Better know your limits and adversaries

Julien Bringer (at) morpho com

Better know your limits and adversaries

A practical view on various template protection and key binding schemes

This talk is based on several joint works with various co-authors, in particular Hervé Chabanne and Constance Morel from Morpho, and that have been partially funded by European FP7 projects FIDELITY and BEAT.

→ This talk is NOT about

- Classical on-the-shelf crypto
- Homomorphic encryption
- Cryptographic protocols (e.g. SMC, private retrieval)
- PET (eg. k-anonymity, I-diversity, privacy protection of the link between ID & bio)
- HW-based solution
- Formal Models for PbD
- ...

→ It is about

Template Protection Schemes (TPS) or TPS-like

→ TPS principles come from both crypto and biometrics community

- Helper data, cancelable biometrics, biometric key, ...
- FCS, FV, Code offset, SSK, FE ...

Image courtesy of M. Favre

SECURE SKETCHES (DODIS, REYZIN & SMITH – 2004)

SSK: secure sketch function

Rec: correction function

Rec(b',SSK(b))=b if $d(b,b') \le t$

CODE-OFFSET CONSTRUCTION

Secure Sketches after binarization of biometrics

Concept introduced in late 90's

PROBLEM SOLVED?

- → ...
 - Need to find a representation compatible with TPS algorithm
 - Usually binary & fixed-length vector
 - Correcting large amount of errors
 - finding nice trade-off between accuracy and security
 - Impact of storage & computational cost on operational constraints

→ To date, still very important challenges: security vs performances vs use cases (functionality & cost)

FINGERPRINT EXAMPLE

one of the most accurate published solution but...

*Related to papers @ BTAS 2010, SPIE 2011 with V. Despiegel & M. Favre

FINGERPRINT EXAMPLE

	FRR@10 ⁻³ FA FVC 2002 DB2	FRR@10 ⁻³ FA FVC 2000 DB2
one COTS	1.25 %	0,81 %
FV(Feature-Vector)-based	14.1 %	15 %

→ Accuracy drop of 1 order of magnitude

→ Usual size

of a template w/o TPS: 100-200B

w/ the FV representation: ~29kB

STANDARDS

→ Issued ISO/IEC 24745:2011, Information technology — Security techniques
 — Biometric information protection

On-going ISO CD 30136, Information Technology — Performance Testing of Template Protection Schemes

Image courtesy of Jens Hermans

Image courtesy of Jens Hermans

→ Also

- False Match Rate (FMR) / False Accept Rate (FAR)
- False Non-Match Rate (FNMR) / False Reject Rate (FRR)
- Failure-To-Enroll (FTE) Rate
- Failure-To-Acquire (FTA) Rate
- Successful Attack Rate (SAR)
- Accuracy Variation
- Template Diversity
- Storage Requirement per Registered User, speed...

THREAT MODELS (ISO 30136)

→ Naive Model

No information, black box, no access to any biometric data.

→ Collision Model

adversary possesses a large amount of biometric data.

FA attack issue

→ General Models

- Full knowledge of the underlying TPS
- Standard Model
 - none of the secrets.
 - related to known-ciphertext attack.
- Advanced Model
 - augmented with the capability of the adversary to execute part of or all submodules that make use of the secrets.
 - related to chosen-plaintext attack and chosen-ciphertext attack
- Full Disclosure Model
 - augmented by disclosing the secrets to the adversary (e.g. malicious insider)

SOME PRACTICAL CONCERNS

→ With ECC based construction

- Use of non-perfect codes => if one decodes, it is most probably that d(b,b')<t</p>
- ⇒ unlinkability attacks (Simoens et al. 2009)

→ FAR attack

- Linkability issue
- Pseudo-reversibility issue
 - With SSK construction, enables to retrieve b

→ Biometric data and errors between data may NOT be uniformly distributed

- Can we do more?
- Statistical attacks possible

Shuffling is not sufficient

*Related to IJCB 2014 Security Analysis of Cancelable Iriscodes based on a Secret Permutation with H. Chabanne & C. Morel

USE OF APPLICATION-SPECIFIC TRANSFORM

- → Cancelable biometrics / Ratha et al., 2001
- → Application-specific bio / Cambier et al. 2002
- → Also as user-specific secret, e.g. biohashing / Goh et al. 2004
- → Also combined with other techniques, e.g. with fuzzy commitment scheme (Bringer et al. 2007, Kelkboom et al. 2011)

SHUFFLING ON IRIS

Images from Rathgeb & Uhl, A survey on biometric cryptosystems and cancelable biometrics. EURASIP J. of. Inf. Sec. 2011

- → Iriscode : 256-byte iris + 256-byte mask
 - Mask indicates (in)exploitable data: eyelids, eyelashes, blurred pixels...

VS

$$score((I1, M1), (I2, M2)) = \frac{\|(I1 \oplus I2) \cap M1 \cap M2\|}{\|M1 \cap M2\|}$$

John Daugman: How iris recognition works. IEEE Trans. Circuits Syst. Video Techn. (TCSV) 14(1):21-30 (2004)

SHUFFLING ON IRIS

SHUFFLING

- → Naive Model, Collision Model
 - ok ...
- → Full Disclosure Model
 - NOK
- Advanced Model (execution)
 - FAR attacks
 - Statistics with know (plaintext or matching-plaintext, ciphertext) couples
 => good appromixate of permutation
- → Standard Model
 - 7

SHUFFLING IS NOT SUFFICIENT

- **→ Same transformation applied to the whole reference DB**
- → Biometric data are not uniformly random
 - Correlated bits
 - cf. e.g. A. Vetro, S. Draper, S. Rane, and J. Yedidia. Securing biometric data. In P. Dragotti and M. Gastpar, editors, Distributed Source Coding. Elsevier, Jan. 2009
 - For instance, on iris information part
 - Transition $0 \rightarrow 0$ proba > 0.40
 - Transition $1 \rightarrow 1$ proba > 0.20
 - Non-random masks

ATTACK WITH STOLEN DB) (ON BYTE PERMUTATION)

Method

Assign a probability of being neighbors for each couple of bytes

→ Results:

- Blue Percentage of the permutation retrieved : 39% and Matching : 0.33
- Blue+Black Percentage of the permutation retrieved : 58% and Matching : 0.20

Compression is neither sufficient

*Related to ICB 2015 Security analysis of Bloom Filter-based Iris Biometric Template Protection w/ C. Morel & C. Rathgeb

HASHING TABLE-BASED TPS

From Rathgeb et al.'s ICB 2013

- Claimed properties (even with T public): unlinkability & irreversibility
- → Full Disclosure Model = Advanced Model = Standard Model
 - FAR attacks => linkability & pseudo-reversibility
 - Can we do more?

BIOSIG 2014 ANALYSIS

→ Unlinkability analysis

- Methods: $|BF(X, T^1)| = |BF(X, T^2)|$
- Results: 96% of success

→ Irreversibility analysis

- Methods: analysis based on uniformly random data real biometric data
- Results: reconfirm Rathgeb et al.'s irreversibility security analysis

J. Hermans, B. Mennink, and R. Peeters. When a bloom filter is a doom filter: Security assessment of a novel iris biometric template protection system. In BIOSIG 2014.

UNLINKABILITY ANALYSIS

IRREVERSIBILITY ANALYSIS

→ General irreversibility attack

→ Our irreversibility attack

MEAN COLUMN OF EACH BLOCK

T=0

IRREVERSIBILITY ATTACK - EXPERIMENTATIONS

Optimal security?

OPTIMAL SECURITY...?

- → Goal: ensuring FAR attack = worst case situation
- → Seems realistic for error-correcting code (ECC) based TPS
- One of our solutions
 - Product codes
 - +randomly permuted biometric binary vector (interleaving)
 - +iterative soft decoding algorithm

Underlying idea: to tend toward the worst-possible FAR

- Use near-optimal decoding algorithm (vs Shannon)
- And use i.i.d. bits for messages or break correlations

*Related to IEEE TIFS 2008 Theoretical and Practical Boundaries of Binary Secure Sketches w/ H. Chabanne, G. Cohen, B. Kindarji & G. Zémor

APPLICATION TO DIFFERENT MODALITIES

- → Preliminary step:
 - embedding into a Hamming space
 - constraints: amount of errors, low FAR with usable FRR
- Almost direct for iris (cf. IEEE TIFS 08, BTAS 2007 w/ Chabanne, Cohen, Kindarji & Zémor)
- → Works well for vein recognition
 - (with specific dedicated alignment-based techniques) (cf. ICISP 2015 w/ Chabanne & Favre & Picard)
- → Face: quite okay as fixed length feature vectors in Euclidean space
- → Fingerprint still a challenge

APPLICATION TO KEY BINDING

→ Goals: low FAR and « valuable » key length

FUSION FOR DECREASING FAR

→ Fusion of binary vectors and application to fuzzy vault

→ Results on FVC2000 DB2

Number of fused templates	FRR (%) at 0.01% FAR	Computational Security (bits)
1	32.87	31
2	17,30	36
4	2.10	53
8	0.30	143

→ Security

- More costly FA attacks due to fusion
- High computational security in fuzzy vault setting

CONCLUSION

Design of TPS

- Need to take in account practical constraints
- Security analysis is a critical task in the design
 - FAR and Intrinsic properties of data MUST be taken in account
- Progresses in the last years on trade-offs between security vs accuracy/efficiency
 - Decreasing FAR for some modalities still desirable
- Applications to key generation

- → 1st layer of protection for "stand-alone" use case
- → To be combined or replaced with more robust cryptographic techniques in a system-oriented approach

