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� Recall the generic expression for density 
estimation

k-Nearest Neighbors 
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� In Parzen windows estimation, we fix V and that 
determines k, the number of points inside V

� In k-nearest neighbor approach we fix k, and find 
V that contains  k points inside



� kNN approach seems a good solution for the 
problem of the “best” window size
� Let the cell volume be a function of the training data
� Center a cell about x and let it grows until it captures k

samples 
� k are called the k nearest-neighbors of x

k-Nearest Neighbors 

� 2 possibilities can occur:
� Density is high near x; therefore the cell will be small 

which provides a good resolution
� Density is low; therefore the cell will grow large and  

stop until higher density regions are reached



� Of course, now we have a new question 
� How to choose k?

k-Nearest Neighbor 

� A good “rule of thumb“ is k = √√√√n
� Can prove convergence if n goes to infinity
� Not too useful in practice, however

� Let’s look at 1-D example 
� we have one sample, i.e. n = 1
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� But the estimated p(x) is not even close to a 
density function:



k-Nearest Neighbor: Density estimation



k-Nearest Neighbor



� Thus straightforward density estimation p(x) 
does not work very well with kNN approach 
because the resulting density estimate
1. Is not even a density
2. Has a lot of discontinuities (looks very spiky, 

not differentiable)
3. Even for large regions with no observed 

samples the estimated density is far from zero 
(tails are too heavy)

k-Nearest Neighbor 

� Notice in the theory, if infinite number of samples is 
available, we could construct a series of estimates that 
converge to the true density using kNN estimation.  However 
this theorem is not very useful in practice because the 
number of samples is always limited



k-Nearest Neighbor 

� However we shouldn’t give up the nearest 
neighbor approach yet

� Instead of approximating the density p(x), we 
can use kNN method to approximate the 
posterior distribution P(ci|x)
� We don’t need p(x) if we can get a good 

estimate on P(ci|x)



� How would we estimate P(ci | x) from a set of n 
labeled samples?
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� Let’s place a cell of volume V around x and 
capture k samples
� ki samples amongst k labeled ci then: 
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� Using conditional probability, let’s estimate posterior:
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k-Nearest Neighbor Rule 
� Thus our estimate of  posterior is just the fraction of 

samples which belong to class ci:
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� This is a very simple and intuitive estimate

� Under the zero-one loss function (MAP classifier) just 
choose the class which has the largest number of 
samples in the cell

� Interpretation is: given an unlabeled example (that is 
x), find k most similar labeled examples (closest 
neighbors among sample points) and assign the most 
frequent class among those neighbors to  x



k-Nearest Neighbor: Example

� Back to fish sorting
� Suppose we have 2 features, and collected sample points 

as in the picture
� Let k = 3 

lightness

length
� 2 sea bass, 1 salmon are the 3 

nearest neighbors
� Thus classify as sea bass



� kNN rule is certainly simple and intuitive, but does it 
work?

� Assume we have an unlimited number of samples
� By definition, the best possible error rate is the Bayes

rate E*
� Nearest-neighbor rule leads to an error rate greater 

than E*
� But even for k =1,  as  n → ∞, it can be shown that 

nearest neighbor rule error rate is smaller than 2E*
� As we increase k, the upper bound on the error gets 

better and better, that is the error rate (as  n → ∞) for 
the kNN rule is smaller than cE*,with smaller c for 
larger k

� If we have a lot of samples, the kNN rule will do very 
well !

kNN: How Well Does it Work?



1NN: Voronoi Cells



� Most parametric 
distributions would not 
work for this 2 class 
classification problem:

kNN: Multi-Modal Distributions

� Nearest neighbors will 
do reasonably well, 
provided we have a lot 
of samples

?

?



� In theory, when the infinite number of samples is 
available, the larger the k, the better is 
classification (error rate gets closer to the optimal 
Bayes error rate)

kNN: How to Choose k?

� But the caveat is that all k neighbors have to be 
close to x
� Possible when infinite # samples available
� Impossible in practice since # samples is finite



kNN: How to Choose k?

� In practice

1. k should be large so that error rate is 
minimized

� k too small will lead to noisy decision 
boundaries

2. k should be small enough so that only nearby 
samples are included

� k too large will lead to over-smoothed 
boundaries

� Balancing 1 and 2 is not trivial

� This is a recurrent issue, need to smooth data, 
but not too much



x1

kNN: How to Choose k?

� For k = 1, …,7 point x gets classified correctly

� red class
� For larger k classification of x is wrong

� blue class

x2

x



kNN: Computational Complexity

� Basic kNN algorithm stores all examples. Suppose 
we have n examples each of dimension k
� O(d) to compute distance to one example 

� O(nd) to find one nearest neighbor
� O(knd) to  find k closest examples examples
� Thus complexity is O(knd) 

� This is prohibitively expensive for large number of 
samples

� But we need large number of samples for kNN to 
work well!



removed

Reducing Complexity: Editing 1NN
� If all voronoi neighbors have the same class, a 

sample is useless, we can remove it:

� Number of samples decreases

� We are guaranteed that the decision boundaries 
stay the same



Reducing the complexity of KNN
� Idea: Partition space recursively and search for 

NN only close to the test point

� Preprocessing: Done prior to classification 
process.

Axis-parallel tree construction:
1. Split space in direction of 

largest ‘spread’ into two equi-
numbered cells

2. Repeat procedure recursively 
for each subcell,until some 
stopping criterion is achieved



Reducing the complexity of KNN

� Classification:
1. Propagate a test point down the tree. Classification is  
based on NN from the final leaf reached.
2. If NN (within leaf) is further than nearest boundary -
retrack

� Notes:
� Clearly log n layers (and distance computations) 

suffice. 
� Computation time to build tree: O(dn log n) (offline)
� Many variations and improvements exist (e.g. diagonal 

splits)
� Stopping criterion: often ad-hoc (e.g. number of points 

in leaf region is k, region size, etc.)



kNN: Selection of Distance
� So far we assumed we use Euclidian Distance to 

find the nearest neighbor:

� However some features (dimensions) may be 
much more discriminative than other features 
(dimensions)
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� Euclidian distance treats each feature as equally 
important



kNN: Selection of Distance
� Extreme Example

� feature 1 gives the correct class: 1 or 2
� feature 2 gives irrelevant number from 100 to 200

� Suppose we have to find  the class of x=[1  100] 
and we have 2 samples [1  150] and [2  110]
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� x = [1  100] is misclassified!

� The denser the samples, the less of the problem

� But we rarely have samples dense enough



kNN: Extreme Example of Distance Selection

� decision boundaries for blue and green classes are in red
� These boundaries are really bad because

� feature 1 is discriminative, but it’s scale is small
� feature 2 gives no class information (noise) but its scale is 

large



kNN: Selection of Distance
� Notice the 2 features are on different scales:

� feature 1  takes values between 1 or 2
� feature 2 takes values between 100 to 200

� We could normalize each feature to be between 
of mean 0 and variance 1

� If X is a random variable of mean µµµµ and varaince
σσσσ2, then (X - µµµµ)/σσσσ has mean 0 and variance 1

� Thus for each feature vector xi, compute its 
sample mean and variance, and let the new 
feature be   [xi - mean(xi)]/sqrt[var(xi)]

� Let’s do it in the previous example



kNN: Normalized Features

� The decision boundary (in red)  is very good now!



kNN: Selection of Distance

� However in high dimensions if there are a lot of 
irrelevant features, normalization will not help
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� If the number of discriminative features is smaller 
than the number of  noisy features, Euclidean 
distance is dominated by noise



kNN: Feature Weighting

� Scale each feature by its importance for 
classification

� Can learn the weights wk from the validation data

� Increase/decrease weights until classification 
improves
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kNN Summary

� Advantages
� Can be applied to the data from any distribution
� Very simple and intuitive
� Good classification if the number of samples is 

large enough

� Disadvantages
� Choosing best k may be difficult
� Computationally heavy, but improvements 

possible
� Need large number of samples for accuracy

� Can never fix this without assuming parametric 
distribution


