
Linear Discriminant Functions

C11

Linear discriminant functions on Road Map

� No probability distribution (no shape or
parameters are known)

� Labeled data
� The shape of discriminant functions is

known

a lot is
known

little is
known

salmon salmonsalmonbass

bass
salm

on

lig
ht

ne
ss

linear
discriminant

function

length
� Need to estimate parameters of the

discriminant function (parameters of the
line in case of linear discriminant)

Linear Discriminant Functions: Basic Idea

lig
ht

ne
ss

length

� Have samples from 2 classes x1, x2 ,…, xn

� Assume 2 classes can be separated by a linear
boundary l(θθθθ) with some unknown parameters θθθθ

� Fit the “best” boundary to data by optimizing over
parameters θ. θ. θ. θ. How????

� Minimize a criterion function.
� Obvious choice: Minimize classification error on training

data. (Does not guarantee small test error)

bad boundary good boundary

salm
o

n
b

ass

salm
on

bass

lig
ht

ne
ss

length

c1

c2
c3

Assume the shape of density
for classes is known p1(x|θθθθ1111),
p2(x|θθθθ2222),…

Parametric Methods vs. Discriminant Functions

Estimate θθθθ1111, θθθθ2222,… from data

Use a Bayesian classifier to
find decision regions

Assume discriminant
functions are of known shape
l(θθθθ1111), l(θθθθ2222), with parameters
θθθθ1111, θθθθ2222,…
Estimate θθθθ1111, θθθθ2222,… from data
Use discriminant functions for
classification

c1

c2c3

� In theory, Bayesian classifier minimizes the risk
� In practice, do not have confidence in assumed model shapes
� In practice, do not really need the actual density functions in the end

� Estimating accurate density functions is much harder than
estimating accurate discriminant functions

� Some argue that estimating densities should be skipped
� Why solve a harder problem than needed ?

LDF: Introduction

� Discriminant functions can be more general than
linear

� For now, we will study linear discriminant functions
� Simple model (should try simpler models first)
� Analytically tractable

� Linear Discriminant functions are optimal for
Gaussian distributions with equal covariance

� May not be optimal for other data distributions, but
they are very simple to use

� Knowledge of class densities is not required when
using linear discriminant functions
� we can say that this is a non-parametric approach

g(x) < 0

2ℜℜℜℜ
g(x) > 0

1ℜℜℜℜ

LDF: 2 Classes

� A discriminant function is linear if it can be written as
g(x) = w tx + w0

� w is called the weight vector and w0 called bias or threshold

x(1)

x(2)

decision boundary g (x) = 0

(((())))
(((())))
(((()))) classeitherxg

classxxg
classxxg

⇒⇒⇒⇒====
∈∈∈∈⇒⇒⇒⇒<<<<
∈∈∈∈⇒⇒⇒⇒>>>>

0
20
10

LDF: 2 Classes

� Decision boundary g(x) = wtx + w0=0 is a hyperplane

� A hyperplane is
� a point in 1D

� a line in 2D
� a plane in 3D

LDF: 2 Classes

g(x) = wtx + w0

x(1)

x(2)

g(x) > 0

g(x) < 0 g(x) = 0

w

w 0
/||w

||

x

g(x
) /|

|w
||

� w determines orientation of the decision hyperplane
� w0 determines location of the decision surface

m1,...,i)(0 ====++++==== i
t
ii wxwxg

LDF: Many Classes

� Suppose we have m classes
� Define m linear discriminant functions

� Given x, assign class c i if

ij)()(≠≠≠≠∀∀∀∀≥≥≥≥ xgxg ji

� Such classifier is called a linear machine

� A linear machine divides the feature space into c
decision regions, with g i(x) being the largest
discriminant if x is in the region Ri

LDF: Many Classes

� For a two contiguous regions Ri and Rj; the
boundary that separates them is a portion of
hyperplane Hij defined by:

(((()))) (((())))

ji

ji
ij

ww

xgxg
Hxd

−−−−

−−−−
====),(

LDF: Many Classes

)()(xgxg ji ==== 00 j
t
ji

t
i wxwwxw ++++====++++⇔⇔⇔⇔

(((()))) (((()))) 000 ====−−−−++++−−−−⇔⇔⇔⇔ ji
t

ji wwxww

� Thus w i – w j is normal to Hij

� And distance from x to Hij is given by

� Decision regions for a linear machine are convex

LDF: Many Classes

y
z

(((()))) ii RzyRzy ∈∈∈∈−−−−++++⇒⇒⇒⇒∈∈∈∈ αααααααα 1,

� In particular, decision regions must be spatially
contiguous

Ri

Rj is a valid
decision region

Ri

Rj is not a valid
decision region

Ri

(((()))) (((()))) (((()))) (((()))) ⇔⇔⇔⇔≥≥≥≥≥≥≥≥≠≠≠≠∀∀∀∀ zgzgandygygij jiji

Ri

(((())))(((()))) (((())))(((())))zygzygij ji αααααααααααααααα −−−−++++≥≥≥≥−−−−++++≠≠≠≠∀∀∀∀⇔⇔⇔⇔ 11

LDF: Many Classes

� Thus applicability of linear machine to mostly limited
to unimodal conditional densities p(x|θθθθ)
� even though we did not assume any parametric models

� Example:

LDF: Many Classes

� Thus applicability of linear machine to mostly limited
to unimodal conditional densities p(x|θθθθ)
� even though we did not assume any parametric models

� Example:

LDF: Many Classes

� Thus applicability of linear machine to mostly limited
to unimodal conditional densities p(x|θθθθ)
� even though we did not assume any parametric models

� Example:

LDF: Many Classes

� Thus applicability of linear machine to mostly limited
to unimodal conditional densities p(x|θθθθ)
� even though we did not assume any parametric models

� Example:

� need non-contiguous decision regions
� thus linear machine will fail

LDF: Augmented feature vector

0)(wxwxg t ++++====� Linear discriminant function:

� Can rewrite it: [[[[]]]] (((())))ygyaxwwxg tt ========

==== 1)(0

new weight
vector a

new feature
vector y

� y is called the augmented feature vector

� Added a dummy dimension to get a completely
equivalent new homogeneous problem

0)(wxwxg t ++++====

dx

x
M
1

old problem

yayg t====)(

dx

x
M
1

1

new problem

LDF: Augmented feature vector
� Feature augmenting is done for simpler notation

� From now on we always assume that we have
augmented feature vectors
� Given samples x1,…, xn convert them to

augmented samples y1,…, yn by adding
a new dimension of value 1

====

i
i xy 1

a

g(y) > 0
1ℜℜℜℜ

g(y) < 0
2ℜℜℜℜ

y

g(y) / ||a||

(((())))2y

)1(y
g(y) = 0

LDF: Training Error

� Samples y1,…, yn some in class 1, some in class 2

� For the rest of the lecture, assume we have 2 classes

� Use these samples to determine weights a in the
discriminant function yayg t====)(

� What should be our criterion for determining a?
� For now, suppose we want to minimize the training error

(that is the number of misclassifed samples y1,…, yn)

� Recall that 10)(cclassifiedyyg ii ⇒⇒⇒⇒>>>>

20)(cclassifiedyyg ii ⇒⇒⇒⇒<<<<

� Thus training error is 0 if

∈∈∈∈∀∀∀∀<<<<
∈∈∈∈∀∀∀∀>>>>

2

1

0)(
0)(

cyyg
cyyg

ii

ii

LDF: Problem “Normalization”

� Thus training error is 0 if

� This suggest problem “normalization”:
1. Replace all examples from class c2 by their negative

2cyyy iii ∈∈∈∈∀∀∀∀−−−−→→→→

2. Seek weight vector a s.t.

ii
t yya ∀∀∀∀>>>> 0

∈∈∈∈∀∀∀∀<<<<
∈∈∈∈∀∀∀∀>>>>

2

1

0
0

cyya
cyya

ii
t

ii
t

� Equivalently, training error is 0 if

(((())))

∈∈∈∈∀∀∀∀>>>>−−−−
∈∈∈∈∀∀∀∀>>>>

2ii
t

1ii
t

cy0ya
cy0ya

� If such a exists, it is called a separating or solution vector
� Original samples x1,…, xn can indeed be separated by a

line then

LDF: Problem “Normalization”

(((())))2y

)1(y

before normalization after “normalization”

(((())))2y

)1(y

Seek a hyperplane that
separates patterns from
different categories

Seek hyperplane that
puts normalized
patterns on the same
(positive) side

LDF: Solution Region

� Find weight vector a s.t. for all samples y1,…, yn

0
0

)(>>>>====∑∑∑∑
====

d

k

k
iki

t yaya

� In general, there are many such solutions a

a

a

best a

(((())))2y

)1(y

LDF: Solution Region

� Solution region for a: set of all possible solutions
� defined in terms of normal a to the separating hyperplane

(((())))2y

)1(y

a
so

lu
tio

n
re

gio
n

Optimization
� Need to minimize a function of many variables

(((()))) (((())))dxxJxJ ,...,1====

� We know how to minimize J(x)
� Take partial derivatives and set them to zero

(((())))

(((())))
(((()))) 0

1

====∇∇∇∇====

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

xJ

xJ
x

xJ
x

d

M

� However solving analytically is not always easy
� Would you like to solve this system of nonlinear equations?

gradient

(((())))
(((()))) (((())))

====++++++++

====++++++++

0xlogxxcos

0exxsin
2
4

5

2
4

x33
2

2
1

x3
2

2
1

� Sometimes it is not even possible to write down an analytical
expression for the derivative, we will see an example later today

Optimization: Gradient Descent

� Gradient points in direction of steepest increase of
J(x), and in direction of steepest decrease

(((())))xJ∇∇∇∇

(((())))a
dx
dJ−−−−

a

J(x)

x

one dimension two dimensions

(((())))aJ∇∇∇∇−−−−

a

a

(((())))a
dx
dJ−−−−

a

(((())))a
dx
dJ−−−−

(((())))xJ∇∇∇∇−−−−

Optimization: Gradient Descent

x((((1)

J(x)

x

x((((2)

s((((1)

(((())))(((())))2xJ∇∇∇∇−−−−

(((()))))1(xJ∇∇∇∇−−−−

x((((3) x((((k)

(((())))(((()))) 0xJ k ====∇∇∇∇s ((((2)

Gradient Descent for minimizing any function J(x)
set k = 1 and x (1) to some initial guess for the weight vector

while (((()))) (((())))(((()))) εεεεηηηη >>>>∇∇∇∇ kk xJ

x(k+1)= x(k) – η η η η (k) (update rule)(((())))xJ∇∇∇∇

choose learning rate ηηηη(k)

k = k + 1

Optimization: Gradient Descent

� Gradient descent is guaranteed to find only a local
minimum
J(x)

x

global minimum

� Nevertheless gradient descent is very popular
because it is simple and applicable to any function

x((((1) x((((2) x((((3) x((((k)

Optimization: Gradient Descent
� Main issue: how to set parameter ηηηη (learning rate)

� If ηηηη is too small, need too many iterations

� If ηηηη is too large may
overshoot the minimum
and possibly never find it
(if we keep overshooting)

J(x)

x
x((((1) x((((2)

J(x)

x

LDF: Criterion Function

� Find weight vector a s.t. for all samples y1,…, yn

0
0

)(>>>>====∑∑∑∑
====

d

k

k
iki

t yaya

� Need criterion function J(a) which is minimized when
a is a solution vector

� First natural choice: number of misclassified examples
(((()))) (((())))aYaJ M====

� Let YM be the set of examples misclassified by a
(((()))) {{{{ }}}}0ya.t.sysampleaY i

t
iM <<<<====

� piecewise constant, gradient
descent is useless

a

J(a)

LDF: Perceptron Criterion Function

� Better choice: Perceptron criterion function
(((()))) (((())))∑∑∑∑

∈∈∈∈

−−−−====
MYy

t
p yaaJ

� Jp(a) is -||a|| times sum of
distances of misclassified
examples to decision boundary

a
a ty

/ ||a||

y
� If y is misclassified, 0≤≤≤≤yat

� Thus (((()))) 0≥≥≥≥aJ p

a

J(a)
� Jp(a) is piecewise linear

and thus suitable for
gradient descent

LDF: Perceptron Batch Rule

� Gradient of Jp(a) is (((()))) (((())))∑∑∑∑
∈∈∈∈

−−−−====∇∇∇∇
MYy

p yaJ

� Thus gradient decent batch update rule for Jp(a) is:
(((()))) (((()))) (((()))) ∑∑∑∑

∈∈∈∈

++++ ++++====
MYy

kkk yaa ηηηη1

� It is called batch rule because it is based on all
misclassified examples

� YM are samples misclassified by a(k)

� It is not possible to solve analytically
because of YM

(((()))) 0aJ p ====∇∇∇∇

(((()))) (((())))∑∑∑∑
∈∈∈∈

−−−−====
MYy

t
p yaaJ

(((())))xJ∇∇∇∇� Update rule for gradient descent: x(k+1)= x(k)–η η η η (k)

LDF: Perceptron Single Sample Rule

� Thus gradient decent single sample rule for Jp(a) is:
(((()))) (((()))) (((())))

M
kkk yaa ηηηη++++====++++1

� note that yM is one sample misclassified by a(k)

� Geometric Interpretation:

� must have a consistent way of visiting samples

� yM misclassified by a(k)

(((())))(((()))) 0≤≤≤≤M

tk ya yM
a (k)

a
(k+1)� yM is on the wrong side of

decision hyperplane
� adding ηηηηyM to a moves new

decision hyperplane in the right
direction with respect to yM

ηηηηyM

LDF: Perceptron Single Sample Rule
(((()))) (((()))) (((())))

M
kkk yaa ηηηη++++====++++1

yMa (k)
a

(k+1)

yk

η η η η is too large, previously
correctly classified sample
yk is now misclassified

a (k+1)

yMa (k)
yk

η η η η is too small, yM is still
misclassified

LDF: Perceptron Example

yes (1)

yes (1)

yes (1)

no (-1)

chews
gum?

gradefeatures

no (-1)

no (-1)

yes (1)

no (-1)

sleeps in
class?

Ano (-1)yes (1)Peter

Fno (-1)no (-1)Mary

Fyes (1)yes (1)Steve

A yes (1)yes (1)Jane

tall?good
attendance?

name

� class 1 : students who get grade A

� class 2 : students who get grade F

LDF Example: Augment feature vector

1

1

1

1

extra

yes (1)

yes (1)

yes (1)

no (-1)

chews
gum?

gradefeatures

no (-1)

no (-1)

yes (1)

no (-1)

sleeps in
class?

Ano (-1)yes (1)Peter

Fno (-1)no (-1)Mary

Fyes (1)yes (1)Steve

A yes (1)yes (1)Jane

tall?good
attendance?

name

� convert samples x1,…, xn to augmented samples
y1,…, yn by adding a new dimension of value 1

LDF: Perform “Normalization”

� Replace all examples from class c2 by their negative

2cyyy iii ∈∈∈∈∀∀∀∀−−−−→→→→

� Seek weight vector a s.t. ii
t yya ∀∀∀∀>>>> 0

1

-1

-1

1

extra

yes (1)

yes (-1)

yes (-1)

no (-1)

chews
gum?

gradefeatures

no (-1)

no (1)

yes (-1)

no (-1)

sleeps in
class?

Ano (-1)yes (1)Peter

Fno (1)no (1)Mary

Fyes (-1)yes (-1)Steve

A yes (1)yes (1)Jane

tall?good
attendance?

name

LDF: Use Single Sample Rule

� Sample is misclassified if 0
4

0

)(<<<<====∑∑∑∑
====k

k
iki

t yaya

� gradient descent single sample rule: (((()))) (((()))) (((())))
M

kk1k yaa ηηηη++++====++++

(((()))) (((())))
M

kk yaa ++++====++++1� Set fixed learning rate to ηηηη(k)= 1:

1

-1

-1

1

extra

yes (1)

yes (-1)

yes (-1)

no (-1)

chews
gum?

gradefeatures

no (-1)

no (1)

yes (-1)

no (-1)

sleeps in
class?

Ano (-1)yes (1)Peter

Fno (1)no (1)Mary

Fyes (-1)yes (-1)Steve

A yes (1)yes (1)Jane

tall?good
attendance?

name

LDF: Gradient decent Example

� set equal initial weights a(1)=[0.25, 0.25, 0.25, 0.25]

yes0.25*(-1)+0.25*(-1)+0.25*(-1)+0.25*(-1)+0.25*(-1)<0Steve

no0.25*1+0.25*1+0.25*1+0.25*(-1)+0.25*(-1) >0Jane

misclassified?atyname

� visit all samples sequentially, modifying the weights
for after finding a misclassified example

� new weights
(((()))) (((()))) [[[[]]]]++++====++++==== 25.025.025.025.025.012

Myaa

[[[[]]]] ====−−−−−−−−−−−−−−−−−−−−++++ 11111

[[[[]]]]75.075.075.075.075.0 −−−−−−−−−−−−−−−−−−−−====

LDF: Gradient decent Example

yes-0.75*(-1)-0.75*1 -0.75 *1 -0.75 *1 -0.75*(-1) <0Mary

misclassified?atyname

� new weights
(((()))) (((()))) [[[[]]]]++++−−−−−−−−−−−−−−−−−−−−====++++==== 75.075.075.075.075.023

Myaa

[[[[]]]] ====−−−−−−−−++++ 11111

[[[[]]]]75.125.025.025.075.1 −−−−−−−−====

(((()))) [[[[]]]]75.075.075.075.075.02 −−−−−−−−−−−−−−−−−−−−====a

LDF: Gradient decent Example

yes-1.75 *1 +0.25* 1+0.25* (-1) +0.25 *(-1)-1.75*1 <0Peter

misclassified?atyname

� new weights
(((()))) (((()))) [[[[]]]]++++−−−−−−−−====++++==== 75.125.025.025.075.134

Myaa

[[[[]]]] ====−−−−−−−−++++ 11111

[[[[]]]]75.075.075.025.175.0 −−−−−−−−−−−−−−−−====

(((()))) [[[[]]]]75.125.025.025.075.13 −−−−−−−−====a

LDF: Gradient decent Example

no-0.75 *1+ 1.25*1-0.75* (-1)-0.75* (-1) -0.75 *1 >0Peter

no-0.75 *(-1)+1.25*1-0.75*1 -0.75 *1 –0.75*(-1) >0Mary

no-0.75*(-1)+1.25*(-1) -0.75*(-1) -0.75*(-1)-0.75*(-1)>0Steve

no-0.75 *1 +1.25*1 -0.75*1 -0.75 *(-1) -0.75 *(-1)+0Jane

misclassified?atyname

(((()))) [[[[]]]]75.075.075.025.175.04 −−−−−−−−−−−−−−−−====a

� Thus the discriminant function is
(((()))) (((()))) (((()))) (((()))) (((()))) (((())))43210 *75.0*75.0*75.0*25.1*75.0 yyyyyyg −−−−−−−−−−−−++++−−−−====

� Converting back to the original features x:
(((()))) (((()))) (((()))) (((()))) (((()))) 75.0*75.0*75.0*75.0*25.1 4321 −−−−−−−−−−−−−−−−==== xxxxxg

LDF: Gradient decent Example

� Converting back to the original features x:
(((()))) (((()))) (((()))) (((()))) Agradexxxx ⇒⇒⇒⇒>>>>−−−−−−−−−−−− 75.0*75.0*75.0*75.0*25.1 4321

(((()))) (((()))) (((()))) (((()))) Fgradexxxx ⇒⇒⇒⇒<<<<−−−−−−−−−−−− 75.0*75.0*75.0*75.0*25.1 4321

good
attendance

tall sleeps in class chews gum

� This is just one possible solution vector

� If we started with weights a(1)=[0,0.5, 0.5, 0, 0],
solution would be [-1,1.5, -0.5, -1, -1]

� In this solution, being tall is the least important feature

(((()))) (((()))) (((()))) (((()))) Agrade1xxx*5.0x*5.1 4321 ⇒⇒⇒⇒>>>>−−−−−−−−−−−−
(((()))) (((()))) (((()))) (((()))) Fgrade1xxx*5.0x*5.1 4321 ⇒⇒⇒⇒<<<<−−−−−−−−−−−−

LDF: Nonseparable Example
� Suppose we have 2 features

and samples are:
� Class 1: [2,1], [4,3], [3,5]
� Class 2: [1,3] and [5,6]

� These samples are not
separable by a line

� Still would like to get approximate separation by a
line, good choice is shown in green
� some samples may be “noisy”, and it’s ok if they are on

the wrong side of the line
� Get y1, y2 , y3 , y4 by adding extra feature and

“normalizing”

====

1
2
1

y 1

====

3
4
1

y 2

====

5
3
1

y 3

−−−−
−−−−
−−−−

====
6
5
1

y 5

−−−−
−−−−
−−−−

====
3
1
1

y 4

LDF: Nonseparable Example

� Let’s apply Perceptron single
sample algorithm

� initial equal weights (((()))) [[[[]]]]111a 1 ====

� fixed learning rate ηηηη = 1

====

1
2
1

y 1

====

3
4
1

y 2

====

5
3
1

y 3

−−−−
−−−−
−−−−

====
6
5
1

y 5

−−−−
−−−−
−−−−

====
3
1
1

y 4

� y t
1a(1) = [1 1 1]*[1 2 1]t > 0 b

� this is line x(1)+x(2)+1=0

� y t
2a(1) = [1 1 1]*[1 4 3]t > 0 b

� y t
3a(1) = [1 1 1]*[1 3 5]t > 0 b

(((()))) (((())))
M

kk yaa ++++====++++1

a(
1)

LDF: Nonseparable Example
(((()))) [[[[]]]]111a 1 ====

====

1
2
1

y 1

====

3
4
1

y 2

====

5
3
1

y 3

−−−−
−−−−
−−−−

====
6
5
1

y 5

−−−−
−−−−
−−−−

====
3
1
1

y 4

� y t
4a(1)=[1 1 1]*[-1 -1 -3]t = -5< 0

(((()))) (((())))
M

kk yaa ++++====++++1

(((()))) (((()))) [[[[]]]] [[[[]]]] [[[[]]]]200311111yaa M
12 −−−−====−−−−−−−−−−−−++++====++++====

a(
1)

a(2)

� y t
5 a(2)=[0 0 -2]*[-1 -5 -6]t = 12 > 0 b

� y t
1 a(2)=[0 0 -2]*[1 2 1]t < 0

(((()))) (((()))) [[[[]]]] [[[[]]]] [[[[]]]]121121200yaa M
23 −−−−====++++−−−−====++++====

LDF: Nonseparable Example
(((()))) [[[[]]]]121a 3 −−−−====

====

1
2
1

y 1

====

3
4
1

y 2

====

5
3
1

y 3

−−−−
−−−−
−−−−

====
6
5
1

y 5

−−−−
−−−−
−−−−

====
3
1
1

y 4

(((()))) (((())))
M

kk yaa ++++====++++1

a(2)

� y t
2 a(3)=[1 4 3]*[1 2 -1]t =6 > 0 b

(((()))) (((()))) [[[[]]]] [[[[]]]] [[[[]]]]410311121yaa M
34 −−−−====−−−−−−−−−−−−++++−−−−====++++====

a(
3)

� y t
3 a(3)=[1 3 5]*[1 2 -1]t > 0 b

� y t
4 a(3)=[-1 -1 -3]*[1 2 -1]t = 0

LDF: Nonseparable Example
(((()))) [[[[]]]]410a 4 −−−−====

====

1
2
1

y 1

====

3
4
1

y 2

====

5
3
1

y 3

−−−−
−−−−
−−−−

====
6
5
1

y 5

−−−−
−−−−
−−−−

====
3
1
1

y 4

(((()))) (((())))
M

kk yaa ++++====++++1

� y t
2 a(3)=[1 4 3]*[1 2 -1]t =6 > 0 b

(((()))) (((()))) [[[[]]]] [[[[]]]] [[[[]]]]410311121yaa M
34 −−−−====−−−−−−−−−−−−++++−−−−====++++====

a(
3)

� y t
3 a(3)=[1 3 5]*[1 2 -1]t > 0 b

� y t
4 a(3)=[-1 -1 -3]*[1 2 -1]t = 0

a(4)

LDF: Nonseparable Example

� we can continue this forever
� there is no solution vector a satisfying for all i

0yaya
5

0k

)k(
iki

t >>>>==== ∑∑∑∑
====

� need to stop but at a good point:

� solutions at iterations
900 through 915.
Some are good
some are not.

� How do we stop at a
good solution?

LDF: Convergence of Perceptron rules
� If classes are linearly separable, and use fixed

learning rate, that is for some constant c, ηηηη((((k)))) =c
� both single sample and batch perceptron rules converge to

a correct solution (could be any a in the solution space)
� If classes are not linearly separable:

� algorithm does not stop, it keeps looking for solution which
does not exist

� by choosing appropriate learning rate, can always ensure
convergence: (((()))) ∞∞∞∞→→→→→→→→ kask 0ηηηη

� for example inverse linear learning rate: (((())))
(((())))

k
k

1ηηηη
ηηηη ====

� for inverse linear learning rate convergence in the linearly
separable case can also be proven

� no guarantee that we stopped at a good point, but is popular
in practice.

LDF: Perceptron Rule and Gradient decent

� Linearly separable data
� perceptron rule with gradient decent works well

� Linearly non-separable data
� need to stop perceptron rule algorithm at a good point, this

maybe tricky

� Smoother gradient
because all samples are
used

Single Sample RuleBatch Rule

� easier to analyze

� Concentrates more than
necessary on any isolated
“noisy” training examples

