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Abstract

We address the problem of 2D-3D pose estimation in dif-
ficult viewing conditions, such as low illumination, cluttered
background, and large highlights and shadows that appear
on the object of interest. In such challenging conditions
conventional features used for establishing correspondence
are unreliable. We show that under the assumption of a
dominant light source, specular highlights produced by a
known object can be used to establish correspondence be-
tween its image and the 3D model, and to verify the hypoth-
esized pose. These ideas are incorporated in an efficient
method for pose estimation from a monocular image of an
object using only highlights produced by the object as its in-
put. The proposed method uses no knowledge of lighting di-
rection and no calibration object for estimating the lighting
in the scene. The evaluation of the method shows good ac-
curacy on numerous synthetic images and good robustness
on real images of complex, shiny objects, with shadows and
difficult backgrounds1.

1. Introduction

The focus of this paper is 2D-3D pose estimation of
shiny objects. We assume that we have a 3D model of the
object and the task is to find the pose of the object relative to
a calibrated camera from a single monocular image. Deter-
mining the pose means finding the 6 parameters of the 3D
translation and rotation, which align the projection of the
model with the input image.

Much work has been done on this topic for Lambertian
objects with prominent texture or shape features under sim-
ple lighting conditions, in which all parts of the object are
well illuminated (e.g, [16, 9, 20, 17, 31]). The assump-
tions used in these methods do not hold for an image of a
smooth, glossy, textureless object with highlights and shad-
ows, which is placed against a cluttered scene. Figure 1
shows examples of such images. In this work we make use

1The data base of specular objects from our experiments will be avail-
able on the web before CVPR 2011

Figure 1. Examples of typical inputs to the proposed pose estima-
tion algorithm, which are very challenging for the existing meth-
ods.

Figure 2. Left – the frontal view of the object with the frontal
light(that we render), right – unknown view of the object with un-
known light (that we get as an input). In both the highlights are
produced by the same surface patches and thus highlights undergo
affine transformation and could be used for establishing correspon-
dence.

of such challenging conditions as specular highlights pro-
duced by a known object, to extract information that can
assist in pose estimation when other cues are unreliable.
Specularities have several advantages over the conventional
features used for pose estimation. Highlights are easy to
detect even by simply thresholding the image. They are ro-
bust to changes in background, texture variation, and oc-
clusion of non-highlighted parts. In addition, they can be
used with transparent objects, where extracting contours or
similar features is very hard.

Previous methods that used specular cues for pose es-
timation required additional information about the scene,
such as environmental mapping obtained by a mirror ball

1



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#1662

CVPR
#1662

CVPR 2011 Submission #1662. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[8], known motion [8], polarization filters [3], and several
images of the scene with different camera settings [3]. If
such additional cues are unavailable, these methods cannot
be used.

We show that highlights produced by a surface patch in
images that differ by lighting and viewing directions, are re-
lated by an approximately affine transformation (Figure 2).
Based on this observation, we suggest to use specular high-
lights produced by a known, smooth, glossy object to estab-
lish correspondences between its image and the 3D model
without any knowledge of the scene except for the assump-
tion of the dominant light source (the direction of the light
is unknown). We use these correspondences to compute a
pose, and we verify it by measuring the similarity between
the specular highlights extracted from the input image and
the specularities predicted for the hypothesized pose using a
simple model of highlight formation proposed in [26]. Our
method allows to estimate pose from a monocular image
of an object using solely specular features if the image con-
tains at least three highlights. If the image contains only one
or two highlights, our approach can easily incorporate cor-
respondences obtained from other more conventional fea-
tures (contours, lines, etc.) for pose computation, while the
verification phase remains unchanged.

Our approach is advantageous over the previous work
on pose estimation of specular objects because it requires
only a single monocular image of the object and it can work
with shapes that are much more complex than those used
in previous works ([8, 3]). Also our method doesn’t re-
quire knowledge of the lighting direction in the scene, or
any calibration object (or procedure) for estimating it. The
proposed algorithm is based on correspondences, which is
much more efficient than a brute force search done by pre-
vious methods (e.g.,[8]).

The main limitation of our approach is the assumption of
the dominant light source. In practice, however, it is a rea-
sonable assumption for outdoor scenes. For indoor scenes,
which are illuminated by many sources or extended lights,
the object is well illuminated and even if it has highlights,
existing methods (e.g., contour based methods) could work
fairly well. Images taken with a directional light are poorly
illuminated and have large shadows, which present a severe
difficulty for the existing methods.

The experiments presented in this paper are performed
on synthetic and real objects. We constructed a data base of
real, complex objects which includes CAD models and im-
ages of these objects under variation of pose, background,
and illumination direction (including indoor and outdoor il-
lumination). This data set is much more diverse than those
used in previous papers. The experiments (see Section 5)
show good performance considering that our method uses
very little information about the scene and only few per-
cents of the input image – the highlights.

1.1. Related Work

Most of the work on specular objects has been concerned
with surface reconstruction [5, 6, 33, 25, 36]. Norman et.
al., [24] showed empirically that specular highlights provide
a significant aid in human perception of 3D shape. Never-
theless, due to the difficulty of the task, very little work has
been done on recognition of specular objects [32, 15, 26].
Recently, several methods have been proposed for detecting
specular surfaces in images [21, 12]. Specular highlights
reveal accurate local information about the shape of the ob-
ject. Thus a natural idea is to use them for alignment. This
idea was employed in [19], which showed very impressive
results. Only very recently specular highlights have been
used in pose estimation [8].

The literature concerned with 3D pose estimation is
extensive. One of the aspects that allows to distinguish
between various method for pose estimation is the type
of local image features they use to establish correspon-
dences, such as points, lines or segments (e.g.,[28, 2]),
curved shapes or their segments (e.g,[7]), and complete
contours (e.g.,[31]). A more recent development in pose
estimation uses regions in a global variational framework
(e.g.,[30, 11]). Fusion of several information channels was
suggested for pose estimation in [23, 3]. Using depth infor-
mation of the scene could greatly assist in solving the pose
problem, thus quite many methods use range images as an
input (e.g., [4], [14]).

Using specular cues for pose estimation was considered
in [3, 8]. The method presented in [3] incorporates differ-
ent channels of information. One of which is a polarization
angle of the light reflected from the object surface that pro-
vides information on the rotation of an object relative to
the camera. The data acquisition process for this method is
quite involved. It includes taking many images with differ-
ent shutter times to create a high dynamic range image, two
images for depth estimation, one with small aperture and
another with large, and it also needs a polarizer. Finally, all
parts in this method require calibration.

The work that is most relavant to ours [8] renders images
of highlights for every viewing direction using the environ-
mental mapping acquired by placing a mirror ball in the
scene. These images are used in a brute-force search for 5
pose parameters (distance to the camera is assumed known),
producing a rendering that most resembles the input image.
The pose is found by first searching for the best translation
for each orientation using a standard optimization with an
energy function based solely on highlights. The translation
is refined by removing the pixels with low elevation of in-
cident light (to reduce the effect of interreflections). The
rotation with minimal cost is chosen and then all 5 param-
eters are refined by maximizing the correlation of the input
and rendered intensity images (excluding pixels with low
elevation of light). The experiments presented in [8] are

2



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

CVPR
#1662

CVPR
#1662

CVPR 2011 Submission #1662. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

done on simple objects with complex illumination, which
strongly constrains the appearance of highlights. The same
work [8] proposes to use specular flow instead of an envi-
ronment map but still using a brute-force search. In order
to compute the specular flow they require angular motion of
far-field environment, which is also a limiting requirement.

2. Basic Approach
First we introduce the basic idea on a simplified case and

then we show that the same concept can be applied to gen-
eral objects under certain assumptions.

Let P define a planar, mirror-like patch in a 3D space
with normal ~N . Assume that the patch is illuminated by a
single, distant, compact light source and the distance to the
camera is large enough to assume weak perspective projec-
tion.
Claim 1: For each combination of viewing direction ~V and
light direction ~L that produce specular reflection on P , there
exists another viewing direction ~V ′ and light direction ~L′

such that ~L′ = ~V ′, for which P remains specular ( ~N =
~L′ = ~V ′). The proof follows immediately from the standard
models of specular reflection [10, 37, 27].
Claim 2: Let p be an image of P corresponding to illumi-
nation direction ~L and viewing direction ~V , for which ~N is
a bisector of the angle between ~L and ~V . Let p′ be an image
of P corresponding to illumination direction ~L′ and view-
ing direction ~V ′, such that ~L′ = ~V ′ = ~N . Then p and p′ are
related by an affine transformation. (Under the assumption
of weak perspective projection the proof is trivial.)

Now consider a 3D smooth object with a specular but
non-mirror reflectance, which is illuminated by a single,
distant, compact light source. According to most models
of specular reflection [27, 10, 37, 22], a ray of light reach-
ing a shiny surface is reflected as a narrow beam of rays.
The brightest direction of reflection ~R will lay at the plane
formed by the original ray of light ~L and the normal at the
point of impact ~N and will form an angle defined by ~L · ~N
relative to ~N , on that plane. The intensity of the reflected
rays decays as they deviate from ~R. The rate of decay is de-
termined by the shininess of the surface. According to the
well known Phong model [27], the intensity of a reflected
ray in direction ~V is proportional to (~V · ~R)α, where α de-
notes the shininess of the surface. We further simplify the
model by assigning only binary intensity values: the inten-
sity at a point with normal ~N ′ is set to 1 if ~N ′ · ~N > t and is
set to 0 otherwise. The threshold t depends on the shininess
of the material and is clearly related to α. For high values of
t the highlighted part of the surface can be approximated by
a planar patch with orientation corresponding to the normal
~N . Under this assumption, we can extend Claims 1 and 2
to a 3D surface:
Claim 3: Under the assumption of the dominant light
source, a 3D patch of a smooth, specular, non-mirror object

that appears highlighted in an image with unknown illumi-
nation and pose will also appear highlighted in an image for
which ~L = ~V = ~N (~L and ~V are the light and the viewing
directions and ~N is the central normal), and these highlights
are related by an approximately affine transformation.
Corollary:Knowing the specular properties of the object al-
lows us to render highlights for every surface normal such
that ~L = ~V = ~N . Given this set, we can relate a highlight
in an image with unknown pose and illumination direction
to the surface patch that produced it by applying an affine
invariant matching between the real highlight and the ren-
dered ones.

As we will soon elaborate, the matching between a high-
light from an unknown view to the patch that produced it,
can be done efficiently. We can then assume that the cen-
troid of the highlight in the image and the centroid of the
corresponding 3D patch is approximately the same point.
Consequently, we can use its 2D coordinates in the image
and its 3D coordinates in the model as a correspondence
pair. Having three such pairs is theoretically enough to com-
pute the pose parameters. Since we only use a single point
from a highlight for establishing the correspondence – the
centroid, we need at least three highlights in the image for
finding the pose solely from specularities. However, if other
cues are available (prominent shape or texture features), we
can easily integrate the correspondences obtained from dif-
ferent sources to find the candidate pose. We show later
that the verification of the pose uses only specularities and
it has no limitation on the number of highlights (even a sin-
gle highlight could suffice).

An efficient way of matching between a highlight in an
image with unknown lighting and pose and a 3D patch that
produced it, includes the following steps. During the offline
stage we first render highlights as viewed from each point
on the viewing sphere (according to some tessellation) for
the special case in which the lighting direction coincides
with the viewing direction. We then compute the affine in-
variant descriptors of the rendered highlights for every view
(affine invariants are computed for each highlight separately
since the highlights that have different depth do not lie in the
same plane) and store them indexed by the viewing direc-
tion. Given an input image, we compute the affine invariant
descriptors of the highlights in that image and search for
a candidate view by matching the invariants in the given
image to the pre-computed invariants of the rendered high-
lights (according to Claim 3).

Matching all highlights that appear in a view as a set,
as opposed to matching each highlight individually, has its
positive and negative sides. The positive side is that match-
ing a set of highlights has lower chance to false matches
compared to matching an individual highlight; and it’s com-
putationally more efficient. The negative side is that a ren-
dered view and an input image could have different number
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of highlights due to self occlusions. To solve this problem,
our matching procedure allows for unmatched highlights
(See Section 4).

We choose a portion of candidate views that best match
the invariants computed from the input image. For each can-
didate view we extract the correspondences and compute a
hypothesized pose. We choose the pose with highest verifi-
cation score (see step 5 in Section 4) among the candidate
poses. The exact number of candidate views needed for cor-
rect pose estimation depends on the object. If the object has
very complex shape and most of its local parts differ one
from another, the highlights are distinctive enough and the
number of candidates could be rather small. For more sym-
metric objects, the number of candidate matches could be
high. Nevertheless, our method remains efficient. First, be-
cause we match sets of highlights instead of individual high-
lights, which decreases the number of false matches. Sec-
ond, for every candidate view we apply polynomial match-
ing (See Section 4) in order to establish correspondence be-
tween the highlights in this view to the highlights in the im-
age, and compute a single hypothesized pose for the view
(which is much more efficient than computing pose for all
possible correspondences of the highlights).

2.1. Pose from correspondences

Since specular highlights are sparse, we need a method
that works with a minimal number of correspondences. We
therefore employ the method from [1], since it is compu-
tationally efficient and needs only 3 correspondences. In
practice, there are not many cases in which there are more
than 3 significant highlights. In such cases, we run this al-
gorithm on all possible triplets of correspondences, and take
the correspondence which gives the lowest error on the rest
of the points.

2.2. Affine invariants

Our method uses affine invariants for finding correspon-
dence between the highlights in the image and the set of
3D points that produced the highlight. Much work has been
done on affine invariants and their use in computer vision.
A survey of this work is beyond the scope of the paper.
We chose Affine Moment Invariants [13, 35] due to com-
putational efficiency and low storage requirements. Given
a binary image of a highlight, cropped from the image of
the object, we construct the 17 independent invariants up to
weight 8 as polynomials in the central moments of the im-
age. We then combine them into a single vector and use it
as an affine invariant descriptor of the highlight.

3. Pose Estimation Algorithm

Computing and storing affine invariant descriptors for
every direction on the viewing sphere is the most compu-

tationally expensive part of the proposed method. Fortu-
nately, it can be done in a preprocessing phase.

3.1. Offline stage

Given a 3D model of an object, we define a set of unit
vectors { ~Ni} which is a subset of the object’s normals ac-
cording to a certain tessellation. For each ~Ni we perform
the following steps:
Step 1. We set ~V = ~L = ~Ni (~V is the viewing and ~L
is lighting directions), meaning that ~Ni is the center of the
specular beam. We render a binary image Bi of the object
from the viewing direction ~V according to the model intro-
duced in Section 2: the intensity of a pixel is set to one if
the dot product between its normal and ~Ni is larger than a
predefined threshold t , otherwise the intensity is set to zero.
Step 2. We locate significant highlights in Bi by finding the
connected components and removing very small ones, since
their affine invariants are unstable due to discretization.
Step 3. We compute an affine invariant descriptor [13, 35]
for every significant highlight in Bi, along with the 3D cen-
troid of the surface points that produced it. The descriptors
and 3D centroids are stored for each normal ~Ni.

4. Online stage
During the online stage we are presented with an image

denoted by I .
Step 1. We extract specular highlights in I . We do it by first
applying a high threshold on I , and then a low threshold but
selecting only the highlights which intersect with those that
passed the high threshold (Figure 3). This method worked
well in all our tests because it extracted the entire highlight
and not only the saturated pixels2. It can be replaced, how-
ever, with any other method for highlight segmentation. Let
BI denote the binary image of the highlights. Next we de-
termine the significant highlights in BI as was explained in
Step 2 in Section 3.1.
Step 2. For each significant highlight in BI we calculate
the affine invariant descriptor [13, 35] and the 2D centroid.
Now I is represented by a set of (centroid, descriptor) pairs.
The size of the set is equal to the number of significant high-
lights in BI .
Step 3. In this step we find correspondences between the
highlights in I and the 3D model. Specifically, we find a
set of candidate views that best match the highlights in I .
To this end for each viewing direction according to the tes-
sellation, we construct a full bi-partite graph in which one
side corresponds to the highlights in I and the other to the
highlights stored for that view. The weights on the edges
are the Euclidian distances between the descriptors. We use

2If the dynamic range of the input image is low and there are parts of
the background that have the same intensities as the highlights, we could
apply the same heuristic but using two images of the scene with short and
long shutter speeds.
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Figure 3. Step 1 and 5 of the online stage. Top row, left to right: a given image with unknown pose and lighting, high threshold binary
image, low threshold binary image, highlights from low threshold which intersect with those that passed the high threshold; Bottom row,
left to write: correct hypothesized pose, initial overlap for correct pose (threshold highlights are shown in red, rendered highlights are
shown in green, the overlap between the two are shown in yellow), refined overlap (using the Gaussian sphere), incorrect hypothesized
pose and the corresponding overlap. (This figure is best viewed in color.)

Hungarian algorithm [18] to find the best maximum match.
Matching also relates between the 2D centroids of the high-
lights in I and the 3D centroids of the surface points, which
provides the 2D-3D correspondence needed for the pose es-
timation algorithm. Next we choose up to K views, with
matching score higher than a predefined threshold, as candi-
dates for the correct correspondence (the matching score is
computed as minus average distance between the descrip-
tors of the matched highlights). The threshold and K are
chosen empirically. The number of significant highlights in
every view is small, which makes the matching very fast.
Step 4. For each candidate correspondence, we find the
pose as shown in section 2.1.
Step 5. We run a verification process on each pose, obtained
by Step 4. The hypothesized pose allows us to match im-
age pixels to corresponding surface normals on the model.
We map each pixel in BI to a point on a Gaussian sphere
having the same surface normal, while giving different col-
ors to specular and non-specular pixels. According to the
model introduced in [26], if the pose is correct, the normals
corresponding to the specular pixels must form a cap on a
Gaussian sphere and the size of the cap is determined by the
material properties of the object. Since these are known, we
could adjust the coloring on the sphere such that the spec-
ular normals form a cap of the correct size. The size of the
cap can be controlled by t, which is the threshold on the dot
product between the central normal and the most peripheral
normal within the cap. In practice, we search for a normal
~v′, for which the set of specular normals {~v | ~v · ~v′ > t} is
the largest. We choose ~v′ to be the center of the cap and set
all normals ~v satisfying ~v · ~v′ > t to be specular. The up-
dated coloring is then mapped back to the image plane and
compared with BI . This process relies on the fact that if the
hypothesized pose is correct, the updated highlights will be
similar to the original, but if the hypothesized pose is wrong
the updated highlights will be inconsistent with the original
(Figure 3). The overlap measure used in [26] is not robust to

small shifts, caused by the errors in pose. Thus we applied a
robust variant of Hausdorff measure [34] to compare the bi-
nary images: H(BI , B

′
I) = h(BI , B

′
I)+h(B′

I , BI), where
B′

I is the binary image of highlights mapped back from the
Gaussian sphere and

h(A, B) =
1
|A|

∑

a∈A

min{α, min
b∈B

‖a− b‖}

where |A| is the number of non-zero pixels in A and α is
a constant, depending on the size of the image (choosen
empirically).
Step 6. (Optional) We found that running an optimization
of the verification function, with the hypothesized pose as
a starting point is helpful for refining the pose. We take S
hypothesized poses with the best verification score and run
a standard routine for constrained non-linear optimization
[29] using these poses as starting points. The pose that pro-
duces the best score (after optimization) is the output of the
algorithm3.

5. Experiments
We start by providing the implementation details and

then show the results on real and synthetic objects.

5.1. Implementation Details

In all our experiments we used 3D models available on
the Web 4. The 3D models were centered, bound to the unit
sphere in size, and remeshed to have between 50, 000 and
100, 000 faces. Processing of the models was done using
MeshLab 5.

For the offline stage of the algorithm, the rendering of
highlights was done at a resolution of 1024 × 1024. Both

3due to running time constraints we do not run the optimization for
every hypothesized pose; in our experiments we set S = 3

4See http://shapes.aim-at-shape.net/
5See http://meshlab.sourceforge.net/
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Av.Success 71 80 90 70 85 85 70 70 100 85 90
Rate Synth. (%)

Av. Transl. 0.028 0.013 0.015 0.010 0.012 0.017 0.026 0.016 0.012 0.020 0.011
Error Synth.
Av. Rotation 4.72 3.09 2.96 4.35 2.82 2.85 4.64 4.35 2.30 4.09 1.64

Error (deg.) Synth.

Av.Success 69 78 87 70 69 69 54 55 80 77 54
Rate Real (%)

Av. Transl. 0.077 0.073 0.039 0.051 0.032 0.036 0.067 0.104 0.078 0.060 0.037
Error Real

Av. Rotation 11.85 11.028 8.39 8.55 5.40 3.87 8.67 9.81 9.40 6.15 9.57
Error (deg.) Real

Table 1. Pose estimation results. The top three rows correspond to the synthetic set (total 220 poses). The bottom three rows correspond to
real outdoor set (total 156 poses). The units of the translation error are relative to the object size.

synthetic and real input images were of the same resolution.
For the verification step (see step 5 in Section 4), rendering
of mapped-back highlights was done at a resolution of 256×
256.

The algorithm was implemented mostly in MATLAB
and partly in Java for the OpenGL renderings. The aver-
age (online) running time of the algorithm was around 60
seconds, which could be significantly improved by more ef-
ficient implementation and also by parallelization, which is
possible during most stages of the algorithm.
Determining t: In order to find t for a given object we use
the 3D model of the object and its image in a known pose.
We segment the highlights by applying the method used in
the online stage (step 1, Section 4). We then map the pixels
within the highlights to the points on the Gaussian sphere
having the same surface normal. According to the model
from [26] the specular points of the sphere must form a cap,
which we find using the algorithm from [26]. We set t to the
value of the dot product between the normal in the center of
the cap and the most peripheral normal within the cap.

5.2. Synthetic images

We have tested our algorithm on 11 complex objects,
with different levels of shininess. Table 1 shows the im-
ages of the objects with their selected levels of shininess.
For each object, we have generated 20 random poses, re-
stricting them to have at least three highlights.

The output of the algorithm was evaluated separately for
translation error and rotation error. Denote the true transla-
tion vector as τ and rotation matrix that corresponds to the
true rotation angles as R. Denote the corresponding output
of the algorithm as τ̃ and R̃. The translation error is de-
fined as ||τ − τ̃ ||. The rotation error is defined as the angle
that corresponds to the axis-angle representation of the ro-

tation matrix that brings from R to R̃. A successful output
pose was considered a pose whose translation error is less
than 0.08 (in units, relative to the object size) and rotation
error is less than 20 degrees (which is roughly equivalent
to 10 degrees error for all 3 Euler angles). Table 1 shows
the average success rates for each of the 11 objects and the
average translation and rotation errors for successful output
poses.

5.3. Real Images

We used 3D models from the synthetic experiment to
create real objects using 3D printing technology that allows
to produce objects from a CAD model with relatively high
accuracy. These objects were painted with a glossy paint,
which produces specular effects. We colored all the ob-
jects with the same uniform color, since textureless objects
are more challenging for pose estimation and recognition in
general. Our method gains no advantage from the uniform
color and doesn’t make any assumptions about the texture of
the objects. We constructed a data set from 237 real images,
divided into two subsets: outdoor and indoor. The number
of poses for each object corresponds to the number of im-
ages of that object. The outdoor set contains 157 images
of all 11 objects against black background. The variation
in light direction in these images are due to sun movement,
and thus is not very large. The indoor subset contains 80
images of 5 objects: cow, mouse, fertility, gargoyle, and
frog. The photos were taken against both plain and cluttered
backgrounds and include large variation in illumination di-
rection.

We manually labeled 2D-3D correspondences for the
outdoor set, and used them to compute poses. Since the
objects are smooth and textureless our manual correspon-
dences are not exact, and thus the pose computed using
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Figure 4. Examples of the pose estimation results on real indoor
images. The white contour corresponds to the occluding contour
of the object in the estimated pose. The two images in the bottom
right corner show the failure cases.

Success(%) 85 61 58 50 59
Table 2. Average success rate of the pose estimation on the indoor
real subset.

these correspondences cannot be considered as the ground
truth. However, they are accurate enough for evaluating the
automatic algorithm for pose estimation. Table 1 reports the
results in the same format as in Section 5.2 using the man-
ual poses as true poses. We do not have manual labeling for
the indoor set. Thus we classified the output of the proposed
method as success of failure by visually comparing an im-
age, rendered with the computed pose to the corresponding
real images. Table 2 shows the success rates for the in-
door set. The average recognition rate over all real images
is 67.5%. Note that according to our definition of success
(See Section 5.2) the probability of a randomly chosen pose
to be considered correct is much less than 1%.

6. Conclusions
In this work we addressed a challenging task of pose es-

timation in difficult viewing conditions, in which conven-
tional features for establishing 2D-3D correspondence are
unreliable. We showed that for shiny objects under the as-
sumption of a dominant lights source, specular highlights

could be used as a pose invariant features. We developed
a pose estimation algorithm that relies solely on highlights
and doesn’t require the knowledge of lighting. The pro-
posed method showed good results in evaluation that in-
cluded synthetic and real images.

There are parts of the algorithm that could be further op-
timized, for instance, the search of the best matching views
is linear in the number of samples on the viewing sphere.
Reducing the number of viewing directions could results in
errors in pose estimation. A possible solution is to use non-
uniform tessellation, which is sparser on smooth parts of the
object and denser in areas of high curvature. We plan to ex-
plore this and other optimizations in future work in order to
use the proposed method for recognition. We also plan to
extend the proposed approach to more general illumination
and integrate other cues for correspondence such as promi-
nent texture and shape features.
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