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Linear discriminant functions on Road Map

� No probability distribution (no shape or 
parameters are known)

� Labeled data
� The shape of discriminant functions is 

known

a lot is 
known

little is 
known

salmon salmonsalmonbass

bass
salm

on

lig
ht

ne
ss

linear 
discriminant

function

length
� Need to estimate parameters of the 

discriminant function (parameters of the 
line in case of linear discriminant)



Linear Discriminant Functions: Basic Idea
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� Have samples from 2 classes x1, x2 ,…, xn

� Assume 2 classes can be separated by a linear 
boundary l(θθθθ) with some unknown parameters θθθθ

� Fit the “best” boundary to data by optimizing over 
parameters θ. θ. θ. θ. How????

� Minimize a criterion function. 
� Obvious choice: Minimize classification error on training 

data. (Does not guarantee small test error)
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c1

c2
c3

Assume the shape of density 
for classes is known p1(x|θθθθ1111), 
p2(x|θθθθ2222),…

Parametric Methods     vs. Discriminant Functions

Estimate θθθθ1111, θθθθ2222,… from data 

Use a Bayesian classifier to 
find decision regions 

Assume discriminant
functions are of known shape 
l(θθθθ1111), l(θθθθ2222), with parameters 
θθθθ1111, θθθθ2222,…
Estimate θθθθ1111, θθθθ2222,… from data 
Use discriminant functions for 
classification 

c1

c2c3

� In theory, Bayesian classifier minimizes the risk
� In practice, do not have confidence in assumed model shapes
� In practice, do not really need the actual density functions in the end

� Estimating accurate density functions is much harder than 
estimating accurate discriminant functions

� Some argue that estimating densities should be skipped
� Why solve a harder problem than needed ?



LDF: Introduction

� Discriminant functions can be more general than 
linear

� For now, we will study linear discriminant functions
� Simple model (should try simpler models first)
� Analytically tractable

� Linear Discriminant functions are optimal for 
Gaussian distributions with equal covariance

� May not be optimal for other data distributions, but 
they are very simple to use

� Knowledge of class densities is not required when 
using linear discriminant functions
� we can say that this  is a non-parametric approach
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LDF: 2 Classes

� A discriminant function is linear if it can be written as
g(x) = w tx + w0

� w is called the weight vector and w0 called bias or threshold

x(1)

x(2)

decision boundary g (x) = 0
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LDF: 2 Classes

� Decision boundary g(x) = wtx + w0=0 is a hyperplane

� A hyperplane is
� a point in 1D

� a line in 2D
� a plane in 3D



LDF: 2 Classes

g(x) = wtx + w0

x(1)

x(2)

g(x) > 0

g(x) < 0 g(x) = 0
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� w determines orientation of the decision hyperplane
� w0 determines location of the decision surface
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LDF:  Many Classes

� Suppose we have m classes
� Define m linear discriminant functions 

� Given x, assign class c i if 

ij         )()( ≠≠≠≠∀∀∀∀≥≥≥≥ xgxg ji

� Such classifier is called a  linear machine

� A linear machine divides the feature space into c 
decision regions, with g i(x) being the largest 
discriminant if x is in the region Ri



LDF:  Many Classes



� For a two contiguous regions Ri and Rj; the 
boundary that separates them is a portion of 
hyperplane Hij defined by:
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LDF: Many Classes
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� Thus w i – w j is normal to Hij

� And distance from x to Hij is given by



� Decision regions for a linear machine are convex

LDF: Many Classes

y
z

(((( )))) ii RzyRzy ∈∈∈∈−−−−++++⇒⇒⇒⇒∈∈∈∈ αααααααα 1,

� In particular, decision regions must be spatially 
contiguous

Ri

Rj is a valid
decision region

Ri

Rj is not a valid
decision region 

Ri
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LDF: Many Classes

� Thus  applicability of linear machine to mostly limited 
to unimodal conditional densities p(x|θθθθ)
� even though we did not assume any parametric models

� Example:
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LDF: Many Classes

� Thus  applicability of linear machine to mostly limited 
to unimodal conditional densities p(x|θθθθ)
� even though we did not assume any parametric models

� Example:

� need non-contiguous decision regions
� thus linear machine will fail



LDF: Augmented feature vector

0)( wxwxg t ++++====� Linear discriminant function:

� Can rewrite it: [[[[ ]]]] (((( ))))ygyaxwwxg tt ========



==== 1)( 0

new weight 
vector a

new feature 
vector y

� y is called the augmented feature vector

� Added a dummy dimension to get a completely 
equivalent new homogeneous problem

0)( wxwxg t ++++====
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LDF: Augmented feature vector
� Feature augmenting is done for simpler notation

� From now on we always assume that we have 
augmented feature vectors
� Given samples x1,…, xn convert them to 

augmented samples y1,…, yn by adding                  
a new dimension of value 1 
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LDF: Training Error

� Samples y1,…, yn some  in class 1, some in class 2

� For the rest of the lecture, assume we have 2 classes

� Use these samples to determine weights  a in the 
discriminant function yayg t====)(

� What should be our criterion for determining a?
� For now, suppose we want to minimize the training error 

(that is the  number of misclassifed samples y1,…, yn )

� Recall that 10)( cclassifiedyyg ii ⇒⇒⇒⇒>>>>

20)( cclassifiedyyg ii ⇒⇒⇒⇒<<<<

� Thus training error is 0 if 
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LDF: Problem “Normalization”

� Thus training error is 0 if 

� This suggest problem “normalization”:
1. Replace all examples from class c2 by their negative 

2cyyy iii ∈∈∈∈∀∀∀∀−−−−→→→→

2. Seek weight vector a s.t. 

ii
t yya ∀∀∀∀>>>> 0
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� Equivalently,  training error is 0 if 
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� If such a exists, it is called a separating or solution vector
� Original samples x1,…, xn can indeed be separated by a 

line then



LDF: Problem “Normalization”

(((( ))))2y

)1(y

before normalization after “normalization”

(((( ))))2y

)1(y

Seek a hyperplane that 
separates patterns from 
different categories

Seek hyperplane that 
puts normalized
patterns on the same 
(positive) side 



LDF:  Solution Region

� Find weight vector a s.t. for all samples y1,…, yn
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� In general, there are many such solutions a

a

a

best a
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LDF:  Solution Region

� Solution region for a: set of all possible solutions
� defined in terms of normal a to the separating hyperplane
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Optimization
� Need to minimize a function of many variables

(((( )))) (((( ))))dxxJxJ ,...,1====

� We know how to minimize J(x)
� Take partial derivatives and set them to zero
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� However solving  analytically is not always easy
� Would you like to solve this system of nonlinear equations?

gradient
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� Sometimes it is not even possible to write down an analytical 
expression for the derivative, we will see an example later today



Optimization: Gradient Descent

� Gradient              points in direction of steepest increase of  
J(x), and                   in direction of  steepest decrease

(((( ))))xJ∇∇∇∇

(((( ))))a
dx
dJ−−−−

a

J(x)

x

one dimension two dimensions

(((( ))))aJ∇∇∇∇−−−−

a

a

(((( ))))a
dx
dJ−−−−

a

(((( ))))a
dx
dJ−−−−

(((( ))))xJ∇∇∇∇−−−−



Optimization: Gradient Descent

x((((1)

J(x)

x

x((((2)

s((((1)

(((( ))))(((( ))))2xJ∇∇∇∇−−−−

(((( )))))1(xJ∇∇∇∇−−−−

x((((3) x((((k)

(((( ))))(((( )))) 0xJ k ====∇∇∇∇s ((((2)

Gradient Descent for minimizing any function J(x)
set k = 1  and x (1) to some initial guess for the weight vector

while (((( )))) (((( ))))(((( )))) εεεεηηηη >>>>∇∇∇∇ kk xJ

x(k+1)= x(k) – η η η η (k)                                                        (update rule )(((( ))))xJ∇∇∇∇

choose learning rate ηηηη(k)

k = k + 1



Optimization: Gradient Descent

� Gradient descent is guaranteed to find only a local 
minimum
J(x)

x

global minimum

� Nevertheless gradient descent is very popular 
because it is simple and applicable to any function

x((((1) x((((2) x((((3) x((((k)



Optimization: Gradient Descent
� Main issue: how to set parameter ηηηη (learning rate )

� If ηηηη is too small, need too many iterations

� If ηηηη is too large may 
overshoot the minimum 
and possibly never find it  
(if we keep overshooting)

J(x)

x
x((((1) x((((2)

J(x)

x



LDF:  Criterion Function

� Find weight vector a s.t. for all samples y1,…, yn

0
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� Need criterion function J(a) which is minimized when 
a is a solution vector

� First natural choice: number of misclassified examples
(((( )))) (((( ))))aYaJ M====

� Let YM be the set of examples misclassified by a
(((( )))) {{{{ }}}}0ya.t.sysampleaY i

t
iM <<<<====

� piecewise constant, gradient 
descent is useless

a

J(a)



LDF:  Perceptron Criterion Function

� Better choice: Perceptron criterion function
(((( )))) (((( ))))∑∑∑∑

∈∈∈∈

−−−−====
MYy

t
p yaaJ

� Jp(a) is -||a|| times sum of 
distances of misclassified 
examples to decision boundary

a
a ty

/ ||a||

y
� If y is misclassified, 0≤≤≤≤yat

� Thus (((( )))) 0≥≥≥≥aJ p

a

J(a)
� Jp(a) is piecewise linear 

and thus suitable for 
gradient descent



LDF:  Perceptron Batch Rule

� Gradient of Jp(a) is (((( )))) (((( ))))∑∑∑∑
∈∈∈∈

−−−−====∇∇∇∇
MYy

p yaJ

� Thus gradient decent batch update rule for Jp(a) is:
(((( )))) (((( )))) (((( )))) ∑∑∑∑

∈∈∈∈

++++ ++++====
MYy

kkk yaa ηηηη1

� It is called batch rule because  it is based on all 
misclassified examples

� YM are samples misclassified by a(k)

� It is not possible to solve                      analytically 
because of  YM

(((( )))) 0aJ p ====∇∇∇∇

(((( )))) (((( ))))∑∑∑∑
∈∈∈∈

−−−−====
MYy

t
p yaaJ

(((( ))))xJ∇∇∇∇� Update rule for gradient descent: x(k+1)= x(k)–η η η η (k)



LDF:  Perceptron Single Sample Rule

� Thus gradient decent single sample rule for Jp(a) is:
(((( )))) (((( )))) (((( ))))

M
kkk yaa ηηηη++++====++++1

� note that yM is one sample misclassified by a(k)

� Geometric Interpretation:

� must have a consistent way of visiting samples

� yM misclassified by a(k)

(((( ))))(((( )))) 0≤≤≤≤M

tk ya yM
a (k)

a
(k+1)� yM is on the wrong side of 

decision hyperplane
� adding ηηηηyM to a moves new 

decision hyperplane in the right 
direction with respect to yM

ηηηηyM



LDF:  Perceptron Single Sample Rule
(((( )))) (((( )))) (((( ))))

M
kkk yaa ηηηη++++====++++1

yMa (k)
a

(k+1)

yk

η η η η is too large, previously 
correctly classified sample  
yk is now misclassified

a (k+1)

yMa (k)
yk

η η η η is too small, yM is still 
misclassified



LDF:  Perceptron Example

yes (1)

yes (1)

yes (1)

no (-1)

chews 
gum?

gradefeatures

no (-1)

no (-1)

yes (1)

no (-1)

sleeps in 
class?

Ano (-1)yes (1)Peter

Fno (-1)no (-1)Mary

Fyes (1)yes (1)Steve

A yes (1)yes (1)Jane

tall?good 
attendance?

name

� class 1 : students who get grade A

� class 2 : students who get grade F



LDF Example: Augment feature vector

1

1

1

1

extra

yes (1)

yes (1)

yes (1)

no (-1)

chews 
gum?

gradefeatures

no (-1)

no (-1)

yes (1)

no (-1)

sleeps in 
class?

Ano (-1)yes (1)Peter

Fno (-1)no (-1)Mary

Fyes (1)yes (1)Steve

A yes (1)yes (1)Jane

tall?good 
attendance?

name

� convert samples x1,…, xn to augmented samples 
y1,…, yn by adding  a new dimension of value 1 



LDF:  Perform “Normalization”

� Replace all examples from class c2 by their negative 

2cyyy iii ∈∈∈∈∀∀∀∀−−−−→→→→

� Seek weight vector a s.t. ii
t yya ∀∀∀∀>>>> 0

1

-1

-1

1

extra

yes (1)

yes (-1)

yes (-1)

no (-1)

chews 
gum?

gradefeatures

no (-1)

no (1)

yes (-1)

no (-1)

sleeps in 
class?

Ano (-1)yes (1)Peter

Fno (1)no (1)Mary

Fyes (-1)yes (-1)Steve

A yes (1)yes (1)Jane

tall?good 
attendance?

name



LDF:  Use Single Sample Rule

� Sample is misclassified if 0
4

0

)( <<<<====∑∑∑∑
====k
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� gradient descent  single sample rule: (((( )))) (((( )))) (((( ))))
M

kk1k yaa ηηηη++++====++++

(((( )))) (((( ))))
M

kk yaa ++++====++++1� Set fixed learning rate to ηηηη(k)= 1:

1

-1

-1

1

extra

yes (1)

yes (-1)

yes (-1)

no (-1)

chews 
gum?

gradefeatures

no (-1)

no (1)

yes (-1)

no (-1)

sleeps in 
class?

Ano (-1)yes (1)Peter

Fno (1)no (1)Mary

Fyes (-1)yes (-1)Steve

A yes (1)yes (1)Jane

tall?good 
attendance?

name



LDF: Gradient decent  Example

� set equal initial weights a(1)=[0.25, 0.25, 0.25, 0.25]

yes0.25*(-1)+0.25*(-1)+0.25*(-1)+0.25*(-1)+0.25*(-1)<0Steve

no0.25*1+0.25*1+0.25*1+0.25*(-1)+0.25*(-1) >0Jane

misclassified?atyname

� visit all samples sequentially, modifying the weights 
for after finding a misclassified example

� new weights
(((( )))) (((( )))) [[[[ ]]]]++++====++++==== 25.025.025.025.025.012

Myaa

[[[[ ]]]] ====−−−−−−−−−−−−−−−−−−−−++++ 11111

[[[[ ]]]]75.075.075.075.075.0 −−−−−−−−−−−−−−−−−−−−====



LDF:  Gradient decent  Example

yes-0.75*(-1)-0.75*1 -0.75 *1 -0.75 *1 -0.75*(-1) <0Mary

misclassified?atyname

� new weights
(((( )))) (((( )))) [[[[ ]]]]++++−−−−−−−−−−−−−−−−−−−−====++++==== 75.075.075.075.075.023

Myaa

[[[[ ]]]] ====−−−−−−−−++++ 11111

[[[[ ]]]]75.125.025.025.075.1 −−−−−−−−====

(((( )))) [[[[ ]]]]75.075.075.075.075.02 −−−−−−−−−−−−−−−−−−−−====a



LDF:  Gradient decent Example

yes-1.75 *1 +0.25* 1+0.25* (-1) +0.25 *(-1)-1.75*1 <0Peter

misclassified?atyname

� new weights
(((( )))) (((( )))) [[[[ ]]]]++++−−−−−−−−====++++==== 75.125.025.025.075.134

Myaa

[[[[ ]]]] ====−−−−−−−−++++ 11111

[[[[ ]]]]75.075.075.025.175.0 −−−−−−−−−−−−−−−−====

(((( )))) [[[[ ]]]]75.125.025.025.075.13 −−−−−−−−====a



LDF:  Gradient decent Example

no-0.75 *1+ 1.25*1-0.75* (-1)-0.75* (-1) -0.75 *1 >0Peter

no-0.75 *(-1)+1.25*1-0.75*1 -0.75 *1 –0.75*(-1) >0Mary

no-0.75*(-1)+1.25*(-1) -0.75*(-1) -0.75*(-1)-0.75*(-1)>0Steve

no-0.75 *1 +1.25*1  -0.75*1 -0.75 *(-1) -0.75 *(-1)+0Jane

misclassified?atyname

(((( )))) [[[[ ]]]]75.075.075.025.175.04 −−−−−−−−−−−−−−−−====a

� Thus the discriminant function is 
(((( )))) (((( )))) (((( )))) (((( )))) (((( )))) (((( ))))43210 *75.0*75.0*75.0*25.1*75.0 yyyyyyg −−−−−−−−−−−−++++−−−−====

� Converting back to the original features x: 
(((( )))) (((( )))) (((( )))) (((( )))) (((( )))) 75.0*75.0*75.0*75.0*25.1 4321 −−−−−−−−−−−−−−−−==== xxxxxg



LDF:  Gradient decent Example

� Converting back to the original features x: 
(((( )))) (((( )))) (((( )))) (((( )))) Agradexxxx ⇒⇒⇒⇒>>>>−−−−−−−−−−−− 75.0*75.0*75.0*75.0*25.1 4321

(((( )))) (((( )))) (((( )))) (((( )))) Fgradexxxx ⇒⇒⇒⇒<<<<−−−−−−−−−−−− 75.0*75.0*75.0*75.0*25.1 4321

good 
attendance

tall sleeps in class chews gum

� This is just one possible solution vector 

� If we started with weights a(1)=[0,0.5, 0.5, 0, 0], 
solution would be [-1,1.5, -0.5, -1, -1]

� In this solution, being tall is the least important feature

(((( )))) (((( )))) (((( )))) (((( )))) Agrade1xxx*5.0x*5.1 4321 ⇒⇒⇒⇒>>>>−−−−−−−−−−−−
(((( )))) (((( )))) (((( )))) (((( )))) Fgrade1xxx*5.0x*5.1 4321 ⇒⇒⇒⇒<<<<−−−−−−−−−−−−



LDF:  Nonseparable Example
� Suppose we have 2 features 

and samples are: 
� Class 1:  [2,1], [4,3], [3,5]
� Class 2: [1,3] and [5,6]

� These samples are not 
separable by a line

� Still would like to get approximate separation by a 
line, good choice is shown in green
� some samples may be “noisy”, and it’s ok if they are on 

the wrong side of the line
� Get  y1, y2 , y3 , y4 by adding extra feature and 

“normalizing”
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LDF:  Nonseparable Example

� Let’s apply Perceptron single 
sample algorithm 

� initial equal weights (((( )))) [[[[ ]]]]111a 1 ====

� fixed learning rate  ηηηη = 1
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� y t
1a(1) = [1 1 1]*[1 2 1]t > 0     b

� this is  line  x(1)+x(2)+1=0

� y t
2a(1) = [1 1 1]*[1 4 3]t > 0     b

� y t
3a(1) = [1 1 1]*[1 3 5]t > 0     b

(((( )))) (((( ))))
M

kk yaa ++++====++++1

a(
1)



LDF:  Nonseparable Example
(((( )))) [[[[ ]]]]111a 1 ====
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y 3












−−−−
−−−−
−−−−

====
6
5
1

y 5












−−−−
−−−−
−−−−

====
3
1
1

y 4

� y t
4a(1)=[1 1 1]*[-1 -1 -3]t = -5< 0

(((( )))) (((( ))))
M

kk yaa ++++====++++1

(((( )))) (((( )))) [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]200311111yaa M
12 −−−−====−−−−−−−−−−−−++++====++++====

a(
1)

a(2)

� y t
5 a(2)=[0 0 -2]*[-1 -5 -6]t = 12 > 0     b

� y t
1 a(2)=[0 0 -2]*[1 2 1]t  < 0

(((( )))) (((( )))) [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]121121200yaa M
23 −−−−====++++−−−−====++++====



LDF:  Nonseparable Example
(((( )))) [[[[ ]]]]121a 3 −−−−====
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y 1
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y 2
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y 3
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6
5
1

y 5












−−−−
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−−−−

====
3
1
1

y 4

(((( )))) (((( ))))
M

kk yaa ++++====++++1

a(2)

� y t
2 a(3)=[1 4 3]*[1 2 -1]t =6 > 0 b

(((( )))) (((( )))) [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]410311121yaa M
34 −−−−====−−−−−−−−−−−−++++−−−−====++++====

a(
3)

� y t
3 a(3)=[1 3 5]*[1 2 -1]t > 0 b

� y t
4 a(3)=[-1 -1 -3]*[1 2 -1]t = 0



LDF:  Nonseparable Example
(((( )))) [[[[ ]]]]410a 4 −−−−====
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y 1
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y 3
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1

y 5
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====
3
1
1

y 4

(((( )))) (((( ))))
M

kk yaa ++++====++++1

� y t
2 a(3)=[1 4 3]*[1 2 -1]t =6 > 0 b

(((( )))) (((( )))) [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]410311121yaa M
34 −−−−====−−−−−−−−−−−−++++−−−−====++++====

a(
3)

� y t
3 a(3)=[1 3 5]*[1 2 -1]t > 0 b

� y t
4 a(3)=[-1 -1 -3]*[1 2 -1]t = 0

a(4)



LDF:  Nonseparable Example

� we can continue this forever
� there is no solution vector a satisfying for all i

0yaya
5

0k

)k(
iki

t >>>>==== ∑∑∑∑
====

� need to stop but at a good point:

� solutions at iterations 
900 through 915.  
Some are good 
some are not.

� How do we stop at a 
good solution?



LDF:  Convergence of Perceptron rules
� If classes are linearly separable, and use fixed 

learning rate, that is for some constant c,  ηηηη((((k) ) ) ) =c  
� both single sample and batch perceptron rules converge to 

a correct solution (could be any a in the solution space)
� If classes are not linearly separable:

� algorithm does not stop, it keeps looking for solution which 
does not exist

� by choosing appropriate learning rate, can always ensure 
convergence: (((( )))) ∞∞∞∞→→→→→→→→ kask 0ηηηη

� for example inverse linear learning rate: (((( ))))
(((( ))))

k
k

1ηηηη
ηηηη ====

� for inverse linear learning rate convergence in the linearly 
separable case can also be proven 

� no guarantee that we stopped at a good point, but is popular 
in practice.



LDF:  Perceptron Rule and Gradient decent

� Linearly separable data
� perceptron rule with gradient decent works well

� Linearly non-separable data
� need to stop perceptron rule algorithm at a good point, this 

maybe tricky

� Smoother gradient 
because all samples are 
used 

Single Sample RuleBatch Rule

� easier to analyze

� Concentrates more than 
necessary on any isolated 
“noisy” training examples


