Related-Key Attacks

Orr Dunkelman

Department of Computer Science, University of Haifa Faculty of Mathematics and Computer Science Weizmann Institute of Science

June 2nd, 2011

Outline

- 1 The Related-Key Model
 - The Related-Key Model
 - First Related-Key Attack
 - Second Related-Key Attack
- 2 The Slide Attack
 - Introduction to Slide Attacks
 - A Slide Attack on 2K-DES
 - Advanced Slide Attacks
 - The SlideX Attack
- 3 Statistical Related-Key Attacks
 - Related-Key Differential Attacks
 - Certificational Attacks on AES
 - The Key Point

Model

- ▶ Introduced by Biham and independently by Knudsen in 1993 [B93,K93].
- A block cipher is a keyed permutation, i.e., $E: \{0,1\}^n \times \{0,1\}^k \rightarrow \{0,1\}^n$ (or $E_k: \{0,1\}^n \rightarrow \{0,1\}^n$).
- ▶ Regular cryptanalytic attacks attack E by controlling the input/output of $E_k(\cdot)$.
- ▶ In related-key attacks the adversary can ask to control k (chosen key attacks).
- ► This make look like a very strong notion, but the model allows for the adversary to control only the relation between keys.

Related-Key Attacks Slide Statistical RK Model First Attack Second Attack

The Related-Key Model (cont.)

- ▶ In standard attacks, the adversary can query an oracle for E_k .
- ▶ In related-key attacks, the adversary can query the oracles E_{k_1} , E_{k_2} , . . .
- ► The adversary is either aware of the relation between the keys or **can choose** the relation.
- This model which may look strong is actually not so far fetched:
 - ▶ Real life protocols allow for that.
 - When the block cipher is used as a compression function
 the adversary may control actually control the key.
 - ▶ In some cases, there are properties so "strong", that it is sufficient to have access to encryption under one key.

DES's Complementation Property

► If the key is bitwise complemented, so are all the subkeys.

$$\dfrac{K}{K} o \dfrac{K_1}{K_1}, \dfrac{K_2}{K_2}, \ldots, \dfrac{K_{16}}{K_{16}}$$
 and

- If the input to the round function is also bitwise complemented, the complementation is canceled.
- In other words, the input to the S-boxes is the same. And the output of the S-boxes (and the round).
- DES's complementation property:

$$DES_K(P) = \overline{DES_K(\overline{P})}$$

Using the Complementation Property

- Using the complementation property it is possible to speed up exhaustive key search of DES by a factor of 2.
- ▶ The adversary asks for the encryption of P and \overline{P} .
- ▶ Let $C_1 = E_K(P)$ and $C_2 = E_K(\overline{P})$, where K is the unknown key.
- ► For each possible key *k* whose most significant bit is 0:
 - 1 Check whether $\underline{DES_k(P)} = C_1$ (if yes, \underline{k} is the key).
 - 2 Check whether $\overline{DES_k(P)} = C_2$ (if yes, \overline{k} is the key).

Note that
$$\overline{DES_k(P)} = C_2 \Rightarrow \overline{(C_2)} = DES_k(P)$$
.
As $C_2 = DES_K(\overline{P})$, then $\overline{DES_K(\overline{P})} = DES_k(P)$, i.e., $K = \overline{k}$.

A Related-Key Attack on a Slightly Modified DES

- Assume that all the rotations in the key schedule are all by 2 bits to the left.
- \triangleright Consider two keys K and K', such that the subkeys produced by the key schedule algorithm satisfy $K_i = K'_{i+1}$ (i.e., $K_1 = K_2', K_2 = K_3', \ldots$
- Then the first 15 rounds of encryption under K are just like the last 15 rounds of encryption under K'.

Model

A Related-Key Attack on a Slightly Modified DES

- ▶ Let $P = F_{K_1'}(P')$.
- Due to the equality between the functions. P and P' share 15 rounds of the encryption.
- ▶ Thus, $C = F_{K_{16}}(C')$.
- \triangleright Given (P, C) and (P', C'), deducing K'_1 and K_{16} (given DES's round function) is easy.

A Related-Key Attack on a Slightly Modified DES

Model

First Attack

- Ask for the encryption of 2^{16} plaintexts $P'_i = (A, x'_i)$ under K'. Let $C'_i = E_{K'}(P'_i)$.
- ▶ Ask for the encryption of 2^{16} plaintexts $P_i = (y_i', A)$ under K. Let $C_i = E_K(P_i)$.
- 1 By birthday arguments there is a pair of values P'_i which is encrypted under one round to P_i . From this point forward, they are "evolving" together, and thus, $C_i = F_{K_{1e}}(C_i).$
- 2 From Feistel properties, that means that the left half of C'_i is equal to the right half of C_i .

A Related-Key Attack on a Slightly Modified DES

Model

- ▶ Search for a pair of ciphertexts C'_i and C_i such that the left half of C'_i is equal to the right half of C_i .
- ▶ Deduce that $P_i = F_{K_i}(P_i)$ and that $C_i = F_{K_{16}}(C_i)$, and retrieve the key.
- This pair is called a related-key plaintext pair.
- Using this pair it is easy to deduce K'_1 and K_{16} (which are also share bits between themselves).

Data complexity: 2¹⁶ CPs under two related-keys (the relation was chosen by the adversary).

Time complexity: 2¹⁷ encryptions (the analysis phase is very efficient).

A Second Attack on a Slightly Modified DES

- For this modification of DES, it is possible to offer an attack which has access to only one key.
- ► The attack is an extension of the complementation property:

Each key K has 5 other keys which induce a related-encryption process.

► Hence, using 2³⁴ chosen plaintexts encrypted under **one**, we can analyze 6 keys(!) using a trial encryption.

Related-Key Attacks Slide S

The Slide Attack

- Presented by Biryukov and Wagner in 1999.
- ► Can be applied to ciphers with the same keyed permutation.
- Independent of the number of rounds of the cipher.
- To some extent, this attack is a related-key plaintext attack when the key is its own related-key.

Related-Kev Attacks Slide

An Example — Slide Attack on 2K-DES

- Consider a variant of DES with 2r rounds, where the subkeys are $(K_1, K_2, K_1, K_2, \ldots, K_1, K_2).$
- ▶ This variant has 96-bit key, and if r is large enough, no conventional attacks apply.

Related-Key Attacks Slide Statistical RK Intro 2K-DES Advanced Slide

A Related-Key Attack on a 2K-DES (cont.)

- ▶ Take 2^{32} known plaintexts, P_i (and their corresponding ciphertexts C_i).
- ▶ Let $f_{K_1,K_2}(\cdot)$ be two rounds of DES with the subkeys K_1 and K_2 .
- ▶ Then, the data set is expected to contain two plaintexts P_i and P_j such that $f_{K_1,K_2}(P_i) = P_j$ and $f_{K_1,K_2}(C_i) = C_j$ (denoted as a *slid pair*).

Related-Key Attacks Slide Statistical RK Intro 2K-DES Advanced SlideX

How do you Find the Slid Pair?

- Generally speaking, the best way to find the slid pairs is to try all of them.
- So in this attack, the adversary considers each pair (P_i, P_j) (there are 2⁶⁴ pairs, as the pair is ordered).
- ► For each pair, the adversary has two equations to solve:

$$f_{K_1,K_2}(P_i)=P_j; \qquad f_{K_1,K_2}(C_i)=C_j$$

- This can be done very easily.
- For each solution (if exists), verify the suggested key.
- ▶ Time complexity 2⁶⁴ times solving the above set.
- ▶ A possible improvement: Guess some part of K_1 (or K_2) which gives filtering on the pairs, and then there are less pairs to analyze.

Related-Key Attacks Slide Statistical RK Intro 2K-DES Advanced SlideX

How do you Find the Slid Pair? (cont.)

- This leads to a very interesting approach in block ciphers cryptanalysis.
- To break a cipher X (to find the secret key), we need a slid pair.
- To find this slid pair, we take many candidate pairs.
- ► For each candidate pair, we analyze which key it suggests.
- Then, if the key suggested is correct we found the slid pair. ... which is what we need for finding the right key.

Related-Key Attacks Slide Statistical RK Intro 2K-DES Advanced Slide

Summary of the Slide Attack

- Independent of the number of rounds.
- ▶ Generation of a slid pair in $O(2^{n/2})$ known plaintexts (or $2^{n/4}$ for Feistel block ciphers).
- ▶ Works if $F_K(P_i) = P_j$, $F_K(C_i) = C_j$ is sufficient for finding K.

Complementation Slide Attack

Slide

- Consider 2K-DES.
- ▶ Let $\Delta = K_1 \oplus K_2$.
- Consider two plaintexts P_i, P_i such that if $X = f_{K_1}(P_i)$ then $X_i = P_i \oplus (\Delta, \Delta).$
- This relation remains until $C_i = f_{K_2}(C_i) \oplus (\Delta, \Delta).$

Related-Key Attacks Slide Statistical RK Intro 2K-DES Advanced Slide>

Complementation Slide Attack

- As half of the data is unchanged by $f(\cdot)$, the identification of slid pairs is easier.
- Starting with 2^{32} known plaintexts, and use the filter condition on the differences (right half of P_i XOR the left half of P_j is equal to the right half of C_i XOR the left half of C_j) to discard most of the wrong candidate keys.
- ► There is a small technicality here that makes the attack fail. If you recall, the difference in the data words is of 32 bits, and of the subkey is in 48-bit words.
- ▶ Hence, this attack works, only if Δ is a legitimate output of $E(\cdot)$ of DES (i.e., the actual difference in the plaintext is $E^{-1}(\Delta)$).

Related-Key Attacks Slide Statistical RK Intro 2K-DES Advanced Sli

Slide Attack with a Twist

- Consider encryption and decryption in a Feistel block cipher.
- They are the same up to the order of subkeys.
- Now, consider 2K-DES, with one round slide in the encryption direction and the decryption direction...
- ► Given 2³² known plaintexts, it is possible to find a twisted slid pair and repeat the analysis.

Slide Attack with a Twist (cont.)

▶ This time, it is possible to analyze only one subkey (K_1) , as the relations are

$$f_{K_1}(N_i) = C_j \oplus M_i; \qquad f_{K_1}(R_i) = R_j \oplus L_i.$$

- ► This allows applying a chosen plaintext and ciphertext attacks with 2¹⁶ of each.
- ▶ The adversary asks for the encryption of (A, x) and the decryption of (A, y).
- ▶ Note that this variant actually works.
- And do note that you can combine the two techniques.

The Even-Mansour Block Cipher

Slide

- Suggested by Even and Mansour in 1991, as a generalization of the DESX approach.
- Apparently, even if you know the internal key of DESX, the system is still secure.
- Main idea: Change the keyed permutation in the middle to an n-bit pseudo-random permutation F.
- ▶ Block size: n bits, Key size: 2n bits.

$$\mathsf{EM}^{\mathcal{F}}_{\mathsf{K}_1,\mathsf{K}_2}(P) = \mathcal{F}(P \oplus \mathsf{K}_1) \oplus \mathsf{K}_2$$

Related-Key Attacks Slide Statistical RK Intro 2K-DES Advanced SlideX

Security of the Even-Mansour Scheme

- ▶ A simple attack that requires 2 plaintext/ciphertext pairs and 2ⁿ time (so security is *n*-bits at most).
- ▶ There is a **proof** that any attack that uses D plaintext/ciphertext pairs, and T queries to \mathcal{F} , has success rate of $O(DT/2^n)$.
- ► There is a differential attack that offers this tradeoff [D92].
- ► There is also a slide with a twist attack that uses $2^{n/2}$ data and time.

SlideX

Slide with a Twist Attack on Even-Mansour

Consider two plaintexts P and P* such that $P^* = P \oplus K_1$.

Slide

- ▶ The inputs to F are swapped. which means that so does the outputs.
- ▶ Hence, $C \oplus C^* = \mathcal{F}(P) \oplus \mathcal{F}(P^*)$.
- ▶ So the attack starts with $2^{n/2}$ plaintexts P_i , each is encrypted to the corresponding C_i , and a collision in the values of $C_i \oplus \mathcal{F}(P_i)$ is expected to suggest a slid pair.

Related-Key Attacks Slide Statistical RK Intro 2K-DES Advanced SlideX

Slide with a Twist Attack on Even-Mansour

- ▶ The attack requires $D = 2^{n/2}$ known plaintexts.
- ▶ To generate the table, $T = 2^{n/2}$ additional queries to \mathcal{F} are made.
- The success rate is the probability of having a slid pair, which is quite high.
- We note that having even slightly less than $O(2^{n/2})$ plaintexts results in the failure of the attack.
- So this attack satisfies the bound, but at the same time, offers no tradeoff.

Related-Key Attacks Slide Statistical RK Intro 2K-DES Advanced SlideX

Motivation

- ► The slide attack requires one slid pair to work.
- ▶ To find such a pair, we need at least $2^{n/2}$ known plaintexts.
- ▶ If we are given less data, can we somehow compensate for the lack of slid pairs with some computation?

Statistical RK

SlideX Attack on Even-Mansour

- Consider two plaintexts P and P* such that $P^* = P \oplus K_1 \oplus \Delta$.
- ► Then:

$$egin{aligned} extit{EM}_{ extit{K}_1, extit{K}_2}^{\mathcal{F}}(P) &= \mathcal{F}(P \oplus extit{K}_1) \oplus extit{K}_2 \ &= \mathcal{F}(P^* \oplus \Delta) \oplus extit{K}_2 \ extit{EM}_{ extit{K}_1, extit{K}_2}^{\mathcal{F}}(P^*) &= \mathcal{F}(P^* \oplus extit{K}_1) \oplus extit{K}_2 \ &= \mathcal{F}(P \oplus \Delta) \oplus extit{K}_2 \end{aligned}$$

Hence,

$$\mathsf{EM}^{\mathcal{F}}_{\mathsf{K}_1,\mathsf{K}_2}(\mathsf{P}) \oplus \mathcal{F}(\mathsf{P} \oplus \Delta) = \mathsf{EM}^{\mathcal{F}}_{\mathsf{K}_1,\mathsf{K}_2}(\mathsf{P}^*) \oplus \mathcal{F}(\mathsf{P}^* \oplus \Delta)$$

Related-Key Attacks Slide Statistical RK Intro 2K-DES Advanced SlideX

SlideX Attack on Even-Mansour (cont.)

- ▶ We define a SlideX pair, as a pair which actually satisfies the required relation $P = P^* \oplus K_1 \oplus \Delta$.
- ▶ To check for the SlideX pair, we take the D plaintext/ciphertext pairs (P_i, C_i) , and for each Δ guess, we construct a table of all values $C_i \oplus \mathcal{F}(P_i \oplus \Delta)$.
- ▶ The trick here, is that we check $O(D^2)$ pairs by each such guess of Δ .
- ▶ Hence, we repeat the construction of the table $O(2^n/D^2)$ times, each time with D calls to \mathcal{F} , or $T = O(2^n/D)$ times in total.

And we're done!

Related-Key Attacks Slide Statistical RK Intro 2K-DES Advanced SlideX

SlideX vs. Slide (with a Twist)

- The attack can work with any given amount of data.
- As a SlideX pair is actually a SlideX tuple (with respect to some Δ), we can increase the number of Δ 's to compensate for the reduced data.
- ▶ Additionally, we just need to store O(D) values, so if $D \ll 2^{n/2}$, we can use a significantly smaller amount of memory.

Related-Key Differential Attacks

Consider the complementation property of DES:

$$DES_K(P) = \overline{DES_{\overline{K}}(\overline{P})}$$

This equality can be rewritten as:

$$DES_{\kappa}(P) \oplus DES_{\overline{\kappa}}(\overline{P}) = FFFF \ FFFF \ FFFF \ FFFF_{\kappa}$$

- Does this looks familiar?
- ► This motivated Kelsey, Schneier and Wagner to introduce related-key differentials.

Related-Key Differentials (cont.)

► The probability of regular differential is:

$$\Pr_{P,K}[E_K(P) \oplus E_K(P \oplus \Delta P) = \Delta C]$$

The probability of related-key differential is:

$$Pr_{P,K}[E_K(P) \oplus E_{K \oplus \Delta K}(P \oplus \Delta P) = \Delta C]$$

- The key difference leads to subkey differences, that may be used to cancel the differences in the input to the round function.
- The reminder of the differential attack using a related-key attack is quite the same (up to the use of two keys).
- Usually, the key relation is by a difference, but other relations may be used as well.*

^{*}Note that the relation $K' = K \wedge Const$ and $K' = K \vee Const$, for any constant Const, allow for a trivial key recovery attack.

RK-Diff

The Block Cipher GOST

- ► The Soviet/Russian block cipher standard (GOST 28147-89).
- ▶ 64-bit block, 256-bit key, 32 rounds.
- ► S-boxes: 4 × 4. Implementation specific.
- ► Key schedule very simple, take $K = (K_1, K_2, K_3)$:

	(''1',''2',''','''0')'								
Round	1	2	3	4	5	6	7	8	-
Subkey	K_1	K_2	K_3	K_4	K_5	K_6	K_7	K_8	
Round	9	10	11	12	13	14	15	16	-
Subkey	K_1	K_2	K_3	K_4	K_5	K_6	K_7	K_8	
Round	17	18	19	20	21	22	23	24	-
Subkey	K_1	K_2	K_3	K_4	K_5	K_6	K_7	K_8	,
Round	25	26	27	28	29	30	31	32	
Subkey	K_8	K_7	K_6	K_5	K_4	K_3	K_2	K_1	

Related-Key Differentials in GOST

- Flipping the MSBs of all key words, flips the MSB of all the subkeys.
- ▶ Flipping the two MSBs of the plaintext words, leads to the same input entering the S-boxes in all rounds.
- ► Thus, under a key difference (80000000_x, 80000000_x, . . . , 800000000_x) the plaintext difference (80000000_x, 80000000_x) leads to ciphertext difference (80000000_x, 800000000_x) with probability 1.
- Can speed up exhaustive search by a factor of 2 (like in DES).
- ► Or for a very simple distinguishing attack (with 2 chosen plaintexts).

Recovering the Key in GOST in a Related-Key Attack

- ► For a differential key recovery attack we need a differential with nontrivial probability.
- ► Pick $\Delta K = (40000000_x, 40000000_x, \dots, 40000000_x)$.
- An input difference $\Delta = (40000000_x, 40000000_x)$ remains unchanged after one round with probability 1/2.
- ► Thus, it is easy to build a 30-round related-key differential with probability 2⁻³⁰ for GOST.
- ► Then, GOST can be attacked using standard differential techniques.

The Differences from Regular Differentials

- ▶ Despite the above there are few subtle differences between regular differentials and related-key differentials.
- ▶ The amount of possible pairs, for example. In a one-key scenario, for a given input difference there are 2^{n-1} possible distinct pairs (n being the block size). In two-key scenario 2^n .
- Consider an input difference to an s-bit round function. Once the key is fixed, for any given input difference, there are at most 2^{s−1} output differences. In the related-key model there are 2^s (if there is a key difference, of course).

Certificational Attacks on AES

- ► Recently, in a series of papers, several certificational attacks on the full AES-192 and AES-256 were proposed:
 - In [BKN09] the first attack on the full AES-256 is reported:
 - ▶ 2¹³¹ data and time in the related-key model (2³⁵ related keys).

AES

- Several attacks on AES-256 in Davies-Meyer (a transformation into a compression function).
- 2 In [BK09] attacks on AES-192 and AES-256:
 - A 2⁹⁹ data/time attack on AES-256 in the related-subkey model (using 4 related keys).
 - ► A 2¹⁷⁶ data/time attack on AES-192 in the related-subkey model.

The Related-Subkey Model

- ► This new model was recently introduced in [BK09].
- In related-key attacks, a simple relation R is used for the keys K₁, K₂.
- ▶ In related-subkey attacks, R is a simple relation between two subkeys, RK_1 , RK_2 .
- ► The two subkeys are then handled by the key schedule algorithm to obtain the actual keys.
- ► This slightly less intuitive approach (and less practical one) can be "covered" by the theoretical treatment by just expanding the set of "good relations".

The Related-Subkey Model (cont.)

- Despite the fact that this model may seem too strong, it is not.
- There are cases where the required relations can be satisfied:
 - Hash functions built on top of AES-256,
 - Protocols which allow such related-subkey tampering,
 - and when the key schedule algorithm is not too strong, an adversary may use more keys in the related-key model.
- In any case, in the theoretical settings, a block cipher should not show this type of weakness (ideal cipher model).

An Interesting Property of the Key Schedule Algorithm of AES-256

The key difference

leads to the 10 subkey differences

With probability 1!

An 8-Round Related-Key Differential of AES-256

The probability is 2^{-56} . It can be transformed into a truncated one predicting 24 bits of difference with probability 2^{-36} .

A 10-Round Related-Subkey Differential

- ▶ In the related-subkey model, it is possible to pick two keys which satisfy the difference in a slightly different manner.
- ► The related-subkey allows for shifting the differential by one round.
- This allows an extension of the differential in the backwards direction (despite having a highly active state).
- ▶ Which in turn, allows for attacks of practical complexity of up to 10 rounds.

Key

Questions?

Thank you for your Attention!