Environmental Authentication in Malware

Jeremy Blackthorne!, Benjamin Kaiser?, and Benjamin Fuller®,
and Biilent Yener!

! Rensselaer Polytechnic Institute, Troy NY 12151, USA
{whitej12,byener}@rpi.edu,
2 benjamin.h.kaiser@gmail.com
3 University of Connecticut, Storrs, CT 06269, USA
benjamin.fuller@uconn.edu

Abstract. Malware needs to execute on a target machine while simul-
taneously keeping its payload confidential from a malware analyst. Stan-
dard encryption can be used to ensure the confidentiality, but it does
not address the problem of hiding the key. Any analyst can find the
decryption key if it is stored in the malware or derived in plain view.
One approach is to derive the key from a part of the environment which
changes when the analyst is present. Such malware derives a key from
the environment and encrypts its true functionality under this key.

In this paper, we present a formal framework for environmental authen-
tication. We formalize the interaction between malware and analyst in
three settings: 1) blind: in which the analyst does not have access to the
target environment, 2) basic: where the analyst can load a single anal-
ysis toolkit on an effected target, and 3) resettable: where the analyst
can create multiple copies of an infected environment. We show neces-
sary and sufficient conditions for malware security in the blind and basic
games and show that even under mild conditions, the analyst can always
win in the resettable scenario.

Keywords: environmental keying, environmental authentication, mal-
ware

1 Introduction

In many settings, programs try to prevent observers from learning their behavior.
These settings vary from legitimate software protecting its intellectual property
through digital rights management to malware hiding from analysts to extend
the life of a criminal endeavor.

We focus on malware hiding from an analyst, but our discussion applies to
the other scenarios as well. Our goal is to improve the understanding of current
and future malware techniques. Our work proceeds from the point of view of the
malware hiding from an adversarial analyst. Thus, our discussion reverses roles:
the malware designer is the party trying to ensure security and the analyst acts
as the adversary.

2 J. Blackthorne, B. Kaiser, B. Fuller, and B. Yener

Malware follows two approaches to hiding its behavior: 1) making the ob-
served program unintelligible, i.e. obfuscation [CTL97, BGIT01, GGH'13], and
2) preventing observation from even occurring when executing in the wrong en-
vironment, i.e. environmental authentication [RS98, SRL12].

Obfuscation is the subject of informal [CTL97] and formal [BGIT01] treat-
ments. Obfuscation works as follows: an obfuscator function O(.) takes some
program P as input and creates P’ such that P’ is input-output equivalent
to P but is implemented differently. The implementation is changed with the
goal of confusing an analyst which tries to understand the program. But even
the strongest obfuscation scheme cannot hide important aspects of the program
including input/output behavior. Some functions can be recovered by just ob-
serving a polynomial number of input-output pairs [SWPO08]. Such functions are
known as learnable. For malware, the desire is to hide the effects on the target
computer system, the inner workings of the algorithm are a secondary concern.
For this stronger level of protection, malware attempts to prevent observation
from occurring. Malware achieves this by distinguishing environments in which
it is being observed from environments which it is not. This distinguishing of
environments we call environmental authentication.

Environmentally authenticating malware targets a particular computer (or
set of computers) and learns as much as possible about this target environment.
It then creates (at least) two distinct behaviors: one for the target environment
and another for non-target or observed environments. At runtime, the malware
determines its current executing environment and executes the appropriate be-
havior [BCK™10a]. Environmental authentication can be subdivided into two
approaches: 1) environmental sensitivity and 2) environmental keying.

Environmental Sensitivity Environmentally sensitive malware reads system state
and incorporates this state into program control flow [BKY16]. As an example,
the Windows API includes a function IsDebuggerPresent which allows a pro-
gram to detect if a user level debugger is instrumenting their program. Many
pieces of malware change their behavior based on the value of this call. This ap-
proach makes a binary and observable decision on how the environment affects
control flow. This means that an analyst can run a debugger, create a break-
point at this system call, and manually overwrite the return to be true. This
corresponds to a weak form of authentication (also known as binary match-
ing [ICF*15]).

This has lead to an arms race between malware trying to sense the presence
of analysis techniques and analysis techniques trying to create small and un-
observable changes in the system state. Malware authors created techniques to
detect debuggers [CAM™08, Ferll, SH12], virtual machines [Fer07, SH12|, and
system emulators [KYH109, PMRB09]. All environmental sensing techniques
make binary decisions based on the environment.

Environmental Keying Environmental keying replaces the binary decision of
environmental sensing with key derivation. This approach is performed in three
stages:

Environmental Authentication in Malware 3

[
| [
Pr C C
Environment F
k KDF — -
Decrypt Decrypt o

(a) Target (b) Encrypted (c¢) Encrypted with environmental key-
Payload ing

Fig.1: A plaintext payload Pr is shown in (a) as a baseline. In (b) we see
the same payload Pr transformed into an encrypted version C. The encrypted
payload must include an unencrypted key and a decryption function. In (c) we
see the same encrypted payload from (b) with k replaced with the KDF function.
KDF takes the environment E as an input and derives k as output. In this figure
the alternate payload Py is removed for clarity.

1. The malware author targets a computer (or class of computers). Informa-
tion about the target computer is observed and recorded in the malware. In
addition, the author gathers information about other configurations which
can be considered as invalid or under observation.

2. The author derives cryptographic keys from the target environment and
observed environments.*

3. The author encrypts different program behaviors under each of these keys
and adds a key derivation process to switch between these behaviors.

At run time, the malware measures the environment and derives a key from
this environment. Environmentally keyed malware is split into three function-
alities: a key derivation function (KDF) and encrypted payloads Pr and Pp
corresponding to the desired behavior in the target and observed environments
respectively. When deployed, the malware first derives a key from the environ-
ment and then try to decrypt each payload. This process of unlocking functional-
ity is shown in Figure 1. For example, the malware Gauss derives a key from its
environment by computing an MD5 hash 10,000 times over a combination of the
%PATH% variable and the directory names in %ZPROGRAMFILES% [RT12].
To the best of our knowledge, Gauss’ target behavior has not been decrypted.

* Extractors [NZ96] and fuzzy extractors [DRS04] can be used to derive keys in
non-noisy and noisy environments, respectively. See the works of Nisan and Ta-
Sha [NT'S99] and Dodis et al. [DRS08] respectively for more information. Throughout
this work we assume that the key derivation techniques are implemented properly
and the only weakness that can be targeted is guessing a valid input to the key
derivation process.

4 J. Blackthorne, B. Kaiser, B. Fuller, and B. Yener

Encryption prevents an analyst from reasoning about the target payload
Pr. There is no binary decision that can be flipped by an analyst to force the
malware to decrypt the payload in an incorrect environment. There are two main
questions in this setting, 1) can the malware designer find high entropy sources
for key derivation, 2) can the analyst observe the malware without disturbing
these sources.

Obfuscation has a long history in both the systems and theoretical com-
puter science communities. Environmental authentication, on the other hand, is
known in the systems community but unexplored from a theoretical perspective.
The malware community is rapidly adopting new techniques, forcing analysts to
scramble to develop new analysis capabilities in order to keep up. The develop-
ment of a theoretical foundation for environmental authentication will empower
analysts to develop more effective tools for analyzing malware that uses envi-
ronment authentication.

Our Contribution We put forth a formal model for environmental authentication
and evaluate three common malware analysis settings:

Section 3 An analyst that does not have access to the target environment to
which the malware is keyed. We call this the blind setting.

Section 4 The analyst has access to the environment after the malware has
infected it and cannot create an offline backup of the system. This setting
represents an analyst performing incident response on a critical system. For
example, a controller at a power plant cannot be taken offline. We call this
the basic setting.

Section 5 The analyst is able to snapshot an infected system. They are able to
create multiple copies and install different analysis tools on each copy. We
call this the resettable setting.

In all settings a piece of malware M interacts with the environment £ through
a series of decision algorithms, Dy, ..., D,,, which read subsets of the environment
to determine the execution path. Recalling the stages of environmental keying:
the decision algorithms represent measuring the environment, deriving a key,
and attempting to decrypt the next section of the program. We do not allow the
analyst observe the code of the current decision algorithm or beyond so 1) our
results hold in the presence of obfuscation and 2) because any code beyond the
decision procedure may be encrypted. The analyst’s primary means of interact-
ing with the malware is by providing inputs to the decision algorithms, which
represents altering the environment (as the input to each decision algorithm is a
reading of the environment). The (informal) goal of M is to satisfy correctness
and soundness:

Correctness M achieves correctness if it reaches the payload stage Pr in the
target environment.

Soundness M achieves soundness if it never reaches the payload stage Pr when
the analyst A is present in the environment.

Environmental Authentication in Malware 5

Necessary Sufficient

Blind |Thm 2: Some D; outputs 1 with|Thm 3: Some D; outputs 1 with
negl probability on random inputs. [negl probability on best case inputs
Basic |Thm 4: Decision procedure and an-|Thm 5: Most of environment is en-
alyst likely to overlap tropic

Table 1: Summary of results. Necessary and sufficient conditions are from the
point of view of the malware designer. The resettable setting is omitted as M
security is not possible in this setting.

We provide necessary and sufficient conditions for M to be secure in the
blind and basic games. In the resettable game, we show that under very mild
assumptions, the analyst always wins.

Our results for the blind game are intuitive: for M to be secure, it is neces-
sary that a decision procedure rarely outputs 1 in a random environment. It is
sufficient that there does not exist a “worst case” environment that can cause a
random decision procedure to regularly output 1. This means that in practice,
decision procedures must be precisely keyed to their target environment.

Our results for the basic game are more complicated. In this setting, the ana-
lyst may read the target environment but first has to load an analysis technique.
This process of loading can overwrite some critical part of the environment.
A necessary condition for security is for the analysis technique to be likely to
overwrite a large subset of the environment that will be used in some decision
procedure. A sufficient condition for security is that this subset is likely to be
“entropic”, i.e., there are few values for it that cause a decision procedure to
accept. The first condition is intuitive, but the second conflicts somewhat with
our understanding of computers, for although we don’t know the distribution of
all aspects of a computer system, it seems unlikely to be large for all subsets.

For the resettable game, we provide a simple proof that the analyst can learn
the entire target environment, and thus environmental keying provides little
security. Our results for the blind and basic settings are summarized in Table 1.
We note our results are information-theoretic as we assume that the A only has
oracle access to decision procedures.

1.1 Other Related Work

Protecting programs by depending on the environment has been studied un-
der many names, including environmental key generation [RS98], secure trig-
gers [FKSWO6], host-based fingerprinting [KLZS12], environment-sensitive mal-
ware [LKMC11, SRL12], host-identity based encryption [SRL12], environment-
targeted malware [XZGL14], malware with split personalities [BCKT10b], and
environmental keying [Mool5, Baul4]. We use the term environmental authen-
tication to describe any technique that creates a dependence on a specific envi-
ronment or type of environment for the purposes of preventing observation or
analysis.

6 J. Blackthorne, B. Kaiser, B. Fuller, and B. Yener

Transparent analysis analyzes programs while minimizing detectable environ-
mental changes [Yan13]. Dinaburg et. al present a formalization for transparent
malware analysis in [DRSLO8] and describe the requirements for transparent
analysis. Their requirements are higher privilege, the absence of side-channels,
transparent exception handling, and identical timings. Kang et. al also formulate
the problem of transparent malware analysis within emulators [KYH™09].

Key derivation is a sub-field of cryptography that studies ways to extract
uniformly random strings from high-entropy, non-uniform sources [Kral0]. De-
riving keys in the presence of noise is often necessary for real-world applications
and is achieved by fuzzy extractors [DRS04]. Throughout this work we assume
that key derivation is ideal, a resulting key is secure if it results from super-
logarithmic min-entropy. In the noise-free setting, this is sufficient in the random
oracle model [BR93]. This may not be sufficient in the noisy case, a more precise
notion is fuzzy min-entropy [FRS16], we ignore these losses in this work.

Organization The rest of the paper is organized as follows: in Section 2, we
provide the necessary background information, notation, and preliminary defi-
nitions, including the formal definition of environmental authentication. In Sec-
tions 3, 4 and 5, we describe the blind, basic, and resettable settings respectively.

2 Definitions

Functions are written in the typewriter font, e.g. Function, distributions using
script font and a single letter, e.g. D, and scalar values using math font with
a single lowercase letter, e.g. k. If k is sampled from a distribution D, we say
k< D. If k is an element in a set K, we say k € K.

2.1 Modeling Computer Systems.

Computer systems are complex, as programs can read state from a variety of
sources: memory, hard drive, cache, side-channels, operating system calls, reg-
isters, installed devices, network interfaces, and more. Turing machines and in-
teractive Turing machines do not capture all of this interaction, particularly for
two programs operating in the same system.

The goals of malware are 1) correctness: detecting if they are resident on
a target set of machines and 2) soundness: discerning if the system is being
analyzed. These goals can be modeled by abstracting various device state into a
single array F which we call the environment. The two goals can be stated as:

Correctness The malware should read enough of E to be sure it is on a targeted
machine. In particular, it should read features that vary between devices.
During targeting it is necessary for the designer to learn the relevant features
of the target set.

Soundness The malware should read parts of the array that are likely to change
under observation. As mentioned in the introduction, parts of the array
that change under observation include IsDebuggerPresent (which is easy
to hide) and timing side-channels (which are harder to hide).

Environmental Authentication in Malware 7

The goal of the analyst is to understand both E and the malware M without
causing changes to E. In pursuing this goal, we assume that the analyst has two
main capabilities

1. They are able to create (representative) computer systems and read all of
E.

2. If the analyst has access to the target computer they can read from the envi-
ronment after being loaded on the system. This action may cause detectable
and irreversible changes to E.

We now formalize the correctness goal of malware. We defer soundness to the
following sections as we consider it with regards to multiple analysis postures.

Model A computer system is a one-dimensional array E of length ¢ (E € {0,1}%).
We denote by £ the distribution of possible system environments and a single
computer system F is sampled from £ (E «+ £). Either the malware author or
analyst may have more information about the target environment or the overall
distribution of computer systems. For instance, the malware designer may be
targeting an English language system while this is unknown to the analysts.
Our model should extend to this setting but we leave this formalization as future
work.

All algorithms are executed in the environment but must be loaded into F
via the Load function. This (irreversibly) changes the environment E into E’.
Only after being loaded can an algorithm read from or write to the environment.
When M is loaded onto E, denoted Load(M, E), its goal is to authenticate the
environment using a sequence of decision algorithms D; and sensors .S;. A sensor
S; is a subset of [1../]. The corresponding decision algorithm D;(EY§,) takes as
input the environment at the set of locations {E;|j € S;}. D; outputs 1 to
indicate the environment matches the target environment (i.e. continue on a
execution path that allows it to deliver its target payload) and 0 otherwise.

We assume this payload is of minimal size in comparison to the environment
and thus we do not include it in the model. The analyst wins if they pass all
decision procedures. Authentication decisions may be implicit through the use
of cryptographic authentication, thus we only allow an analyst to provide inputs
to D; in a black-box manner and decision algorithms output a binary decision.
There is no way to force the decision procedure to output a 1.

Limitations of our model Computer systems change over time. We do not model
time for an analyst because a determined analyst can control the system envi-
ronment and essentially stop time. In real computer systems, the malware can
only read a single address at a time which is either 32 or 64 bits. Several of our
results will depend on the size of memory that M can read in a single decision
algorithm, we call this parameter readsize or av. We assume that « is substan-
tially larger than a single memory location. It is an interesting open problem to
extend our results to a setting where a decision procedure cannot read all of its
input in a single timestep.

8 J. Blackthorne, B. Kaiser, B. Fuller, and B. Yener

Correctness For malware to authenticate its environment it must be correct,
meaning that it executes its payload in its intended environment, and sound,
meaning that it does not reveal its payload in an observed environment. We
present a definition for correctness here and define three soundness definitions
in the following sections. First, however, we must describe precisely how sensitive
a piece of malware with both correctness and soundness is against an analysis
technique A. We capture this property in the following definition.
We define correctness with the following game:

Experiment Expj}; 5:

(Dl, Sl, ceny Dn, Sn) <« M()

E' + Load(M, E)

If Vi, [Di(E§,) = 1] return 1

Else return 0.

Denote by the parameter n the number of decision algorithms and « the maxi-
mum size of S;. We assume that each D; is deterministic and the probability is
over the coins of M and Load.

Definition 1. A piece of malware M is 6-correct on E if Pr[Expl;'p(-) = 1] =
d.

Environment Samplability We assume the analyst is able to read the state of
representative computers and may be able to load on the targeted computer
with the malware present. We now formalize this first capability:

Assumption 1 There exists a randomized algorithm Samp running in time tg
such that Sampg(+) Le.

If the malware accepts frequently on random computers there is no need for
the analyst to understand the target environment. That is, access to the target
environment is not necessary if the decision procedures output 1 frequently on
random computers:

Definition 2. Define the accepting probability of M over n possible environ-
ments, denoted
Accept(M, &), as

bocept(31.£) = min (Escs (Pr ID(Es)=1))).

Accepting probability captures how frequently the malware succeeds on a ran-
dom computer system. However, it may be possible for an analyst to learn more
information by observing the behavior of the previous decisions procedures. To
capture this notion we present the following (information-theoretic) definition:

Environmental Authentication in Malware 9

Definition 3. Define the adaptive guessing probability of M over n possible
environments, denoted as
AGuess(M, &), as

AGuess(M, &) = win <g}2}§ (D EE—M[Dl(E/S) = 1|Dy, ...,Di1]>> :

where D; is the entire truth table of D;.

These definitions capture security against an analyst trying random computer
systems and an analyst finding the best computer system respectively. They can
be thought of as analogues of Shannon and min-entropy respectively [Rén61].
We do not condition on the previous decision algorithms in Definition 2 as this
does not change the expectation but this could be included without affecting
Accept.

Definition 4. M is (3,~)-environmentally authenticating if:

— Accept(M, &) > 275,
— AGuess(M,&) < 277.

Proposition 1. AGuess(M,i,E) > Accept(M,i,E) and thus for any
(8,7)-environmentally authenticating malware v < 3.

With these definitions we can formalize the notion of environmental sensitiv-
ity and environmental keying described in the introduction.

Definition 5. Let A\ be a security parameter. If M is (8,7) environmentally
authenticating for 5 = O(log \) then M is environmentally sensing.

Definition 6. Let A\ be a security parameter. If M is (f,7) environmentally
authenticating for v = w(log \) then M is environmentally keying.

By Proposition 1 v < 8, thus malware cannot be both environmentally sensing
and environmentally keying. There is malware that is neither environmentally
sensing nor environmentally keying.

3 Blind Scenario

The first adversarial scenario models malware being found in the wild separate
from its target environment. This is common in real malware, which may spread
widely and infect many machines beyond its target, if it even has a specific
target. This separation of malware and target environment is important when
attempting to understand malware with environmental authentication. In this
scenario, the analyst does not know or have access to the target environment,
we also assumes that the analyst cannot determine the target environment by
reverse engineering the malware; this scenario is demonstrated in practice by
the malware Gauss, for which a target environment has not been found despite
significant effort by the analysis community [RT12].
We define blind soundness using the following game:

10 J. Blackthorne, B. Kaiser, B. Fuller, and B. Yener
Experiment Expﬁlfi’;ﬂl:
(Dl, Sl, . D'm Sn) «~ M
Fori=1ton
Guessi = ADl() (Su Di—l; Si—ly ceey D17 Sl)
If Vi, D;(Guess;) = 1 return 1
Else return 0.

In this game, A receives a complete description of all prior decision algorithms
and the current sensor readings. They also have oracle access to the current
decision procedure. We denote by t,rqcie the time needed to make an oracle call
and assume this time is consistent across decision procedures.

Definition 7. M is e-blind sound against A if Pr[ExptI’V%ESj‘(J =1l]<e

Our results in the blind game are intuitive. A necessary condition for soundness is
that Accept accepts with negligible probability on random inputs. A sufficient
condition for soundness is that AGuess accepts with negligible probability on
worst case inputs.

Theorem 2. For any (3,7)-environmentally authenticating malware M with n
decision procedures that is at most 1 — & correct, for any 0 < € < 1 there exists
A such that M is at most (e + 0)-blind sound where A runs in time

n
tA = Qﬁn(tE + toracle) In (1 — 6)
The proof of this theorem can be found Appendix A.1. At a high level, the A
can sample environments randomly until each decision procedure accepts. The
result implies that environmentally sensitive malware is not sound in the blind
game:

Corollary 1. Let A be a security parameter, if M is environmentally sensing
(i.e. 2% = poly(A\)) and 1 — & correct, and n,torace,te = poly()\) for any
€ <1—27PWWN there exists an A that runs in time poly(\) such that M is at
most € +§ sound.

We further show having a high v suffices for security in the blind game.

Theorem 3. For any (8, v, n)-environmentally authenticating malware M that

is 1 — d-correct, let A be a block-box algorithm that makes at most t calls to the

.. . -
decision oracles, then M is at least e-sound for e = (t + 1)#

The proof of this theorem can be found in Appendix A.2. At a high level,
since a decision procedure has a negligible probability of accepting, even with a
polynomial number of guesses the overall acceptance probability remains negligi-
ble in the security parameter. The result implies that all environmentally keyed

systems are secure in the Blind game:

Corollary 2. Let A be a security parameter, if M is environmentally keying,
then for any black-box A making t = poly(X\) oracle calls, € = negl()).

Environmental Authentication in Malware 11

Proof. The proof proceeds by noting that for ¢ = poly(A\) and 277 = negl(\)
then 1 —¢277 > 1/2 and thus € < 2(t + 1)277 = negl(\).

Without access to the intended environment F, the blind adversary is at a
significant disadvantage. As long as the key has sufficient entropy, the scheme
is sound. We see a real example of this in the malware Gauss. Almost four
years after Gauss was first reported [RT12], we see that there still have been
no public success in deciphering its payload. There has even been developed an
open source, distributed cracker developed to harness global computing power
to solve the mystery without success [Jst16].

4 Basic Scenario

The next adversary represents a common scenario for malware analysts: incident
response. This refers to the situation in which an analyst is called to assess the
damage achieved by a piece of malware that has already infected a computer and
currently still running on it [CMGS12]. In this scenario, the targeted computer is
part of critical infrastructure which cannot be taken offline: e.g., a power control
system. The analyst does not have an image of the computer that contains the
uninfected state and must perform analysis on the infected image without being
detected by the malware. That is, the analyst has access to E where M has
already been loaded. However, they can gain no information about E without
loading themselves, which changes F.

Basic Soundness We define the basic soundness game as follows:

Experiment Exp}/'s 4 1oad:
(D1,51,...;Dp, Sp) «— M(E)
Ey Load(M, E)
EM,A — Load(A, EM)
Fori=1ton
Guessi = ADl() (EM,A7 Si, Difl, Sifl, ceey Dl, Sl)
If Vi,D;(Guess;) = 1
return 1
Else
return 0.

Definition 8. Let Load be a program loading module. A program M is e-sound
for the target E (drawn from £) with respect to A if

Pr[Exp?\(/)IL,IE,A,Load(') = 1] >1-e

Our results in this model are slightly more complicated than those in the Blind
game. By our earlier-stated assumption, the analyst loading their tools causes
some change in E. For the malware to successfully evade, this change must be
large enough such that the analyst cannot easily guess values that will make D;

12 J. Blackthorne, B. Kaiser, B. Fuller, and B. Yener

accept. If the analyst only overwrites a few bits, for example, they can trivially
guess the correct sequence. We will formalize this notion, noting where our model
differs from reality.

First, we assume for convenience that loading A changes a random subset of
locations of size v. This differs somewhat from reality, in which changes will be
limited to certain subsets of the environment (such as the filesystem or registry).
However, in both cases, portions of E that would not be overwritten by A can be
ignored by both M and A.5> We further assume that the locations of Ejs 4 that
are changed are known to A and they are set to values independent of the values
in E);. We also assume that the M is always able to execute with A loaded. This
requires that loading A never overwrites M’s functionality; in practice, analysts
avoid overwriting the program they are analyzing, so this assumption holds.

Theorem 4. Let M be a (B,7)-authenticating piece of malware with n decision
procedures and mazimum read size o where n -« = £° for some 0 < ¢ < 1.
Furthermore, suppose that M is § correct on all Epy < Load(M, E). Let ¢ > 0
be some parameter. If there exists some A with artifact size v = £1~¢, then by
making at most 2 T2 oracle queries M is at most (eil/ul_c +(5+672/3C/2)—basic
sound.

The proof of this theorem can be found in Appendix A.3. Roughly, when the
product of the read size of the malware and the size of the analyst is at most
the total size of the environment ¢ we expect the malware read locations and
the analyst to collide in a small (logarithmic) number of positions. The analyst
is then able to exhaustively search over the relevant locations that were erased.
We simplify the theorem for common parameter settings:

Corollary 3. Let A be a security parameter where £ = poly(\). Let M be a
(8,7)-authenticating piece of malware with n decision procedures and mazimum
read size o where n - a = ¢ for some 0 < ¢ < 1. Furthermore, suppose that
M is & correct on all Epy < Load(M, E). If there exists some A with artifact
size v = O({17°), then by making at most poly(\) oracle queries M is at most
(0 4+ 1/poly(A))-basic sound.

The above statement says that if the product of the size of the sensed po-
sitions and the analyst size is less than the total environment length then it is
possible for the A to evade the malware and force the decision procedures to
output 1.

We now proceed to show a sufficient condition for security. The necessary
condition requires that the intersection between S; and A is large. However, it
also requires that A is not able to come up with valid guesses for the missing
parts of the E. Creating a simple definition for this condition is complicated by
two factors:

5 In reality, we expect certain portions of F to be more likely to be overwritten by
different A. Our results extend to that model.

Environmental Authentication in Malware 13

1. The malware, M, does not know ahead of time where A will be loaded.
If A can load in a location S; whose values, Eg, are easy to predict, it is
impossible for M to provide security.

2. Once loaded, the A has access to the rest of E. This means that any redun-
dancies or observable patterns or structures in £ can be used to increase A’s
probability of guessing successfully.

Combining these two requirements, M should sense from as much of the
environment as possible and E at sensed locations has to be hard to predict even
knowing the rest of the environment. It is unlikely that computer systems satisfy
these requirements. Environments have known structures and patterns — OS
structures, filesystem contents, common libraries, etc. — and there are areas that
have very low entropy. To codify the difficulty of satisfying these requirements,
we present an analogue of Definition 3 and a corresponding sufficient condition
for security. However, our condition should be seen as a largely negative result,
as it only applies under unrealistic conditions on E and M.

Definition 9. Let A\ be a security parameter. A piece of M is p-entropic sensing
if for every subset Equ, C E such that |Eguy| > 1, then

.) ’ _))
1I§niléln <IEI}%}:‘§ E(—E}.\D,i,[DZ(ESi) 1|D17 Sla ceey szla Slfl) E \ Esub]
Sﬁ—M(E)

=negl(\)

where D; is the entire truth table of D; and E \ Egyp is the portion of E which
is not contained in Eyyyp.

Definition 9 imposes a constraint both on the malware and on the environ-
mental distribution & itself. This implicitly requires that all large subsets of £
have super-logarithmic min-entropy conditioned on the rest of the environment.

Theorem 5. Let A be a security parameter. Let M be a p-entropic sensing with
n decision procedures. If all A have artifact size at least u, then any black-box
A making at most poly(\) oracle queries then M is at least (1 — negl()\))-basic
sound.

The proof of this theorem can be found in Appendix A.4. Most of the complexity
of the proof is contained in Definition 9 which implies that the analyst’s first
guess on some decision procedure succeeds with negligible probability. Standard
arguments show that even with a polynomial number of guesses their overall
success remains negligible.

Note: It is possible to weaken Definition 9 to be probabilistic. That is, there
is a good chance that the set overwritten by the A will make it difficult to
provide good inputs to some D;~. However, this does not fundamentally change
the character of the result which says that all large subsets of £ must be entropic
and that M must read all subsets of E with good probability.

14 J. Blackthorne, B. Kaiser, B. Fuller, and B. Yener

5 Resettable Adversary

Finally, we turn to our least setting which we call the resettable adversary. In
this setting A is allowed access to the malware M and the environment E while
they are still separated. They are allowed to Load in the environment E multiple
times and reset. Not surprisingly, our results in this model are negative. As long
as there are multiple analysis techniques that are disjoint it is always possible
for the analyst to acquire the state of the environment that exists without the
analyst being present. This allows the analyst to present the pristine environment
to the malware, thus unlocking it. We begin by formalizing the interaction.

Resettable Soundness We define the resettable soundness game as follows:

. res—sou .
Experiment Exp)y; 5" oaq., ()

(Dl, Sl, ey DT“ Sn) — M(E)
E)y + Load(M,E)
state =1
For i =1 to ¢
Ai — A(Dl, Sl, ceey Di—17 Si—h Di, Si, State)
E; Load(Ai,E)
(Guessy, f, state) = A;(E;, D;, S;).
if f =1 break
If Vi, D;(E;) = 1 return 1
Else return 0.

Definition 10. Let Load be a program loading module and let X\ be a security
parameter. A program M is e-resettable sound for the target E (drawn from &)
with respect to A if for all ¥ = poly(A),

Pr[Exp??,lE,A,Load,w(') = 1] >1—e

Theorem 6. If there exists multiple analysis techniques Ay, Ao such that the
locations overwritten by A1, As are disjoint, then all M that is §-correct is at
most §-resettable sound.

Proof (Sketch). The analyst A proceeds in three stages. First, they load some
tool A; and output all non overwritten parts of E as state. They then load Ao
that does the same. Finally, they create an Az that encodes a copy of the entire
environment as it exists without any tools present. This A3z recreates the proper
inputs to the decision procedures and only fails when M fails to authenticate in
the legitimate environment.

In the above proof sketch we assume that As is able to encode the entire
target environment F in an analysis module. In reality, once the analyst has
recovered the environment, they can produce an module that only includes the
relevant information which is read in by M. The only requirement for the analyst
is to be able to encode the entire environment and their guessing logic on the

Environmental Authentication in Malware 15

target machine. One could imagine that the loaded module could communicate
with outside storage for pieces of the environment but this is out of scope for
our model.

The resettable analyst A can forge the pristine environment and thus unlock
the malware. With the ability to reset the environment and malware, the analyst
can understand the entire target environment with the same precision as the
malware making security impossible.

A Proofs

A.1 Proof of Theorem 2

Proof (Proof of Theorem 2). We show a stronger statement, we show a single
algorithm A that works for any (8, y)-environmentally authenticating malware.

Let t =2%1n (1—1 . Define A as follows for decision procedure i:

1. Input Di, Sz', Di—17 Si—la) Dl, Sl.
2. Forj=1tot
(a) Sample F; < Samg.
(b) If D,(E; s,) =1 output Guess; = E;.
3. Output L.
This procedure is repeated for each decision procedure. A wins if all decision
procedures output 1. We first note that the probability that some decision pro-
cedure is incorrect is bounded by at most 6. We now bound the probability
that A outputs L for any iteration conditioned on the malware being cor-
rect. We first consider a single iteration. By Definition 4 and Assumption 1,
Ep,ce(Pr[Di(Ejs,) = 1]) > 277, That means that
Pr[A outputs L on D;] =Vj,Pr[D;(E;s,) = 0]
= (Egee Pr[Dy(Es,) = 0])'
— Accept(M,4,£))

=
<(1-27%

<{(1-27)

< (1)(2%) < et (1)

Then across all iterations by union bound and Equation 1: Pr[A outputs L
on any D;] < ne—t/2" That is,

2/3) (t/27)

. 1—
PrExpY 5 () = 1] > 1 —ne /2" = 1 —neW0V0-0) _ 1 _y, (.) .

16 J. Blackthorne, B. Kaiser, B. Fuller, and B. Yener

Note that the overall running time of A is at most t4 = n(tg + toracie) - t as
required. The statement of the theorem is achieved by adding the probability §
that the malware is incorrect.

A.2 Proof of Theorem 3

Proof (Proof of Theorem 3). Let A be a black box algorithm that only provide
inputs to the current decision algorithm. Since the entire decision procedure is re-
vealed once a “true” input is found there is no reason to query a previous decision
algorithm. Consider some decision algorithm ¢* that minimizes the probability
in Definition 3. We bound the probability that A can make D;« output 1 as this
bounds the probability of all algorithms outputting 1 (it may be that only a sin-
gle decision algorithm outputs 0 on some inputs). The only information about
values E that cause D; to output 1 are contained in the query responses. Since
the adversary wins if they get a single 1 response we can assume that A makes ¢
deterministic queries and if none of those responses is 1 their guess will also be
a deterministic value. Denote by g1, ..., gt4+1 these values. Then we bound:

t+1

1 b, Pr D (g)) = 1] < PrDy (1) = 1] + Pr[Di- (g2) = 1lgn = 0] + ...

+ Pr[D;«(gt+1) = 1|Di=(g1) =0 A ... A D= (g¢) = 0]
Pr[D;(g2) = 1A D= (g1) = 0]]
Pr[D;«(g1) = 0]
Pr[Di(gi41) = LA Dy (g1) =0 A ... A D= (gi) = 0]

<277 4 + ...

+
Pr[D(g1) =0 A ... A D+ (g¢) = 0]
- Pr[D;-(g2) = 1] Pr[D;(gi11) = 1]
<2t s e
- PI‘[DZ* (91) = 0] PI‘[Di* (91) = 0 TANAN Di* (gt) = O]
o Do) =1 | PrDi (g =1
-2 1—¢2-7
2
< (t _—
<+)1 — 2=

A.3 Proof of Theorem 4

Proof (Proof of Theorem /). The adversary A does not know where in E that
the malware M exists, A runs the risk of overwriting the sensors positions S;.
As stated above, we assume that M is operable after A has been loaded. The
total size of M’s reads from E are of size at most n - «. We define a single A
that works for all M. Let A overwrite a random set of v locations. However,
rather than considering this A we instead consider some A’ that overwrites each
element of E); with probability 2v/¢. Note that,

1 / e
Pr[||A| <v] =Pr ||A'| < (1 - 5)E\A’| = e V/BBIA| o= 1/4v _ o-1/48

Environmental Authentication in Malware 17

using the multiplicative version of the Chernoff bound. Assume that A’ simply
outputs L in this setting. Thus, all of A’ success occurs when it overwrites at
least v positions and the job of A’ to provide inputs to D; is at least as difficult
as A. For the reminder of the proof we consider A’.

We now bound the size of the intersection between the locations read by M
and the locations overwritten by Load(A’, Fjs). Denote by FEyqq the locations
overwritten by Load(A’, E) conditioned on the event that A’ overwrites at least
v locations.

To bound the success probability of A’, we care about the size of the inter-
section between the locations read by M and overwritten by Ejpqq. Since Fpqq
represents v random locations the intersection between (U;S;) N Epgq is dis-
tributed as a Binomial distribution, which we denote as X, with parameters
B(na,2v/¢). Then one has that,

Quna 20¢01-¢
E[X] = 7= 7 = 2.

Let ¢’ > 0 be a constant. By a second application of the Chernoff bound one has
that:

Pr[X > 2+ (] = e 23",

For an intersection of size x the correct Ej; can be found using 2" oracle
queries. Note that this is an upper bound, in the setting where a decision algo-
rithm takes a smaller number of corrupted bits, these bits can be recovered in
parts. Here we assume that all corrupted bits are necessary for a single decision
algorithm. The statement of the theorem follows by using an A’ that exhaus-
tively searches over corrupted bits when the size of the corrupted bits is at most
¢’ + 2 and aborts otherwise.

A.4 Proof of Theorem 5

Proof (Proof of Theorem 5). Consider some A with artifact size at least . Let
A be a black box algorithm that only provide inputs to the current decision
algorithm. Since the entire decision procedure is revealed once a “true” input
is found there is no reason to query a previous decision algorithm. Denote by
E;.p the subset of size at least p that is overwritten by Load(A, Ejr), Then by
Definition 9. There exists some ¢* such that

P Di(El.) = 1[D1, .., Dye 1,51, s Sin 1, B\ Esu
<II§%§ <Ee£ADi,§ie]W(E)[(Es..) D1 bt -1, B b])>

= negl(\).

We bound the probability that A can make D;« output 1 as this bounds the
probability of all algorithms outputting 1 (it may be that only a single decision
algorithm outputs 0 some fraction of the time). The only information about
values E that cause D;« to output 1 are contained in the query responses. Since

18 J. Blackthorne, B. Kaiser, B. Fuller, and B. Yener

the adversary wins if they get a single 1 response we can assume that A makes
t = poly(\) deterministic queries and if none of those responses is 1 their guess
will also be a deterministic value. Denote by g1, ..., g:+1 these values. Then we

bound:
t+1
2 b B0 i (95) = 1] < Pr{Die (91) = 1] + Pr(Dix (92) = Llg1 = 0] + ...
+ Pr[Di+(ge41) = 1|Di=(g1) = 0OA ... A Dy (g¢) = 0]
< negl(A) + Pr[Di- (g i)[zl(A)l) (] g1) = 0] Yo

[Dz*() /\ A D () = O]
— 1] Pr[D;-(ge41) = 1]
= 0] Tt Pr[Di«(g1) =0A ... A D= (g¢) = 0]
—:1] N Pr[Di* (9t+1) = 1]
1 —negl(\) 1 — tnegl(A)

References

[Baul4]

[BCK*10a]

[BCK*10b]

[BGIT01]

[BKY16]

[BR93]

[CAM™T08]

Car Bauer. ReMASTering Applications by Obfuscating during Compila-
tion. blog post, August 2014.

Davide Balzarotti, Marco Cova, Christoph Karlberger, Engin Kirda,
Christopher Kruegel, and Giovanni Vigna. Efficient detection of split per-
sonalities in malware. In NDSS. Citeseer, 2010.

Davide Balzarotti, Marco Cova, Christoph Karlberger, Christopher
Kruegel, Engin Kirda, and Giovanni Vigna. Efficient Detection of Split
Personalities in Malware. In In Proc. of the Symposium on Network and
Distributed System Security (NDSS), 2010.

Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (Im)possibility of Obfuscat-
ing Programs. In Proceedings of the 21st Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO ’01, pages 1-18, London,
UK, UK, 2001. Springer-Verlag.

Jeremy Blackthorne, Benjamin Kaiser, and Biilent Yener. A formal frame-
work for environmentally sensitive malware. In Research in Attacks, Intru-
sions, and Defenses - 19th International Symposium, RAID 2016, Paris,
France, September 19-21, 2016, Proceedings, pages 211-229, 2016.

Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Proceedings of the 1st ACM
conference on Computer and communications security, pages 62—73. ACM,
1993.

Xu Chen, J. Andersen, Z.M. Mao, M. Bailey, and Jose Nazario. Towards an
understanding of anti-virtualization and anti-debugging behavior in mod-
ern malware. In Dependable Systems and Networks With FTCS and DCC,

[CMGS12]

[CTLY7]

[DRS04]

[DRS08]

[DRSLOS]

[Fer07]

[Fer11]

[FKSWO6]

[FRS16]

[GGH'13]

[ICF*15]

[Jst16]
[KLZS12]

[Kral0]

Environmental Authentication in Malware 19

2008. DSN 2008. IEEFE International Conference on, pages 177-186, June
2008.

Paul Cichonski, Tom Millar, Tim Grance, and Karen Scarfone. Computer
Security Incident Handling Guide: Recommendations of the National In-
stitute of Standards and Technology, 800-61. Revision 2. NIST Special
Publication, 800-61:79, 2012.

Christian Collberg, Clark Thomborson, and Douglas Low. A Taxonomy
of Obfuscating Transformations, 1997.

Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy Extractors: How
to Generate Strong Keys from Biometrics and Other Noisy Data. In
Advances in Cryptology - EUROCRYPT 2004, International Conference
on the Theory and Applications of Cryptographic Techniques, Interlaken,
Switzerland, May 2-6, 2004, Proceedings, volume 3027 of Lecture Notes in
Computer Science, pages 523-540. Springer, 2004.

Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors—a brief
survey of results from 2004 to 2006. In Security with Noisy Data. Citeseer,
2008.

Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. Ether: mal-
ware analysis via hardware virtualization extensions. In CCS ’08 Pro-
ceedings of the 15th ACM conference on Computer and communications
security, pages 51-62, 2008.

Peter Ferrie. Attacks on More Virtual Machine Emulators. Technical
report, Symantec Advanced Threat Research, 2007.

Peter Ferrie. The Ultimate Anti-Debugging Reference, May 2011. [Online].
Available: http://pferrie.host22.com/papers/antidebug.pdf. Accessed Apr.
6, 2015.

Ariel Futoransky, Emiliano Kargieman, Carlos Sarraute, and Ariel Waiss-
bein. Foundations and applications for secure triggers. In In ACM Trans-
actions of Information Systems Security, page 2006, 2006.

Benjamin Fuller, Leonid Reyzin, and Adam Smith. When are fuzzy ex-
tractors possible? In Advances in Cryptology-ASIACRYPT 2016: 22nd
International Conference on the Theory and Application of Cryptology and
Information Security, Hanoi, Vietnam, December -8, 2016, Proceedings,
Part I 22, pages 277-306. Springer, 2016.

Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova 0001, Amit
Sahai, and Brent Waters. Candidate Indistinguishability Obfuscation and
Functional Encryption for all Circuits. In FOCS, pages 40-49. IEEE Com-
puter Society, 2013.

Gene Itkis, Venkat Chandar, Benjamin W Fuller, Joseph P Campbell, and
Robert K Cunningham. Iris biometric security challenges and possible so-
lutions: For your eyes only? using the iris as a key. IEEFE Signal Processing
Magazine, 32(5):42-53, 2015.

Jsteube. oclGaussCrack, 2016.

Clemens Kolbitsch, Benjamin Livshits, Benjamin Zorn, and Christian
Seifert. Rozzle: De-cloaking Internet Malware. In Proceedings of the 2012
IEEFE Symposium on Security and Privacy, SP 12, pages 443-457, Wash-
ington, DC, USA, 2012. IEEE Computer Society.

Hugo Krawczyk. Cryptographic Extraction and Key Derivation: The
HKDF Scheme. In Advances in Cryptology - CRYPTO 2010, 30th An-
nual Cryptology Conference, volume 6223 of Lecture Notes in Computer
Science, pages 631-648. Springer, 2010.

20 J. Blackthorne, B. Kaiser, B. Fuller, and B. Yener

[KYHT09)

[LKMC11]

[Moo15]

[NTS99)

[NZ96]

[PMRB09]

[Rén61]

[RS9S]

[RT12]

[SH12]

[SRL12]
[SWPO0S]

[XZGL14]

[Yan13]

Min Gyung Kang, Heng Yin, Steve Hanna, Stephen McCamant, and Dawn
Song. Emulating emulation-resistant malware. In Proceedings of the 1st
ACM workshop on Virtual machine security, VMSec '09, pages 11-22, New
York, NY, USA, 2009. ACM.

Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Comparetti. De-
tecting Environment-sensitive Malware. In Proceedings of the 14th Inter-
national Conference on Recent Advances in Intrusion Detection, RAID’11,
pages 338-357, Berlin, Heidelberg, 2011. Springer-Verlag.

Paul Moon. The Use of Packers, Obfuscators and Encryptors in Modern
Malware. Technical report, Information Security Group, Royal Holloway
University of London, 2015.

Noam Nisan and Amnon Ta-Shma. Extracting randomness: A survey and
new constructions. Journal of Computer and System Sciences, 58(1):148~
173, 1999.

Noam Nisan and David Zuckerman. Randomness is linear in space. Journal
of Computer and System Sciences, 52(1):43-52, 1996.

Roberto Paleari, Lorenzo Martignoni, Giampaolo Fresi Roglia, and Danilo
Bruschi. A Fistful of Red-pills: How to Automatically Generate Procedures
to Detect CPU Emulators. In Proceedings of the 3rd USENIX Conference
on Offensive Technologies, WOOT’09, pages 2-2, Berkeley, CA; USA, 2009.
USENIX Association.

Alfréd Rényi. On measures of entropy and information. In Proceedings of
the fourth Berkeley symposium on mathematical statistics and probability,
volume 1, pages 547-561, 1961.

James Riordan and Bruce Schneier. Environmental Key Generation To-
wards Clueless Agents. In Mobile Agents and Security, pages 15—24, Lon-
don, UK, UK, 1998. Springer-Verlag.

Kaspersky Lab Global Research and Analysis Team. Gauss: Abnormal
Distribution. Technical report, Kaspersky Lab, 2012.

Michael Sikorski and Andrew Honig. Practical Malware Analysis: The
Hands-On Guide to Dissecting Malicious Software. No Starch Press, San
Francisco, CA, USA, 1st edition, 2012.

Chengyu Song, Paul Royal, and Wenke Lee. Impeding Automated Malware
Analysis with Environment-sensitive Malware. In Hotsec, 2012.

Amitabh Saxena, Brecht Wyseur, and Bart Preneel. White-box cryptog-
raphy: Formal notions and (im) possibility results. 2008.

Zhaoyan Xu, Jialong Zhang, Guofei Gu, and Zhigiang Lin. GOLDENEYE:
Efficiently and Effectively Unveiling Malware’s Targeted Environment. In
Research in Attacks, Intrusions and Defenses, pages 22—45. Springer, 2014.
Lok Kwong Yan. Transparent and precise malware analysis using virtual-
ization: from theory to practice. 2013.

