Curse of Dimensionality,
Dimensionality Reduction with PCA

Curse of Dimensionality: Overfitting

= |f the number of features d is large, the number of

samples n, may be too small for accurate
parameter estimation.

= For example, covariance matrix has d?
narameters:

> =

= For accurate estimation, n should be much bigger

than d?, otherwise model is too complicated for
the data, overfitting:

_Curse of Dimensionality: Overfitting

Paradox: If n < d? we are better off assuming that
features are uncorrelated, even if we know this
assumption is wrong

In this case, the covariance matrix has only d

parameters: o2 0

S
0 -0

We are likely to avoid overfitting because we fit a

model with less parameters:

parameters

model with less
parameters

Curse of Dimensionality: Number of Samples

= Suppose we want to use the nearest neighbor
approach with k =1 (1NN)

= Suppose we start with only one feature

0 1
- oN OoN e

= This feature Is not discriminative, i.e. it does not
separate the classes well

= We decide to use 2 features. For the 1NN method
to work well, need a lot of samples, I.e. samples
have to be dense

= To maintain the same density as in 1D (9 samples
per unit length), how many samples do we need?

Curse of Dimensionality: Number of Samples

= We need 92 samples to maintain the same
density as in 1D

1 |

Curse of Dimensionality: Number of Samples

= Of course, when we go from 1 feature to 2, no
one gives us more samples, we still have 9

= This is way too sparse for INN to work well

Curse of Dimensionality: Number of Samples

= Things go from bad to worse Iif we decide to use 3

features: .
1 1

= If 9 was dense enough in 1D, in 3D we need
93=729 samples!

Curse of Dimensionality: Number of Samples

= |n general, if n samples is dense enough in 1D

= Then in d dimensions we need n9 samples!

= And nd9 grows really really fast as a function of d

= Common pitfall:

= |[f we can'’t solve a problem with a few features, adding
more features seems like a good idea

= However the number of samples usually stays the same

= The method with more features is likely to perform
worse instead of expected better

Curse of Dimensionality: Number of Samples

= For a fixed number of samples, as we add
features, the graph of classification error:

classification |
error

|11 I,\ .
1 # features

optimal # features

= Thus for each fixed sample size n, there is the
optimal number of features to use

The Curse of Dimensionality

= We should try to avoid creating lot of features
= Often no choice, problem starts with many features

= Example: Face Detection
= One sample point is k by m array of pixels

AEREN]
€d= - -
- -
AREEL

= Feature extraction is not trivial, usually every
pixel Is taken as a feature

= Typical dimension is 20 by 20 = 400

= Suppose 10 samples are dense enough for 1
dimension. Need only 1040 samples

The Curse of Dimensionality

= Face Detection, dimension of one sample point is km
LLLLL]

-

i

= The fact that we set up the problem with km
dimensions (features) does not mean it is really
a km-dimensional problem

= Space of all k by m images has km dimensions

= Space of all k by m faces must be much smaller,
since faces form a tiny fraction of all possible images

= Most likely we are not setting the problem up with
the right features

= If we used better features, we are likely need much
less than km-dimensions

Dimensionality Reduction

High dimensionality is challenging and redundant

It is natural to try to reduce dimensionality
Reduce dimensionality by feature combination:

combine old features x to create new features y

'Xl' ('Xl'\
x=|%2|>f|]| %2
Xal \LXa)
For example, [x,
x =| 22
X3
| X4

Y1
. |I=y with k <d
Y«

X, + X,
— =y
X5+ X,

|deally, the new vector y should retain from x all
iInformation important for classification

Dimensionality Reduction

= The best f(x) is most likely a non-linear function

= Linear functions are easier to find though

= For now, assume that f(x) is a linear mapping

= Thus it can be represented by a matrix W:.

X X r 7| X
Xl Xl W.11 W.ld Xl y.l |
2 I=>W| "2 | =] : 2 = : with k <d
‘ W W Y«
Xd _Xd_ | "T k1l kd _Xd_

Feature Combination

= We will look at 2 methods for feature
combination

= Principle Component Analysis (PCA)
= Fischer Linear Discriminant (next lecture)

Principle Component Analysis (PCA)

= Main idea: seek most accurate data representation in
a lower dimensional space

= Example in 2-D

= Project data to 1-D subspace (a line) which minimize the
projection error

D N

S S

0 (7) A

G 5

El 7.5 =

Cle ® dimension 1 = dimension 1
large projection errors, small projection errors,
bad line to project to good line to project to

= Notice that the good line to use for projection lies In
the direction of largest variance

PCA

= After the data is projected on the best line, need to
transform the coordinate system to get 1D
representation for vector y

y
> *—o o do—

= Note that new data y has the same variance as old
data x in the direction of the green line

= PCA preserves largest variances in the data. We will
prove this statement, for now It Is just an intuition of
what PCA will do

PCA: Approximation of Elliptical Cloud in 3D

B e
100 oo
0 .

-100

50

-50 -40

best 2D approximation best 1D approximation
50
0— o 0 o ©6@ 60 6 GHENINEnnn—S e R IEREEDC) @B 09
0 - ‘;".@iﬁ o"’fi"‘.
"eb.”%‘.?“ . J 05t
50}
5 50 100 =0 0 50 100 150

-150 -100 -50 0 50 100 150

PCA: Linear Algebra for Derivation

= LetV be a d dimensional linear space, and W be a k
dimensional linear subspace of V

= We can always find a set of d dimensional vectors
{e,,e,,...,e} which forms an orthonormal basis for W

= <g;,e>=0IfiIsnotequal to] and <g;,e>=1
= Thus any vector in W can be written as

ae, +ae, +..+ae =Y ae for scalars a,..,
=1

PCA: Linear Algebra for Derivation

= Recall that subspace W contains the zero vector, I.e.

It goes through the origin
this line is not a
/subspace of R?

= For derivation, it will be convenient to project to
subspace W: thus we need to shift everything

[~—this lineis a
)
/ subspace of R?
® ,

:
e ’
. ®

PCA Derivation: Shift by the Mean Vector

= Before PCA, subtract sample mean from the data

x——Zx =X — I

= The new data has zero mean.

= All we did is change the coordinate system

X'u (] ® ¢ X2
2 n o °
0‘[[° oh ® X"
’
P o X1: () A g

PCA: Derivation

We want to find the most accurate representation of

data D={x,,X,,...,X,} In some subspace W which has
dimension k < d

Let {e,,e,,...,€,} be the orthonormal basis for W. Any

k
vector iIn W can be written as Zaiei
I=1
Thus x; will be repres:(ented by some vector in W

Zaliei
=1
Error of this representation:

K 2
error =X, — Y a,e,
=1

PCA: Derivation

= To find the total error, we need to sum over all xj’s

Kk
= Any x; can be written as) a;e,
=1
= Thus the total error for representation of all data D is:
sum over all data points

l
k
X; =€
=1

0 2
N[RIS A B
J j=1

unknowns error at one point

\—
Y

PCA: Derivation

= To minimize J, need to take partial derivatives and
also enforce constraint that {e,,e,,...,e,} are
orthogonal

‘J(e1""’ek’a11’ nk) Z X _Zall i

= Let us simplify J first:

ey ey ay ey)= ZHX H —ZZZa“x e +ZZ“JI

j=1i=1 j=11=1

PCA: Derivation

ey ey,)= ZHX H —ZZZa“x e, +ZZaJ,

j=1i=1 j=1i=1

= First take partial derivatives with respect to «,,,

GLJ (€10enr €4, Ay B) = —2X 1L €, + 221,

ml

= Thus the optimal value for a,, IS

-2X, € +2a, =0 = a6 =X.6

PCA: Derivation

S

k
‘](el """ SORT2/ERT nk) ZHX H _Zzzajlxjel + Zajz

j=1i=1 j=1i=1

= Plug the optimal value for e, = x' e, back into J

I €)= ZHX 23y (xie e +3 X (xte,)

j=1i=1 j=1i=1

= Can simplify J

PCA: Derivation

Ieue)=2opx >3 (xie)

j=1i=1

= Rewrite J using (at n)?= (atb)(atb)=(bta)(atb)=bt(aa')b

- ek)=jxjuz_ﬁeg[g(xjx;)}i

|=1 =1

n 5 Kk t
=2 %[-2eise,

]=1 =1

= S s called the scatter matrix, it is just n-1 times the
sample covariance matrix we have seen before

i=i : (Xj _ﬁXXj _ﬁ)t

n_lj:]_

PCA: Derivation

n Kk
Je,,..e)= Z;ij H2 —Zl:eitS e
j= i=

constant

k
Minimizing J is equivalent to maximizing) eSe,
=1

We should also enforce constraints e;'e; = 1 for all |

Use the method of Lagrange multipliers, incorporate
the constraints with undetermined 4, ,..., 4,

Need to maximize new function u

u(e,,.. ek)=zk:eit8ei —zk:,lj ete, - 1)
=1 =

PCA: Derivation

u(e,,...e,)= zk:eitS e —zk:/lj ete, - 1)
=1 =

= Compute the partial derivatives with respect to e,
9 e,,...e)=2Se, —24 e =0
oe,.

Note: e, Is a vector, what we are really doing here is
taking partial derivatives with respect to each
element of e, and then arranging them up in a
linear equation

= Thus 4, and e, are eigenvalues and eigenvectors of
scatter matrix S
Se, =€,

PCA: Derivation

n Kk
Je,,..e)= ZHXJ- H2 - €iSe,

constant

= Thus to minimize J take for the basis of W the k
eigenvectors of S corresponding to the k largest
eigenvalues

PCA

= The larger the eigenvalue of S, the larger is the
variance in the direction of corresponding eigenvector

A, =30

= This result is exactly what we expected: project x into
subspace of dimension k which has the largest
variance

= This Is very intuitive: restrict attention to directions
where the scatter is the greatest

PCA

= Thus PCA can be thought of as finding new
orthogonal basis by rotating the old axis until the
directions of maximum variance are found

PCA as Data Approximation
= Let {e,e,,....e4} be all d eigenvectors of the scatter
matrix S, sorted in order of decreasing corresponding
eigenvalue

= Without any approximation, for any sample x:
error of aﬂoroximation

d 4 N\
X; =Y a;e, =04 €+t O B+ iy By + O €
j=1 Y
approximation of x;

= coefficients a, =x'e are called principle components

= The larger k, the better is the approximation

= Components are arranged in order of importance, more
important components come first

= Thus PCA takes the first k most important
components of x; as an approximation to Xx;

PCA: Last Step

= Now we know how to project the data

= Last step is to change the coordinates to get final
k-dimensional vector y

= Let matrix E =[e,---e,]}
= Then the coordinate transformationis y =E'x

= Under E!, the eigenvectors ce e lo
become the standard basis: N U

Il
..-H...

- Recipe for Dimension Reduction with PCA

Data D={x,X,,...,X,}. Each x; is a d-dimensional
vector. Wish to use PCA to reduce dimension to k

. ~ 1
Find the sample mean = Hzxi
iI=1

N

Subtract sample mean from the data z, =X, —

Compute the scatter matrix S =Y,z z
=1
. Compute eigenvectors e,,e,,...,e, corresponding to

the k largest eigenvalues of S

O D=

Let e,,e,,...,e, be the columns of matrix E =|[e,---e,]

o1

6. The desired y which is the closest approximation
toxis y=E'z

- PCA Example Using Matlab

= Let D ={(1,2),(2,3),(3,2),(4,4),(5,4),(6,7),(7,6),(9,7)}

= Convenient to arrange data in array °

12
X =|: °

97

Xy

Xg

« Mean z=mean(X)=[4.6 4.4]

= Subtract mean from data to get new data array Z

H
Z=X-|:

Y7,

=X —repmat(u,8.1)=

= Compute the scatter matrix S

S=7x*cov(Z)=[-3.6 —4.4]

N

7
6

5

4 | YV
i o

2t @ ()

’

0

0 2 4

—3.6 —4.4]

44 26

[: 22} +..+[4.4 26][3‘3} =

|

matlab uses unbiased estimate for covariance, so S=(n-1)*cov(2)

57 40
40 34

|

- PCA Example Using Matlab

= Use [V,D] =eig(S) to get eigenvalues and
eigenvectors of S

A, =87 and e, = [:82]

A,=3.8and e, = [98 8}

O —t N W R o [=2] ~
T T T T T

o
N
.
(o3}
«©

= Projection to 1D space in the direction of e,

Y =e!Z! =([—O.8 —0.6][:2:2 N ‘Z‘:g‘D=[4.3 . —5.1]

=[y1 YS]

