
Curse of Dimensionality, 

Dimensionality Reduction with PCA 

 



Curse of Dimensionality: Overfitting 

 If the number of features d is large, the number of 

samples n, may be too small for accurate 

parameter estimation. 

 For example, covariance matrix has d2 

parameters: 
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 For accurate estimation, n should be much bigger 

than d2, otherwise model is too complicated for 

the data, overfitting: 

 



 Paradox: If n < d2  we are better off assuming that 
features are uncorrelated, even if we know this 
assumption is wrong 

 In this case, the covariance matrix has only d 

parameters: 
















2

2

1

0

0

d








 We are likely to avoid overfitting because we fit a 

model with less parameters:  

Curse of Dimensionality: Overfitting 

model with more  

parameters 

model with less 

 parameters 



Curse of Dimensionality: Number of Samples 

 Suppose we want to use the nearest neighbor 

approach with k = 1 (1NN) 

 This feature is not discriminative, i.e. it does not 

separate the classes well 

 Suppose we start with only one feature 
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 We decide to use 2 features. For the 1NN method 

to work well, need a lot of samples, i.e. samples 

have to be dense 

 To maintain the same density as in 1D (9 samples 

per unit length), how many samples do we need? 



Curse of Dimensionality: Number of Samples 

0 

1 

 We need 92  samples to maintain the same 

density as in 1D 

1 
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 Of course, when we go from 1 feature to 2, no 

one gives us more samples, we still have 9 

1 

 This is way too sparse for 1NN to work well 

Curse of Dimensionality: Number of Samples 
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 Things go from bad to worse if we decide to use 3 

features: 
1 

 If 9 was dense enough in 1D, in 3D we need 

93=729 samples! 

Curse of Dimensionality: Number of Samples 



 In general, if n samples is dense enough in 1D 

 Then in d dimensions we need nd samples! 

 And nd  grows really really fast as a function of d 

 Common pitfall: 

 If we can’t solve a problem with a few features, adding 

more features seems like a good idea 

 However the number of samples usually stays the same 

 The method with more features is likely to perform 

worse instead of expected better 

Curse of Dimensionality: Number of Samples 



 For a fixed number of samples, as we add 

features, the graph of classification error: 

# features 

classification  
error 

1 
optimal # features 

 Thus for each fixed sample size n, there is the 

optimal number of features to use 

Curse of Dimensionality: Number of Samples 



 We should try to avoid creating lot of features 

The Curse of Dimensionality 

 Often no choice, problem starts with many features 

 Example: Face Detection 

 One sample point is k by m array of pixels 
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 Feature extraction is not trivial, usually every 

pixel is taken as a feature 

 Typical dimension is 20 by 20 = 400 

 Suppose 10 samples are dense enough for 1 

dimension.  Need only 10400 samples 



The Curse of Dimensionality 

 Face Detection, dimension of one sample point is km 
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 The fact that we set up the problem with km  

dimensions (features) does not mean it is really          

a km-dimensional problem 

 Most likely we are not setting the problem up with 

the right features 

 If we used better features, we are likely need much 

less than km-dimensions 

 Space of all k by m images has km dimensions 

 Space of all k by m  faces must be much smaller, 

since faces form a tiny fraction of all possible images 



Dimensionality Reduction 

 High dimensionality is challenging and redundant 

 It is natural to try to reduce dimensionality 
 Reduce dimensionality by feature combination: 

combine old features x to create new features y 
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 For example,  

 Ideally, the new vector y should retain from x all 

information important for classification 



Dimensionality Reduction 

 The best f(x) is most likely a non-linear function 

 Linear functions are easier to find though 
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 Thus it can be represented by a matrix W: 

 For now, assume that f(x) is a linear mapping 



 We will look at 2 methods for feature 

combination 

 Principle Component Analysis  (PCA) 

 Fischer Linear Discriminant (next lecture) 

Feature Combination 



 Main idea: seek most accurate data representation in 

a lower dimensional space 

Principle Component Analysis (PCA) 

 Example in 2-D 

 Project data to 1-D subspace (a line) which minimize the 

projection error 

large projection errors, 
bad line to project to 

small projection errors, 
good line to project to 
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 Notice that the good line to use for projection lies in 

the direction of largest variance  



 PCA 

y

 After the data is projected on the best line, need to 

transform the coordinate system to get 1D 

representation for vector y 

 Note that  new data y has the same variance as old 

data x in the direction of the green line 

 PCA preserves largest variances in the data.  We will 

prove this statement, for now it is just an intuition of 

what PCA will do 



 PCA: Approximation of Elliptical Cloud in 3D 

best 2D approximation best 1D approximation 



 PCA: Linear Algebra for Derivation  

 Let V be a d dimensional  linear space, and W be a k 

dimensional linear subspace of V 

 We can always find a set of d dimensional vectors     

{e1,e2,…,ek} which forms an orthonormal basis for W 

 <ei,ej> = 0 if i is not equal to j and <ei,ei> = 1 

 Thus any vector in W can be written as  
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 PCA: Linear Algebra for Derivation  

 Recall that subspace W contains the zero vector, i.e. 

it goes through the origin 
this line is not a  

subspace of R2 

 For derivation, it will be convenient to project to 

subspace W: thus we need to shift everything 

this line is a  

subspace of R2 



 PCA  Derivation: Shift by the Mean Vector 

 Before PCA, subtract sample mean from the data 
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 The new data has zero mean. 
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 All we did is change the coordinate system 



 PCA: Derivation 

 We want to find the most accurate representation of 

data D={x1,x2,…,xn}  in some subspace W  which has 

dimension k < d 

 Let {e1,e2,…,ek}  be the orthonormal basis for W. Any 

vector in W can be written as 
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 Thus x1  will be represented by some vector in W 
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error at one point 

 PCA: Derivation 

 Any xj can be written as  
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 To find the total error, we need to sum over all xj’s 

 Thus the total error for representation of all data D is: 
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 PCA: Derivation 

 To minimize J, need to take partial derivatives and 

also enforce constraint that {e1,e2,…,ek} are 

orthogonal 
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 Let us simplify J  first: 
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 PCA: Derivation 
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 PCA: Derivation 

 Plug the optimal value  for ml = xt
mel back into J 
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 Can simplify J 
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 PCA: Derivation 

 Rewrite J using (atb)2= (atb)(atb)=(bta)(atb)=bt(aat )b 
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 S is called the scatter matrix, it is just n-1 times the 

sample covariance matrix we have seen before 
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 PCA: Derivation 

 We should also enforce constraints ei
tei = 1 for all i  
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 Use the method of Lagrange multipliers, incorporate 

the constraints with undetermined l1 ,…, lk  

 Need to maximize new function u 
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 PCA: Derivation 
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 Compute the partial derivatives with respect to em 
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 Thus lm and em are eigenvalues and eigenvectors of 

scatter matrix S 
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Note:  em is a vector, what we are really doing here is  
 taking partial derivatives with respect to each 
 element of em and then arranging them up in a 
 linear equation 



 PCA: Derivation 

 Let’s plug  em back into J and use  
mmm eSe l
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 Thus to minimize J  take for the basis of  W the k 

eigenvectors of S corresponding to the  k largest 

eigenvalues 



 PCA 

 This result is exactly what we expected: project x into 

subspace of dimension k which has the largest 

variance 

 This is very intuitive: restrict attention to directions 

where the scatter is the greatest 

 The larger the eigenvalue of S, the larger is the 

variance in the direction of corresponding eigenvector 
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 PCA 

 Thus PCA can be thought of as finding new 

orthogonal basis by rotating the old axis until the 

directions of maximum variance are found 



 PCA as Data Approximation 

 Let  {e1,e2,…,ed }  be all d eigenvectors of the scatter 

matrix S, sorted in order of decreasing corresponding 

eigenvalue 

 Without any approximation, for any sample xi: 
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error of approximation 

approximation of xi 

 coefficients m =xt
iem are called principle components 

 The larger k, the better is the approximation 
 Components are arranged in order of importance, more 

important components come first  

 Thus PCA takes the first k most important 

components of xi as an approximation to xi 



 PCA: Last Step 

 Now we know how to project the data 

y

 Last step is to change the coordinates to get final       

k-dimensional vector  y 

 Let matrix  keeE 1

 Then the coordinate transformation is  xEy t

 Under Et, the eigenvectors 

become the standard basis: 
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Recipe for Dimension Reduction with PCA 

 Data D={x1,x2,…,xn}. Each xi is a d-dimensional 

vector.  Wish to use PCA to reduce dimension to k 

1. Find the sample mean 
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2. Subtract sample mean from the data ̂ ii xz

3. Compute the scatter matrix 
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
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4. Compute eigenvectors e1,e2,…,ek corresponding to 

the k largest eigenvalues of S 

5. Let e1,e2,…,ek be the columns of matrix  keeE 1

6. The desired y which is the closest approximation 

to x is  zEy t



PCA Example Using Matlab 

 Let D = {(1,2),(2,3),(3,2),(4,4),(5,4),(6,7),(7,6),(9,7)} 

 Convenient to arrange data in array 
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 Mean    4.46.4Xmean 

 Subtract mean from data to get new data array Z 
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 Compute the scatter matrix S 
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matlab uses unbiased estimate for covariance, so S=(n-1)*cov(Z) 



PCA Example Using Matlab  

 Use [V,D] =eig(S) to get eigenvalues and 

eigenvectors of S                    
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 Projection to 1D space in the direction of e1 
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