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Related-Key Attacks

The Related-Key Model

» Introduced by Biham and independently by Knudsen in
1993 [B93,K93].

» A block cipher is a keyed permutation, i.e.,
E:{0,1}" x {0,1}* — {0,1}" (or
E. :{0,1}" — {0,1}").

» Regular cryptanalytic attacks attack E by controlling the
input/output of Ex(-).

» In related-key attacks the adversary can ask to control k
(chosen key attacks).

» This make look like a very strong notion, but the model
allows for the adversary to control only the relation
between keys.
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Related-Key Attacks

The Related-Key Model (cont.)

» In standard attacks, the adversary can query an oracle for

E.
» In related-key attacks, the adversary can query the oracles
Ew. Et,, ...

» The adversary is either aware of the relation between the
keys or can choose the relation.

» This model which may look strong is actually not so far
fetched:

» Real life protocols allow for that.

» When the block cipher is used as a compression function
— the adversary may control actually control the key.

» In some cases, there are properties so “strong”, that it is
sufficient to have access to encryption under one key.
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Related-Key Attacks Model First Attack Second Attack

DES’s Complementation Property

» If the key is bitwise complemented, so
are all the subkeys.
K— K, K>, ..., K and — 1S1] -
K— K, K, ..., K

» If the input to the round function is &

S4
also bitwise complemented, the _’E} ? S5 @69

complementation is canceled. |56/
» In other words, the input to the : g—;
S-boxes is the same. And the —
output of the S-boxes (and the
round).
» DES’s complementation property:
DESk(P) = DES%(P) [y R
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Related-Key Attacks Model First Attack

Using the Complementation Property

v

Using the complementation property it is possible to

speed up exhaustive key search of DES by a factor of 2.

v

The adversary asks for the encryption of P and P.

Let C; = Ex(P) and G, = Ex(P), where K is the
unknown key.

v

v

For each possible key k whose most significant bit is O:
Check whether DES,(P) = C; (if yes, k is the key).

Check whether DES,(P) = G, (if yes, k is the key).

Note that DESk(P) = C2 = (Cz) = DESk(P)
As C2 = DESK(ﬁ), then DESK(b) = DESk(P), i.e., K
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Related-Key Attacks Model First Attack Second Attack

A Related-Key Attack on a Slightly Modified DES

» Assume that all the rotations in the
key schedule are all by 2 bits to the
left.

» Consider two keys K and K’, such
that the subkeys produced by the
key schedule algorithm satisfy
K,' = Ki/—f—l (i.e.,

Kl == KQ,,K2 == Ké,)

» Then the first 15 rounds of

encryption under K are just like the

last 15 rounds of encryption under
K’
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First Attack

Related-Key Attacks

A Related-Key Attack on a Slightly Modified DES

> Let P = Fy;(P').

» Due to the equality between the
functions, P and P’ share 15
rounds of the encryption.

» Thus, C = Fyg,(C).

» Given (P, C) and (P’, C’), deducing
K{ and Kig (given DES's round
function) is easy.
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Related-Key Attacks Mlodel First Attack

A Related-Key Attack on a Slightly Modified DES

» Ask for the encryption of 2¢ plaintexts P! = (A, x!)
under K'. Let C] = Ex/(P}).

> Ask for the encryption of 2 plaintexts P; = (y/, A) under
K. Let G = Ex(P)).

By birthday arguments there is a pair of values P/ which
is encrypted under one round to P;. From this point
forward, they are “evolving” together, and thus,

G = Fios (C).

From Feistel properties, that means that the left half of

C/ is equal to the right half of ;.

Orr Dunkelman Related-Key Attacks 9/ 42



Related-Key Attacks First Attack

A Related-Key Attack on a Slightly Modified DES

» Search for a pair of ciphertexts C/ and C; such that the
left half of (] is equal to the right half of C;.

» Deduce that P; = Fk;(P;) and that C; = Fi,(C;), and
retrieve the key.

» This pair is called a related-key plaintext pair.

» Using this pair it is easy to deduce K and Kig (which are
also share bits between themselves).

Data complexity: 21° CPs under two related-keys (the
relation was chosen by the adversary).

Time complexity: 2! encryptions (the analysis phase is very
efficient).
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Related-Key Attacks Model First Attack Second Attack

A Second Attack on a Slightly Modified DES

» For this modification of DES, it is possible to offer an
attack which has access to only one key.
» The attack is an extension of the complementation
property:
Each key K has 5 other keys which induce a
related-encryption process.

» Hence, using 234 chosen plaintexts encrypted under one,
we can analyze 6 keys(!) using a trial encryption.
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Slide

The Slide Attack

» Presented by Biryukov and Wagner
in 1999.

» Can be applied to ciphers with the
same keyed permutation.

» Independent of the number of
rounds of the cipher.

» To some extent, this attack is a
related-key plaintext attack when
the key is its own related-key.
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Slide Intro 2K-DES

An Example — Slide Attack on 2K-DES

» Consider a variant of DES with 2r
rounds, where the subkeys are
(K]_, Kz, /’(]_7 Kz, e K]_, K2)

» This variant has 96-bit key, and if r
is large enough, no conventional
attacks apply.
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A Related-Key Attack on a 2K-DES (cont.)

» Take 232 known plaintexts, P; (and their corresponding
ciphertexts ;).

» Let fx, k,(-) be two rounds of DES with the subkeys K;
and K.

» Then, the data set is expected to contain two plaintexts
P,' and PJ such that le,Kz(Pi) = PJ and le,Kz(Ci) = CJ
(denoted as a slid pair).
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Slide

How do you Find the Slid Pair?

» Generally speaking, the best way to find the slid pairs is
to try all of them.

» So in this attack, the adversary considers each pair
(P;, P;) (there are 2% pairs, as the pair is ordered).

» For each pair, the adversary has two equations to solve:
fie(P) = P fiae(G) =G

» This can be done very easily.
» For each solution (if exists), verify the suggested key.
» Time complexity — 2% times solving the above set.

» A possible improvement: Guess some part of Kj (or K)
which gives filtering on the pairs, and then there are less
pairs to analyze.
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Slide Intro 2K-DES

How do you Find the Slid Pair? (cont.)

» This leads to a very interesting approach in block ciphers
cryptanalysis.

» To break a cipher X (to find the secret key), we need a
slid pair.

» To find this slid pair, we take many candidate pairs.

» For each candidate pair, we analyze which key it suggests.

» Then, if the key suggested is correct we found the slid
pair. ...which is what we need for finding the right key.
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Slide

Summary of the Slide Attack

» Independent of the number of rounds.

» Generation of a slid pair in O(2"/2) known plaintexts (or
21/* for Feistel block ciphers).

» Works if Fx(P;) = P, Fk(C;) = C; is sufficient for finding
K.
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Slide Intro 2K-DES Advanced

Complementation Slide Attack

» Consider 2K-DES.

» Let A = K1 @ K>.

» Consider two plaintexts P;, P;
such that if X = fx,(P;) then
Xi=P; & (A, D).

» This relation remains until
q = sz(Ci) S5 (A7 A)
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Slide Intro 2K-DES Advanced SlideX

Complementation Slide Attack

» As half of the data is unchanged by f(-), the
identification of slid pairs is easier.

» Starting with 232 known plaintexts, and use the filter
condition on the differences (right half of P; XOR the left
half of P; is equal to the right half of C; XOR the left half
of ;) to discard most of the wrong candidate keys.

» There is a small technicality here that makes the attack
fail. If you recall, the difference in the data words is of 32
bits, and of the subkey is in 48-bit words.

» Hence, this attack works, only if A is a legitimate output
of E(-) of DES (i.e., the actual difference in the plaintext
is E7H(A)).
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Slide 2K-DES Advanced

Slide Attack with a Twist

» Consider encryption and
decryption in a Feistel block
cipher.

» They are the same up to the
order of subkeys.

» Now, consider 2K-DES, with
one round slide in the
encryption direction and the
decryption direction. ..

» Given 232 known plaintexts, it
is possible to find a twisted
slid pair and repeat the
analysis.
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Slide Intro 2K-DES Advanced

Slide Attack with a Twist (cont.)

» This time, it is possible to analyze only one subkey (Kj),
as the relations are

fio(N)) = GG M, fio(Ri) = Re L

» This allows applying a chosen plaintext and ciphertext
attacks with 2 of each.

» The adversary asks for the encryption of (A, x) and the
decryption of (A, y).

» Note that this variant actually works.

» And do note that you can combine the two techniques.
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Slide Intro

The Even-Mansour Block Cipher

» Suggested by Even and Mansour in 1991, P
as a generalization of the DESX approach. K, —D

» Apparently, even if you know the internal
key of DESX, the system is still secure. F

» Main idea: Change the keyed permutation
in the middle to an n-bit pseudo-random K, —€
permutation F.

N

@)

» Block size: n bits, Key size: 2n bits.

EM,QKZ(P) =F(PD K)® K,
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Slide Intro 2K-DES

Security of the Even-Mansour Scheme

» A simple attack that requires 2 plaintext/ciphertext pairs
and 2" time (so security is n-bits at most).

» There is a proof that any attack that uses D
plaintext/ciphertext pairs, and T queries to F, has
success rate of O(DT /2").

» There is a differential attack that offers this tradeoff
[D92].

» There is also a slide with a twist attack that uses 2"/2
data and time.
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Slide Intro 2K-DES Advanced

Slide with a Twist Attack on Even-Mansour

» Consider two plaintexts P and P*

such that P* = P & K;. P P

» The inputs to F are swapped, K, 4{‘9 \/\A’: Ky
which means that so does the */’ N
outputs. | |

» Hence, C & C* = F(P) & F(P*). f F

» So the attack starts with 2"/

laintexts P;, each is encrypted to

'Fc)he corresponding C;, andy: ke =P P—r
collision in the values of C; & F(P;) C c

is expected to suggest a slid pair.
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Slide Intro 2K-DES Advanced

Slide with a Twist Attack on Even-Mansour

» The attack requires D = 2"/2 known plaintexts.

» To generate the table, T = 21/2 additional queries to F
are made.

» The success rate is the probability of having a slid pair,
which is quite high.

» We note that having even slightly less than O(2"/?)
plaintexts results in the failure of the attack.

» So this attack satisfies the bound, but at the same time,
offers no tradeoff.
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Motivation

» The slide attack requires one slid pair to work.

» To find such a pair, we need at least 21/2 known
plaintexts.

» If we are given less data, can we somehow compensate for
the lack of slid pairs with some computation?
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Slide

SlideX Attack on Even-Mansour

» Consider two plaintexts P and P*

such that P* = P& K; & A. P L P
» Then: K, A’GF ?A?\ K,
EM}%, 1, (P) = F(P @ K1) © K, 2 Sy
— F(P* & A)e K l l
EM, 1 (P7) = F(P* & K1) @ K, i F
=F(PeA)d K —d B— «,

@}
0
*

» Hence,

EM 1, (P)® F(P @ A) = EM} . (P*) & F(P* @ A)

Orr Dunkelman Related-Key Attacks 27/ 42



Slide Intro 2K-DES

SlideX Attack on Even-Mansour (cont.)

» We define a SlideX pair, as a pair which actually satisfies
the required relation P = P* @ K; @ A.

» To check for the SlideX pair, we take the D
plaintext/ciphertext pairs (P;, C;), and for each A guess,
we construct a table of all values C; & F(P; & A).

» The trick here, is that we check O(D?) pairs by each
such guess of A.

» Hence, we repeat the construction of the table O(2"/D?)
times, each time with D calls to F, or T = O(2"/D)
times in total.

And we’re donel!
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Slide Intro Advanced

SlideX vs. Slide (with a Twist)

» The attack can work with any given amount of data.

» As a SlideX pair is actually a SlideX tuple (with respect
to some A), we can increase the number of A's to
compensate for the reduced data.

» Additionally, we just need to store O(D) values, so if
D < 2"/2, we can use a significantly smaller amount of
memory.
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Statistical RK RK-Diff

Related-Key Differential Attacks

» Consider the complementation property of DES:

DESk(P) = DES%(P)
» This equality can be rewritten as:

DES«(P) & DESi(P) = FFFF FFFF FFFF FFFF,

» Does this looks familiar?

» This motivated Kelsey, Schneier and Wagner to introduce
related-key differentials.
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Statistical RK RK-Diff

Related-Key Differentials (cont.)

» The probability of regular differential is:
Prp k[Ex(P) ® Ex(P ® AP) = AC]
» The probability of related-key differential is:
Prp k[Ex(P) @ Exenk(P & AP) = AC]

» The key difference leads to subkey differences, that may
be used to cancel the differences in the input to the round
function.

» The reminder of the differential attack using a related-key
attack is quite the same (up to the use of two keys).

» Usually, the key relation is by a difference, but other
relations may be used as well.*

*Note that the relation K’ = K A Const and K’ = KV Const, for any

constant Const, allow for a trivial key recovery attack.
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Statistical RK

The Block Cipher GOST

» The Soviet/Russian block cipher
standard (GOST 28147-89).

» 64-bit block, 256-bit key, 32 rounds. L; g—; R
» S-boxes: 4 x 4. Implementation 53]

- m IS4
specific. = @—»@
» Key schedule very simple, take
K= (Kl, K2, Ce Kg)Z
Round 1 2 3 4 5 6 7 8

E
Subkey K1 K2 K3 K4 K5 K6 K7 Kg

Round 9 10 11 12 13 14 15 16 ><
Subkey K1 K2 K3 K4 K5 K6 K7 Kg

Round 17 18 19 20 21 22 23 24
Subkey Kl K2 K3 K4 K5 Ke K7 Kg L
Round 25 26 27 28 29 30 31 32 !
Subkey Kg K7 K6 K5 K4 K3 K2 Kl

Orr Dunkelman Related-Key Attacks 32/ 42

Rit1




Statistical RK RK-Diff

Related-Key Differentials in GOST

» Flipping the MSBs of all key words, flips the MSB of all
the subkeys.

» Flipping the two MSBs of the plaintext words, leads to
the same input entering the S-boxes in all rounds.

» Thus, under a key difference
(80000000, 80000000y, . . ., 80000000,) the plaintext
difference (80000000,, 80000000, ) leads to ciphertext
difference (80000000,, 80000000, ) with probability 1.

» Can speed up exhaustive search by a factor of 2 (like in
DES).

» Or for a very simple distinguishing attack (with 2 chosen
plaintexts).
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RK-Diff AES Key

Statistical RK

Recovering the Key in GOST in a Related-Key

Attack

» For a differential key recovery attack we need a
differential with nontrivial probability.

» Pick AK = (400000004, 40000000, .. .,40000000,).

» An input difference A = (40000000,,40000000,) remains
unchanged after one round with probability 1/2.

» Thus, it is easy to build a 30-round related-key differential
with probability 2739 for GOST.

» Then, GOST can be attacked using standard differential
techniques.
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Statistical RK RK-Diff

The Differences from Regular Differentials

» Despite the above there are few subtle differences
between regular differentials and related-key differentials.

» The amount of possible pairs, for example. In a one-key
scenario, for a given input difference there are 27!
possible distinct pairs (n being the block size). In two-key
scenario — 2".

» Consider an input difference to an s-bit round function.
Once the key is fixed, for any given input difference, there
are at most 2°~1 output differences. In the related-key
model there are 2° (if there is a key difference, of course).
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Statistical RK

Certificational Attacks on AES

» Recently, in a series of papers, several certificational
attacks on the full AES-192 and AES-256 were proposed:
In [BKNOQ9] the first attack on the full AES-256 is
reported:
» 2131 data and time in the related-key model (23 related
keys).
» Several attacks on AES-256 in Davies-Meyer (a
transformation into a compression function).
In [BKO09] attacks on AES-192 and AES-256:
» A 2% data/time attack on AES-256 in the
related-subkey model (using 4 related keys).
» A 217® data/time attack on AES-192 in the
related-subkey model.
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Statistical RK

The Related-Subkey Model

» This new model was recently introduced in [BK09].

» In related-key attacks, a simple relation R is used for the
keys Ki, K>.

» In related-subkey attacks, R is a simple relation between
two subkeys, RK1, RK>.

» The two subkeys are then handled by the key schedule
algorithm to obtain the actual keys.

» This slightly less intuitive approach (and less practical
one) can be “covered” by the theoretical treatment by
just expanding the set of “good relations”.
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Statistical RK RK-Diff

The Related-Subkey Model (cont.)

» Despite the fact that this model may seem too strong, it
is not.
» There are cases where the required relations can be
satisfied:
» Hash functions built on top of AES-256,
» Protocols which allow such related-subkey tampering,
» and when the key schedule algorithm is not too strong,
an adversary may use more keys in the related-key
model.
» In any case, in the theoretical settings, a block cipher
should not show this type of weakness (ideal cipher
model).
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Statistical RK RK-Diff AES

An Interesting Property of the Key Schedule

Algorithm of AES-256
The key difference

leads to the 10 subkey differences

H H kB
Sl |

With probability 1!
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Statistical RK RK-Diff AES Key

An 8-Round Related-Key Differential of AES-256

- Mc.imw

The probability is 27%°. It can be transformed into a truncated
one predicting 24 bits of difference with probability 2736.
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Statistical RK RK-Diff

A 10-Round Related-Subkey Differential

» In the related-subkey model, it is possible to pick two keys
which satisfy the difference in a slightly different manner.

» The related-subkey allows for shifting the differential by
one round.

» This allows an extension of the differential in the
backwards direction (despite having a highly active state).

» Which in turn, allows for attacks of practical complexity
of up to 10 rounds.
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Statistical RK

Questions?

Thank you for your Attention!
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