Object Recognition

Seminar Rita Osadchy

So what does object recognition involve?

Verification: is that a bus?

Detection: locate the cars in the image

Verification: is that a picture of Mao?

Object categorization

Challenges 1: view point variation

Challenges 2: illumination

slide credit: S. Ullman

Challenges 3: occlusion

Magritte, 1957

Challenges 4: scale

MARCHINES DR

Challenges 5: deformation

Xu, Beihong 1943

Challenges 7: intra-class variation

Recognition Steps

Object Recognition System

How to design a PR system?

Collect data and classify by hand

Preprocess by segmenting fish from background

- Extract possibly discriminating features
 - Iength, lightness,width,number of fins,etc.
- Classifier design
 - Choose model
 - Train classifier on part of collected data (training data)
- Test classifier on the rest of collected data (test data) i.e. the data not used for training
 - Should classify new data (new fish images) well

Interest Point Detectors

- Basic requirements:
 - Sparse

Lecture 3

- Informative
- Repeatable
- Invariance
 - Rotation
 - Scale (Similarity)
 - Affine

Recognizing Specific Objects

Learned models of local features, and got object outline from

Objects may then be found under occlusion and 3D rotation

Bag of Features

Bag of Features

Pros: fairly flexible and computationally efficient

Cons: problems with large clutter

Different objects, but Similar representations;

Similar objects, different representations;

Lecture 3 Beyond Bags of Features

• Computing bags of features on subwindows of the whole image.

Convolutional Neural Networks

- Learn all in one deep architecture:
 - low level features
 - high level representations
 - context

Lecture 4

- classifiers
- Efficient Classification
- Efficient Detection
- Scalable to very large sets and large number of categories

Convolutional Neural Networks

Very Deep Networks

Very Deep Networks

- K. Simonyan and A. Zisserman Very Deep Convolutional Networks for Large-Scale Image Recognition
- K. He, X. Zhang, S. Ren, and J. Sun: Deep Residual Learning for Image Recognition

Detection

Apply classifier at Scale / position range to search over

Detection

Detection

– Combine detection over space and scale.

Deep Learning in Object Detection

R-CNN: Regions with CNN features

Rich feature hierarchies for accurate object detection and semantic segmentation. R. Girshick et al.

Faster R-CNN

Faster R-CNN is a single, unified network for object detection. The RPN module serves as the 'attention' of this unified network. **Transfer Learning**

Transfer learning: idea

Lecture 6

J. Donahue et.al. DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition.

One Shot Learning

Lecture 6

	(\bullet)	same	"cow" (speaker #1)	"cow" (speaker #2)	same
		different	"cow" (speaker #1)	"cat" (speaker #2)	different
- SAV	IN STATE	same	"can" (speaker #1)	"can" (speaker #2)	same
IN		different	"can" (speaker #1)	"cab" (speaker #2)	different

Verification tasks (training)

G. Koch, R. Zemel, and R. Salakhutdinov Siamese Neural Networks for One-shot Image Recognition

Few-Shot Learning

Prototypical Networks

Lecture 6

$$p_{\phi}(y = k | \mathbf{x}) = \frac{\exp(-d(f_{\phi}(\mathbf{x}), \mathbf{c}_k))}{\sum_{k'} \exp(-d(f_{\phi}(\mathbf{x}), \mathbf{c}_{k'}))}$$
$$\mathbf{c}_k = \frac{1}{|S_k|} \sum_{(\mathbf{x}_i, y_i) \in S_k} f_{\phi}(\mathbf{x}_i)$$
$$S_k = \{(\mathbf{x}_i, y_i) | y_i = k, (\mathbf{x}_i, y_i) \in D_{train}\}$$
$$\phi \equiv \Theta$$

- Maps examples to embedding such that examples of a given class are close together
- Calculates a prototype (mean vector) for every class
- Maps test instances to the same embedding
- Uses softmax over distance to prototype for label prediction

Prototypical Networks for Few-shot Learning (2017) Jake Snell, Kevin Swersky, Richard S. Zemel

Describing Objects with Attributes

Shift the goal of recognition from naming to describing

-	-	+	100	
\sim	E	Τ.		- E
~	~~	-	~	-

Lecture 7

black:	yes
white:	no
brown:	yes
stripes:	no
water:	yes
eats fish:	yes

polar bear	
black:	no
white:	yes
brown:	no
stripes:	no
water:	yes
eats fish:	yes

Discover/detect new categories

Describing Objects by Their Attributes, A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth

Improvement

	Presence		Rating	
Attributes	walrus	polar bear	walrus	polar bear
Spot	no	no	less relevant	irrelevant
Blue	no	no	irrelevant	less relevant
Swim	yes	yes	highly relevant	relevant
Coastal	yes	yes	relevant	highly relevant

Learning To Detect Unseen Object Classes by Between-Class Attribute Transfer, C. Lampert, H. Nickisch, and S. Harmeling

Image Descriptions (Captioning)

Uses CNNs and RNNs

Deep Visual-Semantic Alignments for Generating Image Descriptions, A. Karpathy, Li Fei-Fei.

VQA: Visual Question Answering

Lecture 8

Results

fridge

arms

Video Classification

Using CNN – Naïve Approach

Kapathy et al.: Large-scale Video Classification with Convolutional Neural Networks

Video Classification

Using CNN – Naïve Approach

Temporal fusion

Kapathy et al.: Large-scale Video Classification with Convolutional Neural Networks

Video Classification

Modern Approaches

Lecture 9

Multi-task training

Lecture 10

Continual Learning

Training Set at Time T₁

Training Set at Time T₂

Training Set at Time T₃

Continual Learning

- Tasks are learned sequentially over time.
- At time T_i, the data of the tasks T_{1...}T_{i-1} is no longer available.
- Leads to forgetting of previously learned tasks.
- Termed "Catastrophic Forgetting".

Possible Solution:

Lecture 10

- Measure the importance of learnable parameters in NN for the task, constrain their change in learning a new task.
- This could work because deep networks are highly overparametrized

James Kirkpatrick et al., "Overcoming catastrophic forgetting in neural networks"

Adversarial Examples

Explaining and Harnessing Adversarial Examples by Goodfellow et al.

Adversarial Examples: Imperceptible Noise

Intriguing properties of neural networks by Szegedy et al.