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Abstract. Substitution boxes (S-Boxes) as the only component of non-
linearity in modern ciphers, play a crucial role in the protection against
differential, linear and algebraic attacks. The construction of S-Boxes
with cryptographic properties close to optimal is an open problem. In
this article we propose a new construction for generating such 8-bit per-
mutations with nonlinearity up to a value of 108.
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1 Introduction and Motivation

Modern symmetric ciphers contain one or more cores of nonlinear operations.
Often these cores are n to m Boolean mappings, called S-Boxes. Among the
whole set of S-Boxes the bijective ones (also-called permutations) are particu-
larly interesting. In the design of many block ciphers, S-Boxes are often chosen
to bring confusion into ciphers. The security of these ciphers is then strongly de-
pendent on the cryptographic properties of the S-Boxes, for this reason S-Boxes
are carefully chosen and the criteria or algorithm used to build them are usually
explained and justified by the designers of prospective algorithms.

The known methods for the construction of S-Boxes can be divided into three
main classes: algebraic constructions, pseudo-random generation and heuristic
techniques. Each approach has its advantages and disadvantages respectively
[25]. The inversion in the finite field with 2n elements is a good method for
generating robust S-Boxes. With respect to cryptographic strength against dif-
ferential and linear attacks, the inversion in the finite field, used in block ciphers
like AES/Rijndael [35], Camellia [2], ARIA [30], HyRAL [23], Hierocrypt [37]
has the best known values. Nevertheless, further analysis has shown that this
approach leads to existence of a system of polynomial equations with low degree
and “potential vulnerability” of the cipher to algebraic attacks [13]. It should
be noted that the problem of solving generic systems of polynomials equations
over finite fields is NP-hard [16] already for quadratic ones, but there are ob-
viously instances where it is not the case. This discrepancy combined with the
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fundamental complexity of rigourous analysis sometimes leads to certain contro-
versy regarding the validity of the so-called algebraic attacks. However, from a
designer’s perspective, it is better to choose an S-Box (or several S-Boxes) that
meets specific (see, Section 4) algebraic, linear and differential requirements.
This kind of permutations has been used in the design of cryptographic algo-
rithms like BelT [48], Kuznyechik [20] and Kalyna [38] and compared with the
inversion function, which can be described by polynomial equations of degree 2,
their main advantage (in terms of its cryptographic properties) is a description
by a system of 441 polynomials equations of degree 3.

Motivated by specialist’s work [8] of Luxembourg’s university Alex Biryukov,
Léo Perrin and Aleksei Udovenko on decomposition of the S-Box used in the
block cipher Kuznyechik, hash function Streebog [21] and CAESAR first round
candidate stribobr1 [45] we propose a new construction for generating crypto-
graphically strong 8-bit S-Boxes using smaller ones and finite field multiplication.

In cryptography, it is not uncommon to build an S-Box from smaller ones,
usually an 8-bit S-Box from several 4-bit S-Boxes. For example, S-Boxes used in
CLEFIA [49], Iceberg [47], Khazad [4], Whirlpool [5] and Zorro [18] are permuta-
tions of 8 bits based on smaller S-Boxes. In many cases, such a structure is used
not only to allow an efficient implementation of the S-Box in hardware or using a
bit-sliced approach, but also to protect S-Boxes implemented in this way against
side-channel attacks. In this work we do not investigate the implementation cost
of our S-Boxes in hardware. We focus on some cryptographic properties of those
S-Boxes obtained by our method.

This article is structured as follows: In Section 2 we give the basic definitions.
In Section 3 we present a new method for constructing S-Boxes having almost
optimal cryptographic properties. In Section 4 we present an algorithm for find-
ing cryptographically strong 8-bit permutations. A summary of some available
recent methods for the generation of permutations with strong cryptographic
properties and some related problem with these methods are discussed in Sec-
tion 5. New S-boxes with stronger properties, generated by our construction are
given in Section 6. Our work is concluded in Section 7.

2 Definitions and Notations

Let Vn be the n-dimensional vector space over the field GF(2), by S(Vn) we
denote the symmetric group on set of 2n elements. The finite field of size 2n

is denoted by GF(2n), where GF(2n)=GF(2)[ξ]/g(ξ), for some irreducible poly-
nomial g(ξ) of degree n. We use the notation Z/2n for the ring of the integers
modulo 2n. There are bijective mappings between Z/2n, Vn and GF(2n) defined
by the correspondences:[

an−1 · 2n−1 + . . .+ a0
]
↔ (an−1, . . . , a0)↔

[
an−1 · ξn−1 + . . .+ a0

]
.

Using these mapping in what follows we make no difference between vectors
of Vn and the corresponding elements in Z/2n and GF(2n).
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Also in the rest of this article, we shall use the following operations and
notations :

a‖b - concatenation of the vectors a, b of Vl, i.e. a vector from V2l ;
0 - the null vector of Vl ;
⊕ - bitwise eXclusive-OR. Addition in GF(2l);
< a, b > - the scalar product of vectors a = (al−1, . . . , a0), b = (bl−1, . . . , b0)

of Vl and is equal to < a, b >= al−1bl−1 ⊕ . . .⊕ a0b0;
wH(a) - the Hamming weight of a binary vector a ∈ Vl, i.e. the number of

its nonzero coordinates;
⊗ - finite field multiplication ;
F ◦G - a composition of mappings, where G is the first to operate;
F−1 - the inverse transformation to some bijective mapping F .

Now, we give some basic definitions, which usually are used as cryptographic
tools for evaluating the strength of S-Boxes with respect to linear, differential
and algebraic attack. For this purpose, we consider an n-bit S-Box Φ as a vector
of Boolean functions:

Φ = (fn−1, . . . , f0), fi : Vn → V1, i = 0, 1, . . . n− 1. (1)

For some fixed i = 0, 1, . . . n − 1, every Boolean function fi can be written as
a sum over V1 of distinct t-order products of its arguments, 0 ≤ t ≤ n − 1;
this is called the algebraic normal form of fi. Functions fi are called coordinate
Boolean functions of the S-Box Φ and it is well known that most of the desirable
cryptographic properties of Φ can be defined in terms of their linear combina-
tions. S-Box coordinate Boolean functions of Φ and all their linear combinations
are referred to as the S-Box component Boolean functions.

Definition 1. For each vector a ∈ Vn the The Walsh-Hadamard transform
Wf (a) of the n-variable Boolean function f is defined as

Wf (a) =
∑
x∈Vn

(−1)f(x)⊕<a,x>. (2)

Definition 2. The nonlinearity Nf of the n-variable Boolean function f is
defined as

Nf = min
g∈An

wH(f ⊕ g), (3)

where An is the set of all n-variable affine Boolean functions and wH(f ⊕ g) is
the Hamming weight of the n-variable Boolean function f ⊕ g. The nonlinearity
Nf can be expressed as follows:

Nf = 2n−1 − 1

2
max

a∈Vn\{0}
|Wf (a)| (4)

Definition 3. The autocorrelation transform, taken with respect to a ∈ Vn,
of an n-variable Boolean function f is denoted by r̂f (a) and defined as:

r̂f (a) =
∑
x∈Vn

(−1)f(x)⊕f(x⊕a). (5)
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Definition 4. The absolute indicator of the n-variable Boolean function f ,
denoted by AC(f)max is defined as

AC(f)max = max
a∈Vn\{0}

|r̂f (a)|. (6)

Definition 5. For a, b ∈ Vn the Walsh transform WΦ(a, b) of an n-bit S-Box
Φ is defined as

WΦ(a, b) =
∑
x∈Vn

(−1)<b,Φ(x)>⊕<a,x>. (7)

Definition 6. The nonlinearity of an n-bit S-Box Φ, denoted by NΦ, is
defined as

NΦ = min
a∈Vn\{0}

{Nan−1fn−1⊕...⊕a0f0}, (8)

where Nbn−1fn−1⊕...⊕b0f0 is the nonlinearity of each of the component Boolean
functions excluding the zero one.
The nonlinearity NΦ of an arbitrary n-bit S-Box Φ can be calculated as follows

NΦ = 2n−1 − 1

2
· max
a 6=0,b∈Vn

|WΦ(a, b)|. (9)

From a cryptographic point of view S-Boxes with small values of Walsh coeffi-
cients offer better resistance against linear attacks.

Definition 7. The differential uniformity of an n-bit S-Box Φ, denoted by
δΦ, is defined as

δΦ = max
a6=0,b∈Vn

δ(a, b), (10)

where δ(a, b) = |{x ∈ Vn|Φ(x⊕ a)⊕ Φ(x) = b}|.
The resistance offered by an S-Box against differential attacks is related by

the highest value of δ, for this reason S-Boxes must have a small value of δ-
uniformity for a sufficient level of protection against this type of attacks.

Definition 8. The maximal absolute indicator and the sum-of-squares indi-
cator of an n-bit S-Box Φ, denoted by AC(Φ)max and σ(Φ), respectively , are
defined as

AC(Φ)max = max
a∈Vn\{0}

|r̂f (an−1fn−1 ⊕ . . .⊕ a0f0)|, (11)

σ(Φ) =
∑
a∈Vn

r̂2f (a). (12)

Any n-bit S-box Φ should have low autocorrelation in order to improve the
avalanche effect of the cipher [15], for this reason, the absolute indicators of the
component Boolean functions of the S-box should be as small as possible. In
other words, the parameter AC(Φ)max, should be as small as possible.

The algebraic degree of the Boolean functions f : Vn → V1, denoted by deg f ,
is the maximum order of the terms appearing in its algebraic normal form.
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Definition 9. The minimum degree of an S-Box Φ, denoted by deg(Φ), is
defined as

deg(Φ) = min
a∈Vn\{0}

{deg(an−1fn−1 ⊕ . . .⊕ a0f0)}. (13)

In order to resist low order approximation [19],[34] and higher order differential
attacks [29] any n-bit S-Box Φ should have a minimum degree as high as possible.

Proposition 1 For any 8-bit S-Box Φ we have, 1 ≤ deg(Φ) ≤ 7.

The annihilator of a Boolean function f with n variables is another Boolean
function g with n variables such that f · g = 0. For a given Boolean function f ,
the algebraic immunity AI(f) is the minimum value d such that f or f ⊕ 1 has
a nonzero annihilator of degree d.

It is well known [10] that there are three kinds of definitions of the algebraic
immunity for S-Boxes. At first, we present a concept of annihilating set [3]:

Definition 10. Let U be a subset of V2n, then

{p ∈ GF (2)[z1, . . . , z2n]
∣∣∣p(U) = 0}

is the annihilating set of U .
Definition 11. The algebraic immunity of U is defined as

AI(U) = min
{

deg p
∣∣∣ 0 6= p ∈ GF (2)[z1, . . . , z2n], p(U) = 0

}
.

Definition 12. Let Φ be any n-bit S-Box, and define

AI(Φ) = min
{
AI(Φ−1(a))

∣∣∣a ∈ Vn} (14)

as the basic algebraic immunity of Φ,

AIgr(Φ) = min
{

deg p
∣∣∣ 0 6= p ∈ GF (2)[z1, . . . , z2n], p(gr(Φ)) = 0

}
(15)

as the graph algebraic immunity of Φ, where gr(Φ) = {(x, Φ(x))|x ∈ Vn} ⊆ V2n,

AIcomp(Φ) = min
a∈Vn\{0}

{
AI(an−1fn−1 ⊕ . . .⊕ a0f0)

}
(16)

as the component algebraic immunity of Φ.
For any n-bit permutation Φ the bounds of these three algebraic immunity

definitions(explained in [3]) are the following , AI(Φ) ≤ 1(so there is no signif-
icance in analyzing the basic algebraic immunity of an S-Box), AIgr(Φ) ≤ dgr,

where dgr is the minimum positive integer which satisfies
∑dgr
i=0

(
2n
i

)
> 2n and

AIcomp(Φ) ≤ dn2 e.
To the best of our knowledge, there is no literature that proposes any at-

tack given the basic and component algebraic immunity rather than the graph
algebraic immunity [7], [13]. Thus we focus on the graph algebraic immunity of
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S-Box Φ – AIgr(Φ) and also on the parameter t
(AIgr(Φ))
Φ referred to as the num-

ber of all the independent equations in input and output values of the S-Box Φ,
i.e., equations of the form p(x, Φ(x)) = 0 ∀x ∈ Vn.

The level of protection provided by an S-Box Φ against algebraic attacks is

measured by the parameters, AIgr(Φ) and t
(AIgr(Φ))
Φ , respectively.

Proposition 2 ([11]). For any 8-bit S-Box Φ we have AIgr(Φ)) ≤ 3.

Definition 13. An element a ∈ Vn is called a fixed point of an n-bit S-Box
Φ if Φ(a) = a.

An n-bit substitution Φ must have no fixed point, i.e., Φ(a) 6= a,∀a ∈ Vn.
Many ciphers have used the above mentioned notion for increasing resistance
against statistical attacks.

Definition 14. Two n-bit S-Boxes Φ1 and Φ2 are affine/linear equivalent if
there exist a pair of invertible affine/linear permutation A1(x) and A2(x), such
that Φ1(x) = A2 ◦ Φ2 ◦A1(x).

The affine/linear equivalence can be used to prevent the appearance of fixed
points during generation of some n-bit S-Box.

3 New Construction

Let n = 2k, where k ≥ 2. Choosing the permutation polynomial (PP) τ2k−2(x) =

x2
k−2 over GF(2k) and arbitrary permutations hi ∈ S(Vk), i = 1, 2, we construct

the following n-bit vectorial Boolean function π : V2k → V2k as follows

Construction of π
For the input value (l‖r) ∈ V2k we define

the corresponding output value
π(l‖r) = (l1‖r1) where,

l1 =

{
h1(l), if r = 0;

τ2k−2(l ⊗ r), if r 6= 0;

r1 =

{
h2(r), if l1 = 0;

l1 ⊗ τ2k−2(r), if l1 6= 0.

Taking into account that block ciphers based on Substitution-Permutation
Networks need the inverse substitution to π for the decryption process we also
give the construction of π−1.

Construction of π−1

For the input value (l1‖r1) ∈ V2k we define
the corresponding output value

π−1(l1‖r1) = (l‖r) where,

r =

{
h−12 (r1), if l1 = 0;

l1 ⊗ τ2k−2(r1), if l1 6= 0.

l =

{
h−11 (l1), if r = 0;

τ2k−2(l1 ⊗ r), if r 6= 0.



S-Boxes having almost optimal cryptographic properties 7

It should be noted, that the proposed construction is different from decom-
position obtained in [8] and S-Boxes generated by our construction can achieve
better properties (see, Section 6).

4 Generating 8-bit permutations from smaller ones and
finite field multiplication

In this work the substitution having almost optimal cryptographic properties
refers to a permutation with

1. Absence of fixed points;

2. Maximum value of minimum degree;

3. Maximum algebraic immunity with the minimum number of equations;

4. Minimum value of δ-uniformity limited by parameter listed above;

5. Maximum value of nonlinearity limited by parameter listed above.

For example, for n = 8 an almost optimal permutation π without fixed points
has:

• deg(π) = 7;

• AIgr(π) = 3 with t
(3)
π = 441;

• δπ ≤ 8;
• Nπ ≥ 100.

For n = 8 in correspondence with the suggested construction of π we need
to construct; the finite field GF(24), two 4-bit permutations h1, h2 ∈ S(V4)
and the PP τ14(x) = x14 over GF(24). It is well known [43] that there are
only three irreducible polynomials of degree 4 over GF(2), g1(ξ) = ξ4 + ξ + 1,
g2(ξ) = ξ4 + ξ3 + 1 and g3(ξ) = ξ4 + ξ3 + ξ2 + ξ+ 1. In what follows, for the sake
of simplicity, we shall work in GF(24)=GF(2)[ξ]/g1(ξ). Thus, π can be written
as follows

π(l‖r) = (l1‖r1), (17)

where,

l1 =

{
h1(l), if r = 0;

(l ⊗ r)14, if r 6= 0;

r1 =

{
h2(r), if l1 = 0;
l1 ⊗ r14, if l1 6= 0.

The main advantage of our construction is that it allows to perform a search
based on random generation of 4-bit permutations for finding 8-bit S-Boxes
having almost optimal cryptographic parameters. For this purpose we propose
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the following generic algorithm. The basic steps of the algorithm for generating
such permutations are described as follows:

Step 1. Generate randomly two 4-bit permutations h1, h2 ∈ S(V4);

Step 2. For already generated 4-bit permutations h1, h2 ∈ S(V4)
construct the 8-bit permutation π according to (17);

Step 3. Test the permutation π for all criteria 1-5. If π satisfies all of
them except criterion 1 then go to Step 4. Otherwise repeat Step 1.

Step 4. Apply affine/linear equivalence to π in order to achieve the
required property 1.

Step 5. Output. A permutation π with the desired properties.

5 A discussion with respect to some recent methods

In [28] Kazymyrov et al. presented a method for generating cryptographically
strong S-Boxes called Gradient descent method. The proposed method is based
on the already known [27] method of gradient descent, but was adopted for the
vectorial case. It allows to generate permutations for symmetric cryptography
primitives providing a high level of resistance to differential, linear and algebraic
attacks. The best result obtained in this work (in terms of its cryptographic
properties) was a permutation without fixed points with the following properties

• minimum degree — 7;
• algebraic immunity — 3 (with 441 equations);
• 8 — uniform;
• nonlinearity — 104.

Moreover, in the same work was raised the following open question: Does there
exist an 8-bit permutation with algebraic immunity 3 and nonlinearity more than
104?.

In [25] Ivanov et al. presented a method for generating S-Boxes with strong
cryptographic properties based on Modified Immune Algorithm referred as the
”SpImmAlg”. The authors propose an S-Box generation technique using a spe-
cial kind of artificial immune algorithm, namely the clonal selection algorithm,
combined with a slightly modified hill climbing method for S-Boxes. The best
result obtained in this work (in terms of its cryptographic properties ) was a
large set of permutations without fixed points with the following properties

• minimum degree — 7;
• algebraic immunity — 3 (with 441 equations);
• 6 — uniform;
• nonlinearity — 104.

In [31] Menyachikhin presented new methods for generating S-Boxes having
almost optimal cryptographic properties called the Spectral-linear and spectral-
difference methods [31]. The proposed methods are based on using linear and
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differential spectrum for iteratively improving a given S-Box with respect to
certain cryptographic properties. These methods multiply the given S-Box with
some special permutations and the resulting S-Box is then stronger. The above
mentioned methods can also be applied for generating involutive S-Boxes and
orthomorphisms with strong cryptographic properties. The best results obtained
by A. Menyachikhin using both methods (in terms of its cryptographic proper-
ties) were S-Boxes without fixed points with the following properties

• minimum degree — 7;
• algebraic immunity — 3 (with 441 equations);
• 6 — uniform;
• nonlinearity — 104.

All these results show us that finding cryptographically strong 8-bit S-Boxes
with algebraic immunity 3 and nonlinearity more than 104 is a difficult task,
moreover at the time of writing no counterexample was found in the public
literature. In the next section we show that our construction produce 8-bit per-
mutations with the best cryptographic properties reported for nonlinearity and
algebraic immunity respectively.

6 Practical results

Based on an exhaustive search over all affine equivalence classes for 4-bit S-Boxes
[6,14,42] was checked that for 8-bit permutations constructed according to (17)
the following properties holds:

100 ≤ Nπ ≤ 108, 6 ≤ δπ ≤ 18.

The algorithm described in the previous section was implemented in SAGE [44]
but with the following slight modification, h1 = h2 = h. Furthermore, for the
sake of simplicity 500 random generated 4-bit S-Boxes h were stored in a list.
Then for each 4-bit substitution of this list we applied the rest of the steps
specified in our algorithm. After several minutes 417 permutations having al-
most optimal cryptographic parameters were generated. A total of 56 generated
permutations have algebraic immunity — 2. The remaining 27 have differential
uniformity strictly greater than 8. In this search we did not find a 4-bit substi-
tution h for which the resulting π has Nπ = 108. Then, we decide generate 220

random 4-bit substitution h and abort the algorithm as soon as a permutation
π with almost optimal cryptographic properties reaching a nonlinearity of 108
has been found. After 7hr 17mins on 2.3GHz Intel Core i3-6100U processor with
4GB RAM, we found the next 4-bit S-Box h=(0,1,e,9,f,5,c,2,b,a,4,8,d,6,3,7) for
which π has almost optimal cryptographic properties with Nπ = 108. So instead
of trying to find a random 4-bit substitution h for which the almost optimal per-
mutation π generated by our algorithm has the maximal possible nonlinearity it
was decided to solve the problem from the other side. We started to pick in our
construction some 4-bit S-Boxes hi, i = 1, 2 from the well-known class{

xs
∣∣∣gcd(s, 15) = 1, s ∈ N

}
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of Permutations Polynomials (also-called Power Functions) [43] over GF(24) until
the expected result was achieved for h1 = x13 and h2 = x11.

Our experiments show that not any pair of 4-bit S-Boxes can generate 8-
bit permutations having almost optimal cryptographic parameters. Moreover,
the cryptographic quality of those 8-bit permutations not always depended on
the cryptographic properties of smaller 4-bit S-Boxes, for example, if we choose
h1 = h2 = τ14(x) = x14 ∈ S(V4) in our construction then the resulting 8-bit
permutation do not possess a high value of algebraic immunity, even when x14

has optimal properties in S(V4), i.e Nx14 = 4, δx14 = 4,deg(x14) = 3, AIgr(x
14) =

2, r
(2)
x14 = 21. But if now, h1 = h2 =(b, c, 2, 3, d, a, 7, 1, 4, 0, f, e, 5, 6, 9, 8)

∈ S(V4) which have Nh = 0, δh = 10,deg(h) = 1, AIgr(h) = 1, r
(1)
h = 1, then,

the substitution π generated by our construction is almost optimal. We can thus
discard the idea that the strength of π against differential, linear and algebraic
attacks relies only on the quality of each of its 4-bit S-Boxes. How to select the
4-bit components h1, h2 in such a way that the obtained 8-bit substitution π will
be almost optimal (with respect to the chosen criteria) is an open question.

However, our method has been applied to a large number of random 4-bit
permutations. As a result we have obtained a lot of new affine nonequivalent 8-bit
permutations without fixed points with the following cryptographic parameters

• minimum degree — 7;

• algebraic immunity — 3 (with 441 equations);

• 6 and 8 — uniform;

• nonlinearity in range of 100 up to a value of 108.

In Table 1 we show four 8-bit S-Boxes π1, π2, π3 and π4. As it can be seen, our
S-Boxes provide high level of protection against differential, linear and algebraic
attacks.

In Table 2 two other S-Boxes π5 and π6 with strong cryptographic proper-
ties are showed. As it can be seen from the table our permutations compared
with π1 and π2 demonstrate better properties. The S-Box π5 was produced by
our algorithm and permutation π6 was obtained choosing in construction (17)
the next PPs h1 = x13, h2 = x11 ∈ S(V4) followed by application of an affine
transformation to avoid fixed points.

Finaly, in Table 3 we compare our results with the state-of-the-art in design
of cryptographically strong S-Boxes obtained by different available methods.
In this table we have added three parameters. The first two are transparency
order[39] denoted by τπ and defined as:

τπ = max
b∈Vn

(
|n−2wH(b)|− 1

22n − 2n

∑
a∈Vn\{0}

∣∣∣ ∑
c∈Vn,wH (c)=1

(−1)<c,b>Wπ(x)⊕π(x⊕a)(0, c)
∣∣∣),

and the Signal-to-Noise Ratio SNR(DPA)(π)[22], defined as follows

SNR(π) = n22n
( ∑
a∈Vn

( n−1∑
i=0

Wfi(a)
)4)− 1

2
,
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where fi, i = 0, . . . , 7 are the coordinate Boolean functions of the S-Box π. These
parameters quantify the resistance of an n-bit S-Box π to Differential Power Anallysis
(DPA). The last one is the well-known robustness to differential cryptanalysis (see,
e.g.[46]).

Table 1: Some 8-bit S-Boxes generated by our construction

S-Box π1 S-Box π2

Nπ1 = 100, δπ1 = 8, deg(π1) = 7,AIgr(π1) = 3, t
(3)
π1

= 441 Nπ2 = 102, δπ2 = 8, deg(π2) = 7,AIgr(π2) = 3, t
(3)
π2

= 441

S-Box π3 S-Box π4

Nπ3 = 104, δπ3 = 8, deg(π3) = 7,AIgr(π3) = 3, t
(3)
π3

= 441 Nπ4 = 104, δπ4 = 6, deg(π4) = 7,AIgr(π4) = 3, t
(3)
π4

= 441

Table 2: The best S-Boxes produced by our construction

S-Box π5 S-Box π6

Nπ5 = 106, δπ5 = 6, deg(π5) = 7,AIgr(π5) = 3, t
(3)
π5

= 441 Nπ6 = 108, δπ6 = 6, deg(π6) = 7,AIgr(π6) = 3, t
(3)
π6

= 441
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Table 3: A comparison between the cryptographic properties of 8-bit S-Boxes
produced by different modern generation methods (NR means ”not reported” )

Methods/Cryptographic properties Nπ δπ deg(π) AIgr(π)
(
t
(AIgr(π)

)
AC(π)max

(
σ(π)

)
τπ SNR(π) rdc

Finite Field Inversion [36](AES S-Box) 112 4 7 2(39) 32(133120) 7,860 9,600 0,984

Exponential method [1](BelT S-Box) 102 8 6 3(441) 88(232960) 7,833 8,318 0,969

4-uniform permutations method [40,41] 98 4 NR NR NR NR NR NR

Gradient descent method [28] 104 8 7 3(441) 72(206464) 7,823 9,208 0,969

GA/HC [33] 100 NR NR NR NR NR NR NR

GaT [50] 104 NR NR NR NR NR NR NR

106 6 6 2(32) 56(151936) 7,850 9,458 0,977
GA1 [26] 108 6 6 2(34) 48(148864 ) 7,849 9,768 0,977

110 6 7 2(36) 40(145024) 7,855 9,850 0,977
GA2 [26] 112 6 7 2(38) 32(138112) 7,858 9,866 0,977

Hill Climbing [32] 100 NR NR NR NR NR NR NR

Hybrid Heuristic 102 6 4 3(441) 96(255872) 7, 833 8, 650 0, 977
Methods [24] 104 6 4 3(441) 96(242176) 7, 824 8, 467 0, 977

Simulated Annealing [12] 102 NR NR NR 80(NR) NR NR NR

SpImmAlg [25] 104 6 7 3(441) 88(216448) 7,822 9,038 0,977

Spectral-linear and
spectral-difference methods [31] 104 6 7 3(441) NR NR NR NR

Tweaking [17] 106 6 7 2(27) 56(171520) 7,854 9,481 0,977

New[S-Box π1] 100 8 7 3(441) 72(186112) 7,839 8,220 0,969

New[S-Box π2] 102 8 7 3(441) 80(227584) 7,783 8,751 0,969

New[S-Box π3] 104 8 7 3(441) 72(193024) 7,806 8,169 0,969

New[S-Box π4] 104 6 7 3(441) 80(192256) 7,818 8,745 0,977

New[S-Box π5] 106 6 7 3(441) 72(191104) 7,816 9,013 0,977

New[S-Box π6] 108 6 7 3(441) 64(185344) 7,838 9,335 0,977

This comparison shows that:

1. Our construction produces 8-bit permutations with the same properties reported
in [1,12,17,24,25,28,31,32,33,50];

2. The GA1 and GA2 methods (with the exception of the AES S-Box) have the best
values reported for nonlinearity, maximal absolute indicator and sum-of-squares
indicators. But these S-Boxes do not possess a high value of algebraic immunity;

3. With respect to cryptographic strength against differential, linear and algebraic
attacks S-Boxes π5 and π6 establish up to date a new record in the public available
literature on generation of S-boxes with strong cryptographic properties;

4. The transparency order and SNR(DPA) for the proposed S-Boxes in this work
πi, i = 1, . . . , 6 are lesser than that of AES S-Box and GA1,GA2 methods;

5. Finite Field Inversion and 4-uniform permutations methods have the smallest
known values of differential uniformity but the other methods present good values
for this parameter;

6. Finite Field Inversion method (AES S-Box) has the best value for robustness to
differential cryptanalysis but the other methods exhibits acceptable values for this
parameter.

The S-Boxes πi, i = 1, . . . , 6 generated by our method were selected in order to have
good resistive properties both towards classical cryptanalysis as well as DPA attacks.

7 Conclusion and Future Work

In this article was presented a new method for constructing S-Boxes of dimension
n = 2k, k ≥ 2. In particular, we proposed a special algorithmic-algebraic scheme which
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utilizes inversion in GF(24) and two arbitrary permutations from S(V4) for generating
8-bit S-boxes having almost optimal cryptographic properties. Our work solves the
question about existence of permutations with algebraic immunity 3 and nonlinearity
more than 104, providing new 8-bit S-Boxes which have better resistence to algebraic
and DPA attacks in terms of algebraic immunity, transparency order and SNR(DPA)
than AES’ S-box while having comparable classical cryptographic properties. These
substitutions can be appropriate in the design of stream cipher, block cipher and hash
functions. It will be interesting to obtain theoretical results on cryptographic properties
of the proposed construction for n = 2k, k ≥ 2. Our work raised the following

Open Question: Does there exist an 8-bit permutation with algebraic immunity 3
and nonlinearity more than 108?
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