsymbol{p}_{1}\left(\boldsymbol{x} \mid \theta_{1}\right)$, $\boldsymbol{p}_{\mathbf{2}}\left(\boldsymbol{x} \mid \theta_{2}\right), \ldots$

Estimate $\theta_{I}, \theta_{2}, \ldots$ from data
Use a Bayesian classifier to find decision regions

Assume discriminant
functions are of known shape $I\left(\theta_{I}\right), I\left(\theta_{2}\right)$, with parameters
$\theta_{1}, \theta_{2}, \ldots$
Estimate $\theta_{1}, \theta_{2}, \ldots$ from data
Use discriminant functions for classification

- In theory, Bayesian classifier minimizes the risk
- In practice, do not have confidence in assumed model shapes
- In practice, do not really need the actual density functions in the end
- Estimating accurate density functions is much harder than estimating accurate discriminant functions
- Some argue that estimating densities should be skipped
- Why solve a harder problem than needed ?

LDF: Introduction

- Discriminant functions can be more general than linear
- For now, we will study linear discriminant functions
- Simple model (should try simpler models first)
- Analytically tractable
- Linear Discriminant functions are optimal for Gaussian distributions with equal covariance
- May not be optimal for other data distributions, but they are very simple to use
- Knowledge of class densities is not required when using linear discriminant functions
- we can say that this is a non-parametric approach

LDF: 2 Classes

- A discriminant function is linear if it can be written as

$$
g(x)=w^{t} x+w_{0}
$$

- \boldsymbol{w} is called the weight vector and $\boldsymbol{w}_{\boldsymbol{0}}$ called bias or threshold

LDF: 2 Classes

- Decision boundary $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{w}^{\boldsymbol{t} \boldsymbol{x}}+\boldsymbol{w}_{\mathbf{0}}=0$ is a hyperplane
- A hyperplane is
- a point in 1D
- a line in 2D
- a plane in 3D

LDF: 2 Classes

$$
g(x)=w^{t} x+w_{0}
$$

- \boldsymbol{w} determines orientation of the decision hyperplane
- $\boldsymbol{w}_{\boldsymbol{0}}$ determines location of the decision surface

LDF: Many Classes

- Suppose we have \boldsymbol{m} classes
- Define \boldsymbol{m} linear discriminant functions

$$
g_{i}(x)=w_{i}^{t} x+w_{i 0} \quad \mathbf{i}=1, \ldots, m
$$

- Given \boldsymbol{x}, assign class $\boldsymbol{c}_{\boldsymbol{i}}$ if

$$
\boldsymbol{g}_{i}(\boldsymbol{x}) \geq \boldsymbol{g}_{j}(\boldsymbol{x}) \quad \forall \mathbf{j} \neq \mathbf{i}
$$

- Such classifier is called a linear machine
- A linear machine divides the feature space into \boldsymbol{c} decision regions, with $\boldsymbol{g}_{i}(\boldsymbol{x})$ being the largest discriminant if \boldsymbol{x} is in the region $\boldsymbol{R}_{\boldsymbol{i}}$

LDF: Many Classes

LDF: Many Classes

- For a two contiguous regions R_{i} and R_{j}; the boundary that separates them is a portion of hyperplane $\boldsymbol{H}_{i j}$ defined by:

$$
\begin{aligned}
\boldsymbol{g}_{i}(\boldsymbol{x})=\boldsymbol{g}_{j}(\boldsymbol{x}) & \Leftrightarrow \boldsymbol{w}_{i}^{t} \boldsymbol{x}+\boldsymbol{w}_{i 0}=\boldsymbol{w}_{j}^{t} \boldsymbol{x}+\boldsymbol{w}_{j 0} \\
& \Leftrightarrow\left(\boldsymbol{w}_{i}-\boldsymbol{w}_{j}\right)^{t} \boldsymbol{x}+\left(\boldsymbol{w}_{i 0}-\boldsymbol{w}_{j 0}\right)=\mathbf{0}
\end{aligned}
$$

- Thus $\boldsymbol{w}_{\boldsymbol{i}}-\boldsymbol{w}_{\boldsymbol{j}}$ is normal to $\boldsymbol{H}_{\boldsymbol{i j}}$
- And distance from \boldsymbol{x} to $\boldsymbol{H}_{i j}$ is given by

$$
d\left(x, H_{i j}\right)=\frac{g_{i}(x)-g_{j}(x)}{\left\|w_{i}-w_{j}\right\|}
$$

LDF: Many Classes

- Decision regions for a linear machine are convex

$$
\boldsymbol{y}, \boldsymbol{z} \in \boldsymbol{R}_{i} \Rightarrow \alpha \boldsymbol{y}+(\mathbf{1}-\alpha) \mathbf{z} \in \boldsymbol{R}_{i}
$$

$$
\begin{aligned}
\forall j \neq i & g_{i}(y) \geq g_{j}(y) \text { and } g_{i}(z) \geq g_{j}(z) \Leftrightarrow \\
\Leftrightarrow \forall j \neq i & g_{i}(\alpha y+(1-\alpha) z) \geq g_{j}(\alpha y+(1-\alpha) z)
\end{aligned}
$$

- In particular, decision regions must be spatially contiguous

R_{i} is a valid decision region

LDF: Many Classes

- Thus applicability of linear machine to mostly limited to unimodal conditional densities $\boldsymbol{p}(\boldsymbol{x} \mid \boldsymbol{\theta})$
- even though we did not assume any parametric models
- Example:

LDF: Many Classes

- Thus applicability of linear machine to mostly limited to unimodal conditional densities $\boldsymbol{p}(\boldsymbol{x} \mid \boldsymbol{\theta})$
- even though we did not assume any parametric models
- Example:

LDF: Many Classes

- Thus applicability of linear machine to mostly limited to unimodal conditional densities $\boldsymbol{p}(\boldsymbol{x} \mid \boldsymbol{\theta})$
- even though we did not assume any parametric models
- Example:

LDF: Many Classes

- Thus applicability of linear machine to mostly limited to unimodal conditional densities $\boldsymbol{p}(\boldsymbol{x} \mid \boldsymbol{\theta})$
- even though we did not assume any parametric models
- Example:

- need non-contiguous decision regions
- thus linear machine will fail

LDF: Augmented feature vector

- Linear discriminant function: $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{w}^{\boldsymbol{t}} \boldsymbol{x}+\boldsymbol{w}_{0}$
- Can rewrite it: $g(x)=\underbrace{\boldsymbol{w}_{0}}_{\begin{array}{c}\text { ew } \\ \text { vector a } a t y\end{array}} \begin{array}{c}\boldsymbol{w}^{t}\end{array}] \underbrace{\left[\begin{array}{l}\mathbf{1} \\ \boldsymbol{x}\end{array}\right]}_{\begin{array}{c}\text { new feature } \\ \text { vector } y\end{array}}=\boldsymbol{a}^{t} \boldsymbol{y}=\boldsymbol{g}(\boldsymbol{y})$
- \boldsymbol{y} is called the augmented feature vector
- Added a dummy dimension to get a completely equivalent new homogeneous problem

```
    old problem new problem
g(x)=\mp@subsup{w}{}{t}\boldsymbol{x}+\mp@subsup{w}{0}{}
g(y)= aty
    [\begin{array}{c}{\mp@subsup{\boldsymbol{x}}{1}{}}\\{\vdots}\\{\mp@subsup{\boldsymbol{X}}{d}{}}\end{array}]
    [\begin{array}{c}{1}\\{\mp@subsup{x}{1}{}}\\{\vdots}\\{\mp@subsup{x}{d}{}}\end{array}]
```


LDF: Augmented feature vector

- Feature augmenting is done for simpler notation
- From now on we always assume that we have augmented feature vectors
- Given samples $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$ convert them to augmented samples $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{n}$ by adding a new dimension of value 1

$$
y_{i}=\left[\begin{array}{l}
1 \\
x_{i}
\end{array}\right]
$$

LDF: Training Error

- For the rest of the lecture, assume we have 2 classes
- Samples y_{1}, \ldots, y_{n} some in class 1, some in class 2
- Use these samples to determine weights a in the discriminant function $\boldsymbol{g}(\boldsymbol{y})=\boldsymbol{a}^{\boldsymbol{t}} \boldsymbol{y}$
- What should be our criterion for determining a?
- For now, suppose we want to minimize the training error (that is the number of misclassifed samples $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{\boldsymbol{n}}$)
- Recall that $\quad g\left(y_{i}\right)>0 \Rightarrow y_{i}$ classified c_{1}

$$
g\left(y_{i}\right)<0 \Rightarrow y_{i} \text { classified } c_{2}
$$

- Thus training error is 0 if $\begin{cases}g\left(y_{i}\right)>0 & \forall y_{i} \in c_{1} \\ g\left(y_{i}\right)<0 & \forall y_{i} \in c_{2}\end{cases}$

LDF: Problem "Normalization"

- Thus training error is $\mathbf{0}$ if

$$
\begin{cases}a^{t} y_{i}>0 & \forall y_{i} \in c_{1} \\ a^{t} y_{i}<0 & \forall y_{i} \in c_{2}\end{cases}
$$

- Equivalently, training error is $\mathbf{0}$ if

$$
\begin{cases}a^{t} y_{i}>0 & \forall y_{i} \in c_{1} \\ a^{t}\left(-y_{i}\right)>0 & \forall y_{i} \in c_{2}\end{cases}
$$

- This suggest problem "normalization":

1. Replace all examples from class $\boldsymbol{c}_{\mathbf{2}}$ by their negative

$$
y_{i} \rightarrow-y_{i} \quad \forall y_{i} \in c_{2}
$$

2. Seek weight vector as.t.

$$
\boldsymbol{a}^{t} \boldsymbol{y}_{\boldsymbol{i}}>0 \quad \forall \boldsymbol{y}_{\boldsymbol{i}}
$$

- If such a exists, it is called a separating or solution vector
- Original samples $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$ can indeed be separated by a line then

LDF: Problem "Normalization"

before normalization

Seek a hyperplane that separates patterns from different categories
after "normalization"

Seek hyperplane that puts normalized patterns on the same (positive) side

LDF: Solution Region

- Find weight vector a s.t. for all samples $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{\boldsymbol{n}}$

$$
a^{t} y_{i}=\sum_{k=0}^{d} a_{k} y_{i}^{(k)}>0
$$

- In general, there are many such solutions a

LDF: Solution Region

- Solution region for \boldsymbol{a} : set of all possible solutions
- defined in terms of normal \boldsymbol{a} to the separating hyperplane

Optimization

- Need to minimize a function of many variables

$$
J(x)=J\left(x_{1}, \ldots, x_{d}\right)
$$

- We know how to minimize $\boldsymbol{J}(\boldsymbol{x})$
- Take partial derivatives and set them to zero

$$
\left[\begin{array}{l}
\frac{\partial}{\partial x_{1}} J(x) \\
\vdots \\
\frac{\partial}{\partial x_{d}} J(x)
\end{array}\right]=\nabla \boldsymbol{J}(\boldsymbol{x})=\mathbf{0}
$$

- However solving analytically is not always easy
- Would you like to solve this system of nonlinear equations?

$$
\left\{\begin{array}{l}
\sin \left(x_{1}^{2}+x_{2}^{3}\right)+e^{x_{4}^{2}}=0 \\
\cos \left(x_{1}^{2}+x_{2}^{3}\right)+\log \left(x_{5}^{3}\right)^{x_{4}^{2}}=0
\end{array}\right.
$$

- Sometimes it is not even possible to write down an analytical expression for the derivative, we will see an example later today

Optimization: Gradient Descent

- Gradient $\nabla \boldsymbol{J}(\boldsymbol{x})$ points in direction of steepest increase of $\boldsymbol{J}(\boldsymbol{x})$, and $-\nabla \boldsymbol{J}(\boldsymbol{x})$ in direction of steepest decrease
one dimension

two dimensions

Optimization: Gradient Descent

Gradient Descent for minimizing any function $\boldsymbol{J}(\boldsymbol{x})$ set $\boldsymbol{k}=1$ and $\boldsymbol{x}^{(1)}$ to some initial guess for the weight vector while $\quad \eta^{(k)}\left|\nabla \boldsymbol{J}\left(\boldsymbol{x}^{(k)}\right)\right|>\varepsilon$
choose learning rate $\eta^{(k)}$

$$
\begin{aligned}
& \mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-\eta^{(k)} \nabla J(x) \\
& k=k+1
\end{aligned}
$$

(update rule)

Optimization: Gradient Descent

- Gradient descent is guaranteed to find only a local minimum

- Nevertheless gradient descent is very popular because it is simple and applicable to any function

Optimization: Gradient Descent

- Main issue: how to set parameter η (learning rate)
- If η is too small, need too many iterations

- If η is too large may overshoot the minimum and possibly never find it (if we keep overshooting)

LDF: Criterion Function

- Find weight vector \boldsymbol{a} s.t. for all samples $\boldsymbol{y}_{\boldsymbol{1}}, \ldots, \boldsymbol{y}_{\boldsymbol{n}}$

$$
\boldsymbol{a}^{t} y_{i}=\sum_{k=0}^{d} a_{k} y_{i}^{(k)}>0
$$

- Need criterion function $J(a)$ which is minimized when \boldsymbol{a} is a solution vector
- Let $\boldsymbol{Y}_{\boldsymbol{M}}$ be the set of examples misclassified by \boldsymbol{a}

$$
\boldsymbol{Y}_{M}(a)=\left\{\text { sample } y_{i} \text { s.t. } a^{t} y_{i}<0\right\}
$$

- First natural choice: number of misclassified examples

$$
J(a)=\left|Y_{M}(\mathbf{a})\right|
$$

- piecewise constant, gradient
descent is useless

LDF: Perceptron Criterion Function

- Better choice: Perceptron criterion function

$$
J_{p}(a)=\sum_{y \in Y_{M}}\left(-a^{t} y\right)
$$

- If \boldsymbol{y} is misclassified, $\boldsymbol{a}^{\boldsymbol{t}} \boldsymbol{y} \leq \mathbf{0}$
- Thus $J_{p}(a) \geq 0$
- $J_{p}(\mathrm{a})$ is -||a|| times sum of distances of misclassified examples to decision boundary

- $J_{p}(a)$ is piecewise linear and thus suitable for gradient descent

LDF: Perceptron Batch Rule

$$
J_{p}(a)=\sum_{y \in Y_{M}}\left(-a^{t} y\right)
$$

- Gradient of $J_{p}(a)$ is $\nabla J_{p}(a)=\sum_{y \in Y_{y}}(-y)$
- $\boldsymbol{Y}_{\boldsymbol{M}}$ are samples misclassified by $\boldsymbol{a}^{(\boldsymbol{k})}$
- It is not possible to solve $\nabla \boldsymbol{J}_{\boldsymbol{p}}(\mathbf{a})=\mathbf{0}$ analytically because of $\boldsymbol{Y}_{\boldsymbol{M}}$
- Update rule for gradient descent: $\boldsymbol{x}^{(k+1)}=\mathbf{x}^{(k)}-\eta^{(k)} \nabla \boldsymbol{J}(\boldsymbol{x})$
- Thus gradient decent batch update rule for $\boldsymbol{J}_{\boldsymbol{p}}(\mathbf{a})$ is:

$$
a^{(k+1)}=a^{(k)}+\eta^{(k)} \sum_{y \in Y_{M}} y
$$

- It is called batch rule because it is based on all misclassified examples

LDF: Perceptron Single Sample Rule

- Thus gradient decent single sample rule for $\boldsymbol{J}_{p}(\mathbf{a})$ is:

$$
\boldsymbol{a}^{(k+1)}=\boldsymbol{a}^{(k)}+\eta^{(k)} \boldsymbol{y}_{M}
$$

- note that $\mathrm{y}_{\boldsymbol{M}}$ is one sample misclassified by $\boldsymbol{a}^{(k)}$
- must have a consistent way of visiting samples
- Geometric Interpretation:
- y_{M} misclassified by $\boldsymbol{a}^{(\boldsymbol{k})}$

$$
\left(\mathbf{a}^{(k)}\right)^{t} y_{M} \leq 0
$$

- y_{M} is on the wrong side of decision hyperplane
- adding $\eta \boldsymbol{y}_{\boldsymbol{M}}$ to \boldsymbol{a} moves new decision hyperplane in the right direction with respect to $\boldsymbol{y}_{\boldsymbol{M}}$

LDF: Perceptron Single Sample Rule

$$
\boldsymbol{a}^{(k+1)}=\boldsymbol{a}^{(k)}+\eta^{(k)} \boldsymbol{y}_{M}
$$

η is too large, previously correctly classified sample $\boldsymbol{y}_{\boldsymbol{k}}$ is now misclassified

LDF: Perceptron Example

	features				grade
name	good attendance?	tall?	sleeps in class?	chews gum?	
Jane	yes (1)	yes (1)	no (-1)	no (-1)	A
Steve	yes (1)	yes (1)	yes (1)	yes (1)	F
Mary	no (-1)	no (-1)	no (-1)	yes (1)	F
Peter	yes (1)	no (-1)	no (-1)	yes (1)	A

- class 1: students who get grade A
- class 2: students who get grade F

LDF Example: Augment feature vector

	features					grade
name	extra	good attendance?	tall?	sleeps in class?	chews gum?	
Jane	1	yes (1)	yes (1)	no (-1)	no (-1)	A
Steve	1	yes (1)	yes (1)	yes (1)	yes (1)	F
Mary	1	no (-1)	no (-1)	no (-1)	yes (1)	F
Peter	1	yes (1)	no (-1)	no (-1)	yes (1)	A

- convert samples $\boldsymbol{x}_{\boldsymbol{1}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$ to augmented samples $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{\boldsymbol{n}}$ by adding a new dimension of value 1

LDF: Perform "Normalization"

	features					grade
name	extra	good attendance?	tall?	sleeps in class?	chews gum?	
Jane	1	yes (1)	yes (1)	no (-1)	no (-1)	A
Steve	-1	yes (-1)	yes (-1)	yes (-1)	yes (-1)	F
Mary	-1	no (1)	no (1)	no (1)	yes (-1)	F
Peter	1	yes (1)	no (-1)	no (-1)	yes (1)	A

- Replace all examples from class $\boldsymbol{c}_{\mathbf{2}}$ by their negative

$$
y_{i} \rightarrow-y_{i} \quad \forall y_{i} \in c_{2}
$$

- Seek weight vector \boldsymbol{a} s.t. $\quad \boldsymbol{a}^{\boldsymbol{t}} \boldsymbol{y}_{\boldsymbol{i}}>\mathbf{0} \quad \forall \boldsymbol{y}_{\boldsymbol{i}}$

LDF: Use Single Sample Rule

	features					grade
name	extra	good attendance?	tall?	sleeps in class?	chews gum?	
Jane	1	yes (1)	yes (1)	no (-1)	no (-1)	A
Steve	-1	yes (-1)	yes (-1)	yes (-1)	yes (-1)	F
Mary	-1	no (1)	no (1)	no (1)	yes (-1)	F
Peter	1	yes (1)	no (-1)	no (-1)	yes (1)	A

- Sample is misclassified if $\quad a^{t} y_{i}=\sum_{k=0}^{4} a_{k} y_{i}^{(k)}<0$
- gradient descent single sample rule: $\boldsymbol{a}^{(k+1)}=\boldsymbol{a}^{(k)}+\eta^{(k)} \boldsymbol{y}_{M}$
- Set fixed learning rate to $\eta^{(k)}=1: a^{(k+1)}=\boldsymbol{a}^{(k)}+\boldsymbol{y}_{M}$

LDF: Gradient decent Example

- set equal initial weights $\boldsymbol{a}^{(1)}=[0.25,0.25,0.25,0.25]$
- visit all samples sequentially, modifying the weights for after finding a misclassified example

name	$\boldsymbol{a}^{\boldsymbol{t}} \boldsymbol{y}$	misclassified?
Jane	$0.25^{*} 1+0.25^{*} 1+0.25^{*} 1+0.25^{*}(-1)+0.25^{*}(-1)>0$	no
Steve	$0.25^{*}(-1)+0.25^{*}(-1)+0.25^{*}(-1)+0.25^{*}(-1)+0.25^{*}(-1)<0$	yes

- new weights

$$
\begin{aligned}
a^{(2)}=a^{(1)}+y_{M} & =\left[\begin{array}{lllll}
0.25 & 0.25 & 0.25 & 0.25 & 0.25
\end{array}\right]+ \\
& +\left[\begin{array}{lllll}
-1 & -1 & -1 & -1 & -1
\end{array}\right]= \\
& =\left[\begin{array}{llll}
-0.75 & -0.75 & -0.75 & -0.75-0.75
\end{array}\right]
\end{aligned}
$$

LDF: Gradient decent Example

$$
a^{(2)}=[-0.75-0.75-0.75-0.75-0.75]
$$

name	$\boldsymbol{a}^{\boldsymbol{t}} \boldsymbol{y}$	misclassified?
Mary	$-0.75^{*}(-1)-0.75^{*} 1-0.75^{*} 1-0.75^{*} 1-0.75^{*}(-1)<0$	yes

- new weights

$$
\begin{aligned}
a^{(3)}=a^{(2)}+y_{M} & =\left[\begin{array}{llrl}
-0.75-0.75-0.75-0.75-0.75
\end{array}\right]+ \\
& +\left[\begin{array}{lllll}
-1 & 1 & 1 & 1 & -1
\end{array}\right]= \\
& =\left[\begin{array}{lllll}
-1.75 & 0.25 & 0.25 & 0.25-1.75
\end{array}\right]
\end{aligned}
$$

LDF: Gradient decent Example

$$
a^{(3)}=\left[\begin{array}{lllll}
-1.75 & 0.25 & 0.25 & 0.25 & -1.75
\end{array}\right]
$$

name	$\boldsymbol{a}^{\boldsymbol{t}} \boldsymbol{y}$	misclassified?
Peter	$-1.75^{*} 1+0.25^{*} 1+0.25^{*}(-1)+0.25^{*}(-1)-1.75^{*} 1<0$	yes

- new weights

$$
\begin{aligned}
a^{(4)}=a^{(3)}+y_{M} & =\left[\begin{array}{lllll}
-1.75 & 0.25 & 0.25 & 0.25 & -1.75
\end{array}\right]+ \\
& +\left[\begin{array}{lllll}
1 & 1 & -1 & -1 & 1
\end{array}\right]= \\
& =\left[\begin{array}{lllll}
-0.75 & 1.25 & -0.75-0.75-0.75
\end{array}\right]
\end{aligned}
$$

LDF: Gradient decent Example

$$
a^{(4)}=\left[\begin{array}{lllll}
-0.75 & 1.25 & -0.75 & -0.75 & -0.75
\end{array}\right]
$$

name	$\boldsymbol{a}^{\boldsymbol{t}} \boldsymbol{y}$	misclassified?
Jane	$-0.75{ }^{*} 1+1.25^{*} 1-0.75^{*} 1-0.75 *(-1)-0.75 *(-1)+0$	no
Steve	$-0.75^{*}(-1)+1.25^{*}(-1)-0.75^{*}(-1)-0.75^{*}(-1)-0.75^{*}(-1)>0$	no
Mary	$-0.75 *(-1)+1.25^{*} 1-0.75^{*} 1-0.75^{*} 1-0.75^{*}(-1)>0$	no
Peter	$-0.75 * 1+1.25^{*} 1-0.75^{*}(-1)-0.75^{*}(-1)-0.75 * 1>0$	no

- Thus the discriminant function is

$$
g(y)=-0.75^{*} y^{(0)}+1.25^{*} y^{(1)}-0.75^{*} y^{(2)}-0.75^{*} y^{(3)}-0.75^{*} y^{(4)}
$$

- Converting back to the original features \boldsymbol{x} :

$$
g(x)=1.25^{*} x^{(1)}-0.75^{*} x^{(2)}-0.75^{*} x^{(3)}-0.75 * x^{(4)}-0.75
$$

LDF: Gradient decent Example

- Converting back to the original features \boldsymbol{x} :

- This is just one possible solution vector
- If we started with weights $\boldsymbol{a}^{(1)}=[0,0.5,0.5,0,0]$, solution would be $[-1,1.5,-0.5,-1,-1]$

$$
\begin{aligned}
& 1.5^{*} x^{(1)}-0.5^{*} x^{(2)}-x^{(3)}-x^{(4)}>1 \Rightarrow \text { grade } A \\
& 1.5^{*} x^{(1)}-0.5^{*} x^{(2)}-x^{(3)}-x^{(4)}<1 \Rightarrow \text { grade } F
\end{aligned}
$$

- In this solution, being tall is the least important feature

LDF: Nonseparable Example

- Suppose we have 2 features and samples are:
- Class 1: [2,1], [4,3], [3,5]
- Class 2: [1,3] and [5,6]
- These samples are not separable by a line

- Still would like to get approximate separation by a line, good choice is shown in green
" some samples may be "noisy", and it's ok if they are on the wrong side of the line
- Get $\boldsymbol{y}_{1}, \boldsymbol{y}_{\mathbf{2}}, \boldsymbol{y}_{3}, \boldsymbol{y}_{\mathbf{4}}$ by adding extra feature and "normalizing"

$$
\begin{aligned}
& 19 " \\
& y_{1}
\end{aligned}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

$$
y_{2}=\left[\begin{array}{l}
1 \\
4 \\
3
\end{array}\right] y
$$

$$
y_{3}=\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]
$$

$$
y_{4}=\left[\begin{array}{l}
-1 \\
-1 \\
-3
\end{array}\right]
$$

$$
y_{5}=\left[\begin{array}{l}
-1 \\
-5 \\
-6
\end{array}\right]
$$

LDF: Nonseparable Example

- Let's apply Perceptron single sample algorithm
- initial equal weights $a^{(1)}=\left[\begin{array}{ll}1 & 1\end{array}\right]$
- this is line $\boldsymbol{x}^{(1)}+\boldsymbol{x}^{(2)}+1=0$
- fixed learning rate $\eta=1$

$$
a^{(k+1)}=a^{(k)}+y_{M}
$$

$$
\left.\begin{array}{rl}
y_{1}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
\end{array}\right] \quad y_{2}=\left[\begin{array}{l}
1 \\
4 \\
3
\end{array}\right] \quad y_{3}=\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right] \quad y_{4}=\left[\begin{array}{l}
-1 \\
-1 \\
-3
\end{array}\right] \quad y_{5}=\left[\begin{array}{c}
-1 \\
-5 \\
-6
\end{array}\right]
$$

LDF: Nonseparable Example

$$
\begin{aligned}
& a^{(1)}=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] \quad a^{(k+1)}=a^{(k)}+y_{M} \\
& y_{1}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] \quad y_{2}=\left[\begin{array}{l}
1 \\
4 \\
3
\end{array}\right] \quad y_{3}=\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right] \quad y_{4}=\left[\begin{array}{l}
-1 \\
-1 \\
-3
\end{array}\right] \quad y_{5}=\left[\begin{array}{l}
-1 \\
-5 \\
-6
\end{array}\right] \\
& \text { - } \boldsymbol{y}_{4}^{t} \boldsymbol{a}^{(1)}=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]^{*}\left[\begin{array}{lll}
-1 & -1 & -3
\end{array}\right]^{\boldsymbol{t}}=-5<0
\end{aligned}
$$

$$
\begin{aligned}
& a^{(2)}=a^{(1)}+y_{M}=\left[\begin{array}{ll}
1 & 1
\end{array}\right]+\left[\begin{array}{ll}
-1 & -1
\end{array}-3\right]=\left[\begin{array}{lll}
0 & 0 & -2
\end{array}\right]
\end{aligned}
$$

- $\boldsymbol{y}_{5}^{t_{5}} \boldsymbol{a}^{(2)}=\left[\begin{array}{lll}0 & 0 & -2]^{*}\end{array}[-1-5-6]^{t}=12>0\right.$
- $\boldsymbol{y}^{t}{ }_{1} \boldsymbol{a}^{(2)}=\left[\begin{array}{lll}0 & 0 & -2\end{array}\right]^{*}\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]^{t}<0$

$$
a^{(3)}=a^{(2)}+y_{M}=\left[\begin{array}{lll}
0 & 0 & -2
\end{array}\right]+\left[\begin{array}{ll}
1 & 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & -1
\end{array}\right]
$$

LDF: Nonseparable Example

$a^{(3)}=\left[\begin{array}{ll}12-1\end{array}\right] \quad a^{(k+1)}=a^{(k)}+y_{M}$
$y_{1}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right] \quad y_{2}=\left[\begin{array}{l}1 \\ 4 \\ 3\end{array}\right] \quad y_{3}=\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right] \quad y_{4}=\left[\begin{array}{l}-1 \\ -1 \\ -3\end{array}\right] \quad y_{5}=\left[\begin{array}{c}-1 \\ -5 \\ -6\end{array}\right]$

- $\boldsymbol{y}^{t}{ }_{2} \boldsymbol{a}^{(3)}=\left[\begin{array}{lll}1 & 4 & 3\end{array}\right]^{*}\left[\begin{array}{lll}1 & 2 & -1\end{array}\right]^{t}=6>0$
- $\boldsymbol{y}^{\boldsymbol{t}}{ }_{3} a^{(3)}=\left[\begin{array}{lll}1 & 3 & 5\end{array}\right]^{*}\left[\begin{array}{lll}1 & 2 & -1\end{array}\right]^{t}>0$
- $y^{t}{ }_{4} a^{(3)}=\left[\begin{array}{lll}-1 & -1 & -3\end{array}\right]^{*}\left[\begin{array}{lll}1 & 2 & -1\end{array}\right]^{t}=0$

$$
a^{(4)}=a^{(3)}+y_{M}=\left[\begin{array}{lll}
1 & 2 & -1
\end{array}\right]+\left[\begin{array}{lll}
-1 & -1 & -3
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & -4
\end{array}\right]
$$

LDF: Nonseparable Example

$a^{(4)}=\left[\begin{array}{lll}0 & 1 & -4\end{array}\right] \quad a^{(k+1)}=a^{(k)}+y_{M}$
$y_{1}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right] \quad y_{2}=\left[\begin{array}{l}1 \\ 4 \\ 3\end{array}\right] \quad y_{3}=\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right] \quad y_{4}=\left[\begin{array}{l}-1 \\ -1 \\ -3\end{array}\right] \quad y_{5}=\left[\begin{array}{l}-1 \\ -5 \\ -6\end{array}\right]$

- $\boldsymbol{y}^{\boldsymbol{t}}{ }_{2} \boldsymbol{a}^{(3)}=\left[\begin{array}{lll}1 & 4 & 3\end{array}\right]^{\star}\left[\begin{array}{lll}1 & 2 & -1\end{array}\right]^{\boldsymbol{t}}=6>0$
- $\boldsymbol{y}^{\boldsymbol{t}}{ }_{3} \boldsymbol{a}^{(3)}=\left[\begin{array}{lll}1 & 3 & 5\end{array}\right]^{\star}\left[\begin{array}{lll}1 & 2 & -1\end{array}\right]^{t}>0$
- $y^{t}{ }_{4} a^{(3)}=\left[\begin{array}{lll}-1 & -1 & -3\end{array}\right]^{*}\left[\begin{array}{lll}1 & 2 & -1\end{array}\right]^{t}=0$

$$
a^{(4)}=a^{(3)}+y_{M}=\left[\begin{array}{lll}
1 & 2 & -1
\end{array}\right]+\left[\begin{array}{lll}
-1 & -1 & -3
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & -4
\end{array}\right]
$$

LDF: Nonseparable Example

- we can continue this forever
- there is no solution vector a satisfying for all \boldsymbol{i}

$$
a^{t} y_{i}=\sum_{k=0}^{5} a_{k} y_{i}^{(k)}>0
$$

- need to stop but at a good point:
- solutions at iterations 900 through 915. Some are good some are not.
- How do we stop at a good solution?

LDF: Convergence of Perceptron rules

- If classes are linearly separable, and use fixed learning rate, that is for some constant $\boldsymbol{c}, \eta^{(k)}=\boldsymbol{c}$
- both single sample and batch perceptron rules converge to a correct solution (could be any \boldsymbol{a} in the solution space)
- If classes are not linearly separable:
- algorithm does not stop, it keeps looking for solution which does not exist
- by choosing appropriate learning rate, can always ensure convergence: $\eta^{(k)} \rightarrow 0$ as $\boldsymbol{k} \rightarrow \infty$
- for example inverse linear learning rate: $\eta^{(k)}=\frac{\eta^{(1)}}{k}$
- for inverse linear learning rate convergence in the linearly separable case can also be proven
- no guarantee that we stopped at a good point, but is popular in practice.

LDF: Perceptron Rule and Gradient decent

- Linearly separable data
- perceptron rule with gradient decent works well
- Linearly non-separable data
- need to stop perceptron rule algorithm at a good point, this maybe tricky

Batch Rule

- Smoother gradient because all samples are used

Single Sample Rule

- easier to analyze
- Concentrates more than necessary on any isolated "noisy" training examples

