
Nonparametric Density Estimation
Nearest Neighbors , KNN

C10

� Recall the generic expression for density
estimation

k-Nearest Neighbors

(((())))
V

n/k
xp ≈≈≈≈

� In Parzen windows estimation, we fix V and that
determines k, the number of points inside V

� In k-nearest neighbor approach we fix k, and find
V that contains k points inside

� kNN approach seems a good solution for the
problem of the “best” window size
� Let the cell volume be a function of the training data
� Center a cell about x and let it grows until it captures k

samples
� k are called the k nearest-neighbors of x

k-Nearest Neighbors

� 2 possibilities can occur:
� Density is high near x; therefore the cell will be small

which provides a good resolution
� Density is low; therefore the cell will grow large and

stop until higher density regions are reached

� Of course, now we have a new question
� How to choose k?

k-Nearest Neighbor

� A good “rule of thumb“ is k = √√√√n
� Can prove convergence if n goes to infinity
� Not too useful in practice, however

� Let’s look at 1-D example
� we have one sample, i.e. n = 1

(((())))
V

n/k
xp ≈≈≈≈

1xx2
1
−−−−

====
xx1

1xx −−−−

1dx
xx2

1

1

≠≠≠≠∞∞∞∞====
−−−−∫∫∫∫

∞∞∞∞

∞∞∞∞−−−−

� But the estimated p(x) is not even close to a
density function:

k-Nearest Neighbor: Density estimation

k-Nearest Neighbor

� Thus straightforward density estimation p(x)
does not work very well with kNN approach
because the resulting density estimate
1. Is not even a density
2. Has a lot of discontinuities (looks very spiky,

not differentiable)
3. Even for large regions with no observed

samples the estimated density is far from zero
(tails are too heavy)

k-Nearest Neighbor

� Notice in the theory, if infinite number of samples is
available, we could construct a series of estimates that
converge to the true density using kNN estimation. However
this theorem is not very useful in practice because the
number of samples is always limited

k-Nearest Neighbor

� However we shouldn’t give up the nearest
neighbor approach yet

� Instead of approximating the density p(x), we
can use kNN method to approximate the
posterior distribution P(ci|x)
� We don’t need p(x) if we can get a good

estimate on P(ci|x)

� How would we estimate P(ci | x) from a set of n
labeled samples?

∑∑∑∑
====

==== m

j
j

i

cxp

cxp

1

),(

),(

k-Nearest Neighbor

V
n/k

)x,c(p i
i ≈≈≈≈

� Let’s place a cell of volume V around x and
capture k samples
� ki samples amongst k labeled ci then:

(((())))
V

n/k
xp ≈≈≈≈� Recall our estimate for density:

� Using conditional probability, let’s estimate posterior:

(((())))xp
cxp

xcp i
i

),(
)|(====

∑∑∑∑
====

≈≈≈≈ m

1j

j

i

V

n/k
V

n/k

∑∑∑∑
====

==== m

j
j

i

k

k

1

k
k i====

x
111

222

3

3

k-Nearest Neighbor Rule
� Thus our estimate of posterior is just the fraction of

samples which belong to class ci:

k
k

xcp i
i ====)|(

� This is a very simple and intuitive estimate

� Under the zero-one loss function (MAP classifier) just
choose the class which has the largest number of
samples in the cell

� Interpretation is: given an unlabeled example (that is
x), find k most similar labeled examples (closest
neighbors among sample points) and assign the most
frequent class among those neighbors to x

k-Nearest Neighbor: Example

� Back to fish sorting
� Suppose we have 2 features, and collected sample points

as in the picture
� Let k = 3

lightness

length
� 2 sea bass, 1 salmon are the 3

nearest neighbors
� Thus classify as sea bass

� kNN rule is certainly simple and intuitive, but does it
work?

� Assume we have an unlimited number of samples
� By definition, the best possible error rate is the Bayes

rate E*
� Nearest-neighbor rule leads to an error rate greater

than E*
� But even for k =1, as n → ∞, it can be shown that

nearest neighbor rule error rate is smaller than 2E*
� As we increase k, the upper bound on the error gets

better and better, that is the error rate (as n → ∞) for
the kNN rule is smaller than cE*,with smaller c for
larger k

� If we have a lot of samples, the kNN rule will do very
well !

kNN: How Well Does it Work?

1NN: Voronoi Cells

� Most parametric
distributions would not
work for this 2 class
classification problem:

kNN: Multi-Modal Distributions

� Nearest neighbors will
do reasonably well,
provided we have a lot
of samples

?

?

� In theory, when the infinite number of samples is
available, the larger the k, the better is
classification (error rate gets closer to the optimal
Bayes error rate)

kNN: How to Choose k?

� But the caveat is that all k neighbors have to be
close to x
� Possible when infinite # samples available
� Impossible in practice since # samples is finite

kNN: How to Choose k?

� In practice

1. k should be large so that error rate is
minimized

� k too small will lead to noisy decision
boundaries

2. k should be small enough so that only nearby
samples are included

� k too large will lead to over-smoothed
boundaries

� Balancing 1 and 2 is not trivial

� This is a recurrent issue, need to smooth data,
but not too much

x1

kNN: How to Choose k?

� For k = 1, …,7 point x gets classified correctly

� red class
� For larger k classification of x is wrong

� blue class

x2

x

kNN: Computational Complexity

� Basic kNN algorithm stores all examples. Suppose
we have n examples each of dimension k
� O(d) to compute distance to one example

� O(nd) to find one nearest neighbor
� O(knd) to find k closest examples examples
� Thus complexity is O(knd)

� This is prohibitively expensive for large number of
samples

� But we need large number of samples for kNN to
work well!

removed

Reducing Complexity: Editing 1NN
� If all voronoi neighbors have the same class, a

sample is useless, we can remove it:

� Number of samples decreases

� We are guaranteed that the decision boundaries
stay the same

Reducing the complexity of KNN
� Idea: Partition space recursively and search for

NN only close to the test point

� Preprocessing: Done prior to classification
process.

Axis-parallel tree construction:
1. Split space in direction of

largest ‘spread’ into two equi-
numbered cells

2. Repeat procedure recursively
for each subcell,until some
stopping criterion is achieved

Reducing the complexity of KNN

� Classification:
1. Propagate a test point down the tree. Classification is
based on NN from the final leaf reached.
2. If NN (within leaf) is further than nearest boundary -
retrack

� Notes:
� Clearly log n layers (and distance computations)

suffice.
� Computation time to build tree: O(dn log n) (offline)
� Many variations and improvements exist (e.g. diagonal

splits)
� Stopping criterion: often ad-hoc (e.g. number of points

in leaf region is k, region size, etc.)

kNN: Selection of Distance
� So far we assumed we use Euclidian Distance to

find the nearest neighbor:

� However some features (dimensions) may be
much more discriminative than other features
(dimensions)

(((())))∑∑∑∑ −−−−====
k

kk babaD 2),(

� Euclidian distance treats each feature as equally
important

kNN: Selection of Distance
� Extreme Example

� feature 1 gives the correct class: 1 or 2
� feature 2 gives irrelevant number from 100 to 200

� Suppose we have to find the class of x=[1 100]
and we have 2 samples [1 150] and [2 110]

(((()))) (((()))) 5015010011)150
1,100

1(D 22 ====−−−−++++−−−−====

 (((()))) (((()))) 5.1011010021)110

2,100
1(D 22 ====−−−−++++−−−−====

� x = [1 100] is misclassified!

� The denser the samples, the less of the problem

� But we rarely have samples dense enough

kNN: Extreme Example of Distance Selection

� decision boundaries for blue and green classes are in red
� These boundaries are really bad because

� feature 1 is discriminative, but it’s scale is small
� feature 2 gives no class information (noise) but its scale is

large

kNN: Selection of Distance
� Notice the 2 features are on different scales:

� feature 1 takes values between 1 or 2
� feature 2 takes values between 100 to 200

� We could normalize each feature to be between
of mean 0 and variance 1

� If X is a random variable of mean µµµµ and varaince
σσσσ2, then (X - µµµµ)/σσσσ has mean 0 and variance 1

� Thus for each feature vector xi, compute its
sample mean and variance, and let the new
feature be [xi - mean(xi)]/sqrt[var(xi)]

� Let’s do it in the previous example

kNN: Normalized Features

� The decision boundary (in red) is very good now!

kNN: Selection of Distance

� However in high dimensions if there are a lot of
irrelevant features, normalization will not help

(((()))) (((()))) (((())))∑∑∑∑∑∑∑∑∑∑∑∑ −−−−++++−−−−====−−−−====
j

2
jj

i

2
ii

k

2
kk bababa)b,a(D

discriminative
feature

noisy
features

� If the number of discriminative features is smaller
than the number of noisy features, Euclidean
distance is dominated by noise

kNN: Feature Weighting

� Scale each feature by its importance for
classification

� Can learn the weights wk from the validation data

� Increase/decrease weights until classification
improves

(((())))∑∑∑∑ −−−−====
k

kkk bawbaD 2),(

kNN Summary

� Advantages
� Can be applied to the data from any distribution
� Very simple and intuitive
� Good classification if the number of samples is

large enough

� Disadvantages
� Choosing best k may be difficult
� Computationally heavy, but improvements

possible
� Need large number of samples for accuracy

� Can never fix this without assuming parametric
distribution

