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Brain vs. Computer 

 Designed to solve logic and 

arithmetic problems 

 Can solve a gazillion 

arithmetic and logic problems 

in an hour 

 absolute precision 

 Usually one very fast procesor 

 high reliability 

 

 Evolved (in a large part) 

for pattern recognition 

 Can solve a gazillion of 

PR problems in an hour 

 Huge number of parallel 

but relatively slow and 

unreliable processors 

 not perfectly precise 

 not perfectly reliable 

Seek an inspiration from human brain for PR? 



Neuron: Basic Brain Processor 

 Neurons are nerve cells that transmit signals to and from 

brains at the speed of around 200mph 

 Each neuron cell communicates to anywhere from 1000 to 

10,000 other neurons, muscle cells, glands, so on 

 Have around 1010 neurons in our brain (network of 

neurons) 

 Most neurons a person is ever going to have are already 

present at birth 



Neuron: Basic Brain Processor 

nucleus 

cell body 

axon 

dendrites 

 Main components of a neuron 

 Cell body which holds DNA information in nucleus 

 Dendrites may have thousands of dendrites, usually short 

 axon long structure, which splits in possibly thousands branches at 

the end. May be up to 1 meter long  



Neuron in Action (simplified) 

 Input : neuron collects signals from other neurons 
through dendrites, may have thousands of dendrites 

 Processor: Signals are accumulated and 
processed by the cell body 

 Output: If the strength of incoming signals is large 
enough, the cell body sends a signal (a spike of 
electrical activity) to the axon 

neuron  

body 
axon 



Neural Network 



ANN History: Birth 

 1943, famous paper by W. McCulloch 
(neurophysiologist)  and W. Pitts (mathematician)  

 Using only math and algorithms, constructed a model 
of how neural network may work 

 Showed it is possible to construct any computable 
function with their network 

 Was it possible to make a model of thoughts of a 
human being? 

 Considered to be the birth of AI 

 1949,  D. Hebb, introduced the first (purely 
pshychological) theory of learning 

 Brain learns at tasks through life, thereby it goes 
through tremendous changes 

 If two neurons fire together, they strengthen each 
other’s responses and are likely to fire together in the 
future 



ANN History: First Successes 

 1958, F. Rosenblatt,  
 perceptron, oldest neural network still in use today 

 Algorithm to train the perceptron network (training is 
still the most actively researched area today) 

 Built in hardware 

 Proved convergence in linearly separable case 

 1959, B. Widrow and M. Hoff  

 Madaline 

 First ANN applied to real problem (eliminate echoes in 
phone lines) 

 Still in commercial use 



ANN History: Stagnation 

 Early success lead to a lot of claims which were not 
fulfilled 

 1969, M. Minsky and S. Pappert 
 Book “Perceptrons” 

 Proved that perceptrons can learn only linearly 
separable classes 

 In particular cannot learn very simple XOR function 

 Conjectured that multilayer neural networks also 
limited by linearly separable functions 

 No funding and almost no research (at least in 
North America)  in 1970’s as the result of 2 things 
above   



ANN History: Revival 
 Revival of ANN in 1980’s 

 1982, J. Hopfield 
 New kind of networks (Hopfield’s networks) 

 Bidirectional connections between neurons 

 Implements associative memory 

 1982 joint US-Japanese conference on ANN 
 US worries that it will stay behind 

 Many examples of mulitlayer NN appear 

 1982, discovery of backpropagation algorithm  
 Allows a network to learn not linearly separable 

classes 

 Discovered independently by  

1. Y. Lecunn 

2. D. Parker 

3. Rumelhart, Hinton, Williams 

 



ANN: Perceptron 

 Input and output layers 

 g(x) = wtx + w0 

 Limitation: can learn only linearly separable classes 



MNN: Feed Forward Operation 

input layer: 
d features 

x(1) 

x(2)  

x(d)  

bias unit 

hidden layer: output layer: 
m outputs, one for  

each class 

z1 

zm 

wji vkj 



MNN: Notation for Weights 

 Use wji to denote the weight between input unit i 
and hidden unit j  

x(i)  

wji 

hidden unit j input unit i 

wjix
(i)  yj  

 Use vkj to denote the weight between hidden unit j 
and output unit k  

vkj 

output unit k hidden unit j 

yj  
zk  vkjyj 



MNN: Notation for Activation 

 Use neti to denote the activation and hidden unit j  

hidden unit j 

yj  
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 Use net*k to denote the activation at output unit k  
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Discriminant Function 

 Discriminant function for class  k (the output of the 
k th output unit)  
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Discriminant Function 



Expressive Power of MNN 

 It can be shown that every continuous function 
from input to output can be implemented with 
enough hidden units, 1 hidden layer, and proper 
nonlinear activation functions  

 
 This is more of theoretical than practical interest 

 The proof is not constructive (does not tell us exactly 
how to construct the MNN) 

 Even if it were constructive, would be of no use since 
we do not know the desired function anyway, our goal 
is to learn it through the samples 

 But this result does give us confidence that we are on 
the right track  

 MNN is general enough to construct the correct 
decision boundaries, unlike the Perceptron 

 



MNN Activation function 
 Must be nonlinear for expressive power larger than 

that of perceptron 
 If use linear activation function at hidden layer, can 

only deal with linearly separable classes 

 Suppose at hidden unit j, h(u)=aj u 
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MNN Activation function 

 could use a discontinuous activation function 
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 However, we will use 
gradient descent for 
learning, so we need to 
use a continuous 
activation function 

sigmoid function 

 From now on, assume f  is a differentiable function 



 Network have two modes of operation: 

 

 Feedforward 
 The feedforward operations consists of presenting a 

pattern to the input units and passing (or feeding) the 
signals through the network in order to get outputs 
units (no cycles!) 

 

 Learning 
 The supervised learning consists of presenting an 

input pattern and modifying the network parameters 
(weights) to reduce distances between the computed 
output and the desired output 

MNN:  Modes of Operation 



MNN 

 Can vary 

 number of hidden layers 

 Nonlinear activation function 

 Can use different function for hidden and 
output layers 

 Can use different function at each hidden 
and output node 

 
 

 



MNN: Class Representation 

 Training samples x1 ,…, xn each of class 1,…,m  

 Let network output z represent  class c as target t(c)   
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Our Ultimate Goal For FeedForward Operation 

Modify (learn) MNN parameters wji and vkj  so that  for 
each training sample of class c MNN output z = t(c)   

MNN training to achieve the Ultimate Goal  



Network Training (learning) 

MNN with weights 

wji and vkj  

input sample xp 

choose p 

1. Initialize weights wji and vkj randomly but not to 0 

2. Iterate until a stopping criterion is reached 

Compare output z with the 
desired target t; adjust wji and 
vkj to move closer to the goal 
t (by backpropagation) 
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 Learn  wji and vkj by minimizing the training error 

 What is the training error? 

 Suppose the output of MNN for sample x is z and 

the target (desired output for x ) is t  

 

BackPropagation 
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, Training error:  

 Use gradient descent: 
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, Error on one sample:  



 For simplicity, first take training error for one 

sample xi  

BackPropagation 
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 Need to compute 

1. partial derivative w.r.t. hidden-to-output weights  
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BackPropagation: Layered Model 
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BackPropagation 

   



m

c

cc ztvwJ
1

2

2

1
, *

kk netfz 



HN

j

kkjjk vvynet
1

0






kjv

J

 
kj

k

k

k
kk

v

net

net

z
zt










*

*

 





m

c

cc

kj

zt
v1

2

2

1    








m

c

cc

kj

cc zt
v

zt
1

   kk

kj

kk zt
v

zt 



    k

kj

kk z
v

zt





   
   









0'

0'
*

*

jifnetfzt

jifynetfzt

kkk

jkkk

kjv

J




 First compute hidden-to-output derivatives 

* 



BackPropagation 

Gradient Descent Single Sample Update Rule for 

hidden-to-output weights vkj  
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BackPropagation 

 Now compute input-to-hidden 
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BackPropagation 

Gradient Descent Single Sample Update Rule for 

input-to-hidden weights wji  
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BackPropagation of Errors 
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errors propagated back from output to hidden layer 
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BackPropagation 

 Consider update rule for hidden-to-output weights: 
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BackPropagation 

 The case                    is analogous 

 Similarly, can show that input-to-hidden weights 

make sense 
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 Important:  weights should be initialized to random 

nonzero numbers 

 if vkj = 0, input-to-hidden weights wji never updated  



Training Protocols 

 How to present samples in training set and update 
the weights? 

 Three major training protocols: 

1. Stochastic 

 Patterns are chosen randomly from the training set, 

and network weights are updated after every sample 

presentation  

2. Batch 

 weights are update based on all samples; iterate 

weight update 

3. Online 

 each sample is presented only once, weight update 

after each sample presentation 



Stochastic Back Propagation 

1. Initialize 
 number of hidden layers nH 
 weights w, v  
 convergence criterion q and learning rate  
 time t = 0 

2. do 
 x f  randomly chosen training pattern 
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already derived this 

Batch Back Propagation 
 This is the true gradient descent, (unlike stochastic 

propagation) 

 The full objective function: 
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 For simplicity, derived backpropagation for a 
single sample objective function: 
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 Derivative of full objective function is just a sum 
of derivatives for each sample: 



Batch Back Propagation 
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 For example,  



Batch Back Propagation 

1. Initialize nH , w, v , q ,  , t = 0 
2. do 
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3. return  v, w 
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Training Protocols 

1. Batch 

 True gradient descent 

2. Stochastic 

 Faster than batch method 

 Usually the recommended way 

3. Online 

 Used when number of samples is so large it does not 

fit in the memory 

 Dependent on the order of sample presentation 

 Should be avoided when possible 



MNN Training 

training time 

Large training 
error: in the 
beginning random 
decision regions 

Small training 
error: decision 
regions improve 
with time 

Zero training 
error:  decision 
regions separate 
training data 
perfectly, but we 
overfited the 
network 



MNN Learning Curves 

 Training data: data on which learning (gradient descent for 
MNN) is performed 

 Validation data: used to assess network generalization 

capabilities 

training time 
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 Training error typically 

goes down, since with 

enough hidden units, can 

find discriminant function 

which classifies training 

patterns exactly 

 

 Validation error first goes down, but then goes up since at 

some point we start to overfit the network to the validation 

data 



Learning Curves 

training time 
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 this is a good time to stop training, since after this time we 

start to overfit 

 Stopping criterion is part of training phase, thus validation 

data is part of the training data 

 To assess how the network will work on the unseen 

examples, we still need test data 



Learning Curves 

 validation data is used to 

determine “parameters”, in 

this case when learning 

should stop 

 Stop training after the first local minimum on validation data 

 We are assuming performance on test data will be similar to 
performance on validation data   

 

stop training 



Data Sets 

 Training data 

  data on which learning is performed 

 Validation data 

 validation data is used to determine any free 

parameters of the classifier  

 k in the knn neighbor classifier 

 h for parzen windows 

 number of hidden layers in the MNN 

 etc 

 Test data 

 used to assess network generalization capabilities 



MNN as Nonlinear  Mapping  

x(1) 

x(2)  

x(d)  

z1 

zm 

this module implements 
linear classifier (Perceptron) 

this module implements 

nonlinear input mapping j  
 



MNN as Nonlinear  Mapping  

 Thus MNN can be thought as learning 2 things at 

the same time 

 the nonlinear mapping of the inputs 

 linear classifier of the nonlinearly mapped inputs 



MNN as Nonlinear  Mapping  

original feature space 
x; patterns are not 
linearly separable 

MNN finds nonlinear 
mapping y=j(x) to 2 
dimensions (2 hidden 

units); patterns are 
almost linearly 

separable 

MNN finds nonlinear 
mapping y=j(x) to 3 
dimensions (3 hidden 

units) that; patterns are 
linearly separable 



Concluding Remarks 

 Advantages 

 MNN can learn complex mappings from inputs to 

outputs, based only on the training samples 

 Easy to use 

 Easy to incorporate a lot of heuristics 

 Disadvantages 

 It is a “black box”, that is difficult to analyze and predict 

its behavior 

 May take a long time to train 

 May get trapped in a bad local minima 

 A lot of “tricks” to implement for the best performance 

 


