
Multilayer Neural Networks

Brain vs. Computer

 Designed to solve logic and

arithmetic problems

 Can solve a gazillion

arithmetic and logic problems

in an hour

 absolute precision

 Usually one very fast procesor

 high reliability

 Evolved (in a large part)

for pattern recognition

 Can solve a gazillion of

PR problems in an hour

 Huge number of parallel

but relatively slow and

unreliable processors

 not perfectly precise

 not perfectly reliable

Seek an inspiration from human brain for PR?

Neuron: Basic Brain Processor

 Neurons are nerve cells that transmit signals to and from

brains at the speed of around 200mph

 Each neuron cell communicates to anywhere from 1000 to

10,000 other neurons, muscle cells, glands, so on

 Have around 1010 neurons in our brain (network of

neurons)

 Most neurons a person is ever going to have are already

present at birth

Neuron: Basic Brain Processor

nucleus

cell body

axon

dendrites

 Main components of a neuron

 Cell body which holds DNA information in nucleus

 Dendrites may have thousands of dendrites, usually short

 axon long structure, which splits in possibly thousands branches at

the end. May be up to 1 meter long

Neuron in Action (simplified)

 Input : neuron collects signals from other neurons
through dendrites, may have thousands of dendrites

 Processor: Signals are accumulated and
processed by the cell body

 Output: If the strength of incoming signals is large
enough, the cell body sends a signal (a spike of
electrical activity) to the axon

neuron

body
axon

Neural Network

ANN History: Birth

 1943, famous paper by W. McCulloch
(neurophysiologist) and W. Pitts (mathematician)

 Using only math and algorithms, constructed a model
of how neural network may work

 Showed it is possible to construct any computable
function with their network

 Was it possible to make a model of thoughts of a
human being?

 Considered to be the birth of AI

 1949, D. Hebb, introduced the first (purely
pshychological) theory of learning

 Brain learns at tasks through life, thereby it goes
through tremendous changes

 If two neurons fire together, they strengthen each
other’s responses and are likely to fire together in the
future

ANN History: First Successes

 1958, F. Rosenblatt,
 perceptron, oldest neural network still in use today

 Algorithm to train the perceptron network (training is
still the most actively researched area today)

 Built in hardware

 Proved convergence in linearly separable case

 1959, B. Widrow and M. Hoff

 Madaline

 First ANN applied to real problem (eliminate echoes in
phone lines)

 Still in commercial use

ANN History: Stagnation

 Early success lead to a lot of claims which were not
fulfilled

 1969, M. Minsky and S. Pappert
 Book “Perceptrons”

 Proved that perceptrons can learn only linearly
separable classes

 In particular cannot learn very simple XOR function

 Conjectured that multilayer neural networks also
limited by linearly separable functions

 No funding and almost no research (at least in
North America) in 1970’s as the result of 2 things
above

ANN History: Revival
 Revival of ANN in 1980’s

 1982, J. Hopfield
 New kind of networks (Hopfield’s networks)

 Bidirectional connections between neurons

 Implements associative memory

 1982 joint US-Japanese conference on ANN
 US worries that it will stay behind

 Many examples of mulitlayer NN appear

 1982, discovery of backpropagation algorithm
 Allows a network to learn not linearly separable

classes

 Discovered independently by

1. Y. Lecunn

2. D. Parker

3. Rumelhart, Hinton, Williams

ANN: Perceptron

 Input and output layers

 g(x) = wtx + w0

 Limitation: can learn only linearly separable classes

MNN: Feed Forward Operation

input layer:
d features

x(1)

x(2)

x(d)

bias unit

hidden layer: output layer:
m outputs, one for

each class

z1

zm

wji vkj

MNN: Notation for Weights

 Use wji to denote the weight between input unit i
and hidden unit j

x(i)

wji

hidden unit j input unit i

wjix
(i) yj

 Use vkj to denote the weight between hidden unit j
and output unit k

vkj

output unit k hidden unit j

yj
zk vkjyj

MNN: Notation for Activation

 Use neti to denote the activation and hidden unit j

hidden unit j

yj

 





d

i

jji

i

j wwxnet
1

0

 Use net*k to denote the activation at output unit k





HN

j

kkjjk vvynet
1

0

*
output unit k

zj

Discriminant Function

 Discriminant function for class k (the output of the
k th output unit)

   kk zxg























  

 

HN

j

k

d

i

j

i

jikj vwxwfvf
1

0

1

0

)(

activation at
jth hidden unit

activation at kth output unit

Discriminant Function

Expressive Power of MNN

 It can be shown that every continuous function
from input to output can be implemented with
enough hidden units, 1 hidden layer, and proper
nonlinear activation functions

 This is more of theoretical than practical interest

 The proof is not constructive (does not tell us exactly
how to construct the MNN)

 Even if it were constructive, would be of no use since
we do not know the desired function anyway, our goal
is to learn it through the samples

 But this result does give us confidence that we are on
the right track

 MNN is general enough to construct the correct
decision boundaries, unlike the Perceptron

MNN Activation function
 Must be nonlinear for expressive power larger than

that of perceptron
 If use linear activation function at hidden layer, can

only deal with linearly separable classes

 Suppose at hidden unit j, h(u)=aj u

 






















  

 

HN

j

k

d

i

j

i

jikjk vwxwhvfxg
1

0

1

0

)(























  

 

HN

j

k

d

i

j

i

jijkj vwxwavf
1

0

1

0

)(

 













 

 

d

1i

N

1j

0k0jjkj

)i(

jijkj

H

vwavxwavf




























   

  

d

1i

N

1j

0k

N

1j

0jjkjjijkj

)i(
H H

vwavwavxf

wi
new w0

new

MNN Activation function

 could use a discontinuous activation function

 knetf









01
01

k

k

netif
netif

 However, we will use
gradient descent for
learning, so we need to
use a continuous
activation function

sigmoid function

 From now on, assume f is a differentiable function

 Network have two modes of operation:

 Feedforward
 The feedforward operations consists of presenting a

pattern to the input units and passing (or feeding) the
signals through the network in order to get outputs
units (no cycles!)

 Learning
 The supervised learning consists of presenting an

input pattern and modifying the network parameters
(weights) to reduce distances between the computed
output and the desired output

MNN: Modes of Operation

MNN

 Can vary

 number of hidden layers

 Nonlinear activation function

 Can use different function for hidden and
output layers

 Can use different function at each hidden
and output node

MNN: Class Representation

 Training samples x1 ,…, xn each of class 1,…,m

 Let network output z represent class c as target t(c)

 









































0

1

01








c

m

c t

z

z

z

z
c th row

sample of class c MNN with weights

wji and vkj

t(c)

Our Ultimate Goal For FeedForward Operation

Modify (learn) MNN parameters wji and vkj so that for
each training sample of class c MNN output z = t(c)

MNN training to achieve the Ultimate Goal

Network Training (learning)

MNN with weights

wji and vkj

input sample xp

choose p

1. Initialize weights wji and vkj randomly but not to 0

2. Iterate until a stopping criterion is reached

Compare output z with the
desired target t; adjust wji and
vkj to move closer to the goal
t (by backpropagation)

output















mz

z
z 

1

 Learn wji and vkj by minimizing the training error

 What is the training error?

 Suppose the output of MNN for sample x is z and

the target (desired output for x) is t

BackPropagation

      
 


n

i

m

c

i

c

i

c ztvwJ
1 1

2

2

1
, Training error:

 Use gradient descent:
      t

w

tt wJww  1

   
00 ,wv random

repeat until convergence:

      t

v

tt vJvv  1

   



m

c

cc ztvwJ
1

2

2

1
, Error on one sample:

 For simplicity, first take training error for one

sample xi

BackPropagation

   



m

c

cc ztvwJ
1

2

2

1
,

 Need to compute

1. partial derivative w.r.t. hidden-to-output weights
kjv

J





2. partial derivative w.r.t. input-to-hidden weights
jiw

J





 























  

 

HN

j

k

d

i

j

i

jikjk vwxwfvfz
1

0

1

0

fixed constant

function of w,v

BackPropagation: Layered Model

 





d

i

jji

i

j wwxnet
1

0

activation at
 hidden unit j

 jj netfy output at
hidden unit j





HN

j

kkjjk vvynet
1

0

*activation at
output unit k

 *

kk netfz 
activation at
output unit k

   



m

c

cc ztvwJ
1

2

2

1
,objective function

kjv

J





c
h

a
in

 r
u

le

jiw

J





c
h

a
in

 r
u

le

BackPropagation

   



m

c

cc ztvwJ
1

2

2

1
, *

kk netfz 



HN

j

kkjjk vvynet
1

0






kjv

J

 
kj

k

k

k
kk

v

net

net

z
zt










*

*

 





m

c

cc

kj

zt
v1

2

2

1    








m

c

cc

kj

cc zt
v

zt
1

   kk

kj

kk zt
v

zt 



    k

kj

kk z
v

zt





   
   









0'

0'
*

*

jifnetfzt

jifynetfzt

kkk

jkkk

kjv

J




 First compute hidden-to-output derivatives

*

BackPropagation

Gradient Descent Single Sample Update Rule for

hidden-to-output weights vkj

        jkkk

t

kj

t

kj ynetfztvv *1 ' 

       *

0

1

0 ' kkk

t

k

t

k netfztvv  

j > 0:

j = 0 (bias weight):

BackPropagation

 Now compute input-to-hidden
jiw

J





   



m

c

cc ztvwJ
1

2

2

1
,

 *

kk netfz 





HN

s

kkssk vvynet
1

0

*

 jj netfy 

 



d

h

hhi

i

h wwxnet
1

0




jiw

J
   









m

k

kk

ji

kk zt
w

zt
1

 
ji

k
m

k k

k
kk

w

net

net

z
zt








 



*

1
*

 
 




m

k ji

k
kk

w

z
zt

1

   
ji

j

j

k
m

k

kkk
w

y

y

net
netfzt








 



*

1

*

   
ji

j

j

j

kj

m

k

kkk
w

net

net

y
vnetfzt








 

1

*

       

     

























0

0

1

*

1

*

iifnetfvnetfzt

iifxnetfvnetfzt

jkj

m

k

kkk

i

jkj

m

k

kkk

BackPropagation

Gradient Descent Single Sample Update Rule for

input-to-hidden weights wji

            kj

m

k

kkk

i

j

t

ji

t

ji vnetfztxnetfww 


 
1

*1 

          kj

m

k

kkkj

t

j

t

j vnetfztnetfww 


 
1

*

0

1

0 

i > 0:

i = 0 (bias weight):

       

     

























0

0

1

*

1

*

iifvnetfztnetf

iifvnetfztxnetf

kj

m

k

kkkj

kj

m

k

kkk

i

j

jiw

J





(t)

(t)

BackPropagation of Errors

       
kj

m

k

kkk

i

j

ji

vnetfztxnetf
w

J









1

*    
jkkk

kj

ynetfzt
v

J *'




 Name “backpropagation” because during training,
errors propagated back from output to hidden layer

error

z1

zm

unit j
unit i

BackPropagation

 Consider update rule for hidden-to-output weights:
        jkkk

t

kj

t

kj ynetfztvv *1 ' 

 Suppose 0 kk zt

kk zt  Then output of the k th hidden unit is too small:

 Typically activation function f is s.t. f ’ > 0

 Thus     0' *  kkk netfzt

 There are 2 cases:
0jy1. , then to increase zk, should increase weight vkj

zk
yj

    0' *  jkkk ynetfztwhich is exactly what we do since

0jy2. , then to increase zk, should decrease weight vkj

    0' *  jkkk ynetfztwhich is exactly what we do since

BackPropagation

 The case is analogous

 Similarly, can show that input-to-hidden weights

make sense

0 kk zt

       
kj

m

k

kkk

i

j

ji

vnetfztxnetf
w

J









1

*

 Important: weights should be initialized to random

nonzero numbers

 if vkj = 0, input-to-hidden weights wji never updated

Training Protocols

 How to present samples in training set and update
the weights?

 Three major training protocols:

1. Stochastic

 Patterns are chosen randomly from the training set,

and network weights are updated after every sample

presentation

2. Batch

 weights are update based on all samples; iterate

weight update

3. Online

 each sample is presented only once, weight update

after each sample presentation

Stochastic Back Propagation

1. Initialize
 number of hidden layers nH
 weights w, v
 convergence criterion q and learning rate 
 time t = 0

2. do
 x f randomly chosen training pattern

    jkkkkjkj ynetfztvv *' 

   *

00 ' kkkkk netfztvv  

        kj

m

k

kkk

i

jjiji vnetfztxnetfww 



1

*

      kj

m

k

kkkjjj vnetfztnetfww 



1

*

00 

for all mknjdi H  0,0,0

t = t + 1
until q|||| J

3. return v, w

already derived this

Batch Back Propagation
 This is the true gradient descent, (unlike stochastic

propagation)

 The full objective function:

      
 


n

i

m

c

i

c

i

c ztvwJ
1 1

2

2

1
,

 For simplicity, derived backpropagation for a
single sample objective function:

   



m

c

cc ztvwJ
1

2

2

1
,

       
 


















 n

i

m

c

i

c

i

c zt
w

vwJ
w 1 1

2

2

1
,

 Derivative of full objective function is just a sum
of derivatives for each sample:

Batch Back Propagation

        
 




 n

p

kj

m

k

kkk

i

pj

ji

vnetfztxnetf
w

J

1 1

*

 For example,

Batch Back Propagation

1. Initialize nH , w, v , q ,  , t = 0
2. do

    j

*

kkkkjkj ynet'fztvv  

   *

00 ' kkkkk netfztvv  

        kj

m

1k

*

kkk

i

pjjiji vnetfztxnetfww 


 

      kj

m

1k

*

kkkj0j0j vnetfztnetfww 


 

for all np1

t = t + 1
until q|||| J

3. return v, w

for all mknjdi H  0,0,0

000  jjikkj wwvv

000000 ;;; jjjjijijikkkkjkjkj wwwwwwvvvvvv 

o
n

e
 e

p
o

c
h

Training Protocols

1. Batch

 True gradient descent

2. Stochastic

 Faster than batch method

 Usually the recommended way

3. Online

 Used when number of samples is so large it does not

fit in the memory

 Dependent on the order of sample presentation

 Should be avoided when possible

MNN Training

training time

Large training
error: in the
beginning random
decision regions

Small training
error: decision
regions improve
with time

Zero training
error: decision
regions separate
training data
perfectly, but we
overfited the
network

MNN Learning Curves

 Training data: data on which learning (gradient descent for
MNN) is performed

 Validation data: used to assess network generalization

capabilities

training time
c

la
s

s
if

ic
a

ti
o

n
 e

rr
o

r

 Training error typically

goes down, since with

enough hidden units, can

find discriminant function

which classifies training

patterns exactly

 Validation error first goes down, but then goes up since at

some point we start to overfit the network to the validation

data

Learning Curves

training time

c
la

s
s

if
ic

a
ti

o
n

 e
rr

o
r

 this is a good time to stop training, since after this time we

start to overfit

 Stopping criterion is part of training phase, thus validation

data is part of the training data

 To assess how the network will work on the unseen

examples, we still need test data

Learning Curves

 validation data is used to

determine “parameters”, in

this case when learning

should stop

 Stop training after the first local minimum on validation data

 We are assuming performance on test data will be similar to
performance on validation data

stop training

Data Sets

 Training data

 data on which learning is performed

 Validation data

 validation data is used to determine any free

parameters of the classifier

 k in the knn neighbor classifier

 h for parzen windows

 number of hidden layers in the MNN

 etc

 Test data

 used to assess network generalization capabilities

MNN as Nonlinear Mapping

x(1)

x(2)

x(d)

z1

zm

this module implements
linear classifier (Perceptron)

this module implements

nonlinear input mapping j

MNN as Nonlinear Mapping

 Thus MNN can be thought as learning 2 things at

the same time

 the nonlinear mapping of the inputs

 linear classifier of the nonlinearly mapped inputs

MNN as Nonlinear Mapping

original feature space
x; patterns are not
linearly separable

MNN finds nonlinear
mapping y=j(x) to 2
dimensions (2 hidden

units); patterns are
almost linearly

separable

MNN finds nonlinear
mapping y=j(x) to 3
dimensions (3 hidden

units) that; patterns are
linearly separable

Concluding Remarks

 Advantages

 MNN can learn complex mappings from inputs to

outputs, based only on the training samples

 Easy to use

 Easy to incorporate a lot of heuristics

 Disadvantages

 It is a “black box”, that is difficult to analyze and predict

its behavior

 May take a long time to train

 May get trapped in a bad local minima

 A lot of “tricks” to implement for the best performance

