
Curse of Dimensionality,

Dimensionality Reduction with PCA

Curse of Dimensionality: Overfitting

 If the number of features d is large, the number of

samples n, may be too small for accurate

parameter estimation.

 For example, covariance matrix has d2

parameters:
















2

1

1

2

1

dd

d










 For accurate estimation, n should be much bigger

than d2, otherwise model is too complicated for

the data, overfitting:

 Paradox: If n < d2 we are better off assuming that
features are uncorrelated, even if we know this
assumption is wrong

 In this case, the covariance matrix has only d

parameters:
















2

2

1

0

0

d








 We are likely to avoid overfitting because we fit a

model with less parameters:

Curse of Dimensionality: Overfitting

model with more

parameters

model with less

 parameters

Curse of Dimensionality: Number of Samples

 Suppose we want to use the nearest neighbor

approach with k = 1 (1NN)

 This feature is not discriminative, i.e. it does not

separate the classes well

 Suppose we start with only one feature

0 1

 We decide to use 2 features. For the 1NN method

to work well, need a lot of samples, i.e. samples

have to be dense

 To maintain the same density as in 1D (9 samples

per unit length), how many samples do we need?

Curse of Dimensionality: Number of Samples

0

1

 We need 92 samples to maintain the same

density as in 1D

1

0 1

 Of course, when we go from 1 feature to 2, no

one gives us more samples, we still have 9

1

 This is way too sparse for 1NN to work well

Curse of Dimensionality: Number of Samples

0 1

 Things go from bad to worse if we decide to use 3

features:
1

 If 9 was dense enough in 1D, in 3D we need

93=729 samples!

Curse of Dimensionality: Number of Samples

 In general, if n samples is dense enough in 1D

 Then in d dimensions we need nd samples!

 And nd grows really really fast as a function of d

 Common pitfall:

 If we can’t solve a problem with a few features, adding

more features seems like a good idea

 However the number of samples usually stays the same

 The method with more features is likely to perform

worse instead of expected better

Curse of Dimensionality: Number of Samples

 For a fixed number of samples, as we add

features, the graph of classification error:

features

classification
error

1
optimal # features

 Thus for each fixed sample size n, there is the

optimal number of features to use

Curse of Dimensionality: Number of Samples

 We should try to avoid creating lot of features

The Curse of Dimensionality

 Often no choice, problem starts with many features

 Example: Face Detection

 One sample point is k by m array of pixels



















 Feature extraction is not trivial, usually every

pixel is taken as a feature

 Typical dimension is 20 by 20 = 400

 Suppose 10 samples are dense enough for 1

dimension. Need only 10400 samples

The Curse of Dimensionality

 Face Detection, dimension of one sample point is km



















 The fact that we set up the problem with km

dimensions (features) does not mean it is really

a km-dimensional problem

 Most likely we are not setting the problem up with

the right features

 If we used better features, we are likely need much

less than km-dimensions

 Space of all k by m images has km dimensions

 Space of all k by m faces must be much smaller,

since faces form a tiny fraction of all possible images

Dimensionality Reduction

 High dimensionality is challenging and redundant

 It is natural to try to reduce dimensionality
 Reduce dimensionality by feature combination:

combine old features x to create new features y

y
xx
xx

x

x
x
x

x
43

21

4

3

2

1






























dkwithy
y

y

x

x
x

f

x

x
x

x

k

dd



































































 


1

2

1

2

1

 For example,

 Ideally, the new vector y should retain from x all

information important for classification

Dimensionality Reduction

 The best f(x) is most likely a non-linear function

 Linear functions are easier to find though

dkwith
y

y

x

x
x

ww

ww

x

x
x

W

x

x
x

k

d
kdk

d

dd


























































































1

2

1

1

111

2

1

2

1

 Thus it can be represented by a matrix W:

 For now, assume that f(x) is a linear mapping

 We will look at 2 methods for feature

combination

 Principle Component Analysis (PCA)

 Fischer Linear Discriminant (next lecture)

Feature Combination

 Main idea: seek most accurate data representation in

a lower dimensional space

Principle Component Analysis (PCA)

 Example in 2-D

 Project data to 1-D subspace (a line) which minimize the

projection error

large projection errors,
bad line to project to

small projection errors,
good line to project to

dimension 1 d
im

e
n

s
io

n
 2

dimension 1 d
im

e
n

s
io

n
 2

 Notice that the good line to use for projection lies in

the direction of largest variance

 PCA

y

 After the data is projected on the best line, need to

transform the coordinate system to get 1D

representation for vector y

 Note that new data y has the same variance as old

data x in the direction of the green line

 PCA preserves largest variances in the data. We will

prove this statement, for now it is just an intuition of

what PCA will do

 PCA: Approximation of Elliptical Cloud in 3D

best 2D approximation best 1D approximation

 PCA: Linear Algebra for Derivation

 Let V be a d dimensional linear space, and W be a k

dimensional linear subspace of V

 We can always find a set of d dimensional vectors

{e1,e2,…,ek} which forms an orthonormal basis for W

 <ei,ej> = 0 if i is not equal to j and <ei,ei> = 1

 Thus any vector in W can be written as

k

k

i

iikk scalarsforeeee  ,...,... 1

1

2211 




 PCA: Linear Algebra for Derivation

 Recall that subspace W contains the zero vector, i.e.

it goes through the origin
this line is not a

subspace of R2

 For derivation, it will be convenient to project to

subspace W: thus we need to shift everything

this line is a

subspace of R2

 PCA Derivation: Shift by the Mean Vector

 Before PCA, subtract sample mean from the data

̂
1

1

 


xx
n

x
n

i

i

 The new data has zero mean.

1x 

2x 

1x 

2x 

̂
̂

 All we did is change the coordinate system

 PCA: Derivation

 We want to find the most accurate representation of

data D={x1,x2,…,xn} in some subspace W which has

dimension k < d

 Let {e1,e2,…,ek} be the orthonormal basis for W. Any

vector in W can be written as 


k

i

iie
1



 Thus x1 will be represented by some vector in W




k

i

iie
1

1

 Error of this representation:
2

1

11 



k

i

iiexerror 
W

x1

 iie1

error at one point

 PCA: Derivation

 Any xj can be written as 


k

i

ijie
1



 To find the total error, we need to sum over all xj’s

 Thus the total error for representation of all data D is:

   
 


n

j

k

i

ijijnkk exeeJ
1

2

1

111 ,...,,..., 

sum over all data points

unknowns

 PCA: Derivation

 To minimize J, need to take partial derivatives and

also enforce constraint that {e1,e2,…,ek} are

orthogonal

   
 


n

j

k

i

ijijnkk exeeJ
1

2

1

111 ,...,,..., 

 Let us simplify J first:

  
  


n

1j

k

1i

2

ji

n

1j

k

1i

i

t

jji

n

1j

2

jnk11k1 ex2x,...,e,...,eJ 

 PCA: Derivation

  
  


n

1j

k

1i

2

ji

n

1j

k

1i

i

t

jji

n

1j

2

jnk11k1 ex2x,...,e,...,eJ 

 First take partial derivatives with respect to ml

  mll

t

mnkk

ml

exeeJ 


22,...,,..., 111 




 Thus the optimal value for ml is

l

t

mmlmll

t

m exex   022

 PCA: Derivation

 Plug the optimal value for ml = xt
mel back into J

     
  


n

1j

k

1i

2

i

t

j

n

1j

k

1i

i

t

ji

t

j

n

1j

2

jk1 exexex2xe,...,eJ

 Can simplify J

   
 


n

1j

k

1i

2

i

t

j

n

1j

2

jk1 exxe,...,eJ

  
  


n

1j

k

1i

2

ji

n

1j

k

1i

i

t

jji

n

1j

2

jnk11k1 ex2x,...,e,...,eJ 

 PCA: Derivation

 Rewrite J using (atb)2= (atb)(atb)=(bta)(atb)=bt(aat)b

    i

n

j

k

i

n

j

t

jj

t

ijk exxexeeJ   
  
















1 1 1

2

1,...,

 
 


n

j

k

i

i

t

ij eSex
1 1

2

 Where 



n

j

t

jj xxS
1

 S is called the scatter matrix, it is just n-1 times the

sample covariance matrix we have seen before

  






n

j

t

jj xx
n 1

ˆˆ
1

1ˆ 

   
 


n

1j

k

1i

2

i

t

j

n

1j

2

jk1 exxe,...,eJ

 PCA: Derivation

 We should also enforce constraints ei
tei = 1 for all i

   
 


n

j

k

i

i

t

ijk eSexeeJ
1 1

2

1,...,

 Use the method of Lagrange multipliers, incorporate

the constraints with undetermined l1 ,…, lk

 Need to maximize new function u

   



k

j

j

t

jj

k

i

i

t

ik eeeSeeeu
11

1 1,..., l

 Minimizing J is equivalent to maximizing 


k

i

i

t

i eSe
1

constant

 PCA: Derivation

   



k

j

j

t

jj

k

i

i

t

ik eeeSeeeu
11

1 1,..., l

 Compute the partial derivatives with respect to em

  022,...,1 



mmmk

m

eSeeeu
e

l

 Thus lm and em are eigenvalues and eigenvectors of

scatter matrix S

mmm eSe l

Note: em is a vector, what we are really doing here is
 taking partial derivatives with respect to each
 element of em and then arranging them up in a
 linear equation

 PCA: Derivation

 Let’s plug em back into J and use
mmm eSe l

   
 


n

j

k

i

i

t

ijk eSexeeJ
1 1

2

1,...,

    
  


n

1j

k

1i

i

2

j

n

1j

k

1i

2

ii

2

jk1 xexe,...,eJ ll

constant

 Thus to minimize J take for the basis of W the k

eigenvectors of S corresponding to the k largest

eigenvalues

 PCA

 This result is exactly what we expected: project x into

subspace of dimension k which has the largest

variance

 This is very intuitive: restrict attention to directions

where the scatter is the greatest

 The larger the eigenvalue of S, the larger is the

variance in the direction of corresponding eigenvector

301 l

8.02 l

 PCA

 Thus PCA can be thought of as finding new

orthogonal basis by rotating the old axis until the

directions of maximum variance are found

 PCA as Data Approximation

 Let {e1,e2,…,ed } be all d eigenvectors of the scatter

matrix S, sorted in order of decreasing corresponding

eigenvalue

 Without any approximation, for any sample xi:

dd1k1kkk11

d

1j

jji e...eeeex   



 

error of approximation

approximation of xi

 coefficients m =xt
iem are called principle components

 The larger k, the better is the approximation
 Components are arranged in order of importance, more

important components come first

 Thus PCA takes the first k most important

components of xi as an approximation to xi

 PCA: Last Step

 Now we know how to project the data

y

 Last step is to change the coordinates to get final

k-dimensional vector y

 Let matrix  keeE 1

 Then the coordinate transformation is xEy t

 Under Et, the eigenvectors

become the standard basis:








































0

1

01








i

k

ii

t e

e

e

e

eE

Recipe for Dimension Reduction with PCA

 Data D={x1,x2,…,xn}. Each xi is a d-dimensional

vector. Wish to use PCA to reduce dimension to k

1. Find the sample mean 



n

i

ix
n 1

1
̂

2. Subtract sample mean from the data ̂ ii xz

3. Compute the scatter matrix 



n

i

t

iizzS
1

4. Compute eigenvectors e1,e2,…,ek corresponding to

the k largest eigenvalues of S

5. Let e1,e2,…,ek be the columns of matrix  keeE 1

6. The desired y which is the closest approximation

to x is zEy t

PCA Example Using Matlab

 Let D = {(1,2),(2,3),(3,2),(4,4),(5,4),(6,7),(7,6),(9,7)}

 Convenient to arrange data in array





























8

1

x

x

79

21
X 

 Mean    4.46.4Xmean 

 Subtract mean from data to get new data array Z

 










 

















6.24.4

4.46.3
1,8,repmatXXZ  





 Compute the scatter matrix S

     





















3440
4057

6.2
4.46.24.4...

4.4
6.34.46.3Zcov7S

matlab uses unbiased estimate for covariance, so S=(n-1)*cov(Z)

PCA Example Using Matlab

 Use [V,D] =eig(S) to get eigenvalues and

eigenvectors of S










6.0
8.0eand87 11l









8.0

6.0eand8.3 22l

 Projection to 1D space in the direction of e1

   1.53.46.24.4
4.46.36.08.0ZeY tt

1 















 


 81 yy 

