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Abstract. Lattice-based cryptography is one of the most promising can-
didates being considered to replace current public-key systems in the
era of quantum computing. In 2016 Alkim, Ducas, Péppelmann, and
Schwabe proposed the lattice-based key exchange scheme NewHope. The
scheme has gained some popularity in the research community as it is
believed to withstand attacks by quantum computers with a comfort-
able security margin and provides decent efficiency and low commu-
nication cost. In this work, we evaluate the efficiency of NewHope on
reconfigurable hardware. We provide the up to our knowledge first field-
programmable gate array (FPGA) implementation of NewHope-Simple
that is a slight modification of NewHope proposed by the authors them-
selves in 2016. NewHope-Simple is basically NewHope with different er-
ror correction mechanism. Our implementation of the client-side scheme
requires 1,483 slices, 4,498 look-up tables (LUTs), and 4,635 flip-flops
(FFs) on low-cost Xilinx Artix-7 FPGAs. The implementation of the
server-side scheme takes 1,708 slices, 5,142 LUTs, and 4,452 FFs. Both
cores use only two digital signal processors (DSPs) and four 18-kb block
memories (BRAMSs). The implementation has a constant execution time
to prevent timing attacks. The server-side operations take 1.4 millisec-
onds and the client-side operations take 1.5 milliseconds.
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1 Introduction

Public-key cryptography provides important security services to protect informa-
tion sent over untrusted channels. Unfortunately, most well-established public-
key cryptographic primitives rely either on the factorization or the discrete log-
arithm problem. As both problems are closely connected, a mathematical break-
through in one of the problems would render primitives based on either of the
problems insecure. In this context, the possible advent of the quantum com-
puter is another crucial threat. A significant number of experts believe that
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quantum computers that are large enough to pose a threat to cryptographic
schemes are built within the next decade [6,22]. The National Institute of Stan-
dards and Technology (NIST) recently published a call for proposals [25] that
asks to submit public-key encryption, key exchange, or digital signature schemes
for standardization.

Lattice-based cryptography is a family of primitives that is believed to be
secure against attacks by quantum computers. It has efficient instantiations for
all three types of most relevant security services and provides reasonable param-
eter sizes for a decent level of security. Especially the NewHope key exchange by
Alkim et al. [2] has gained significant attention from the research community and
the industry. Google even tested the scheme in its Chrome browser [9]. While
the original NewHope proposal contains a tricky error reconciliation, Alkim et al.
proposed an improved version called NewHope-Simple [1] that avoids this error
reconciliation at the price of increasing the size of the message that is sent from
the client to the server from 2048 bytes to 2176 bytes.

In this work we present an implementation of NewHope-Simple for Field-
Programmable Gate Arrays (FPGAs). FPGAs are widely used as platform for
cryptographic hardware (e.g., also in the Internet of Things) and thus a highly
interesting platform for the evaluation of NewHope-Simple. Our target platform
is a low-cost Xilinx Artix-7 FPGA, but we expect similar implementation results
on other reprogrammable hardware devices.

1.1 Related Work

Alkim et al. evaluated the performance of NewHope on Intel CPUs. They utilize
the SIMD instructions of the AVX2 instructions set to achieve a high perfor-
mance. Another implementation of NewHope targets ARM Cortex-M processors
[4]. In both works [2,4] the authors implemented the original NewHope scheme
and not NewHope-Simple. We are not aware of any hardware implementations
of NewHope-Simple.

Besides NewHope, there is also a lattice-based key exchange called Frodo [7].
In contrast to NewHope, Frodo is based on standard lattices instead of ideal lat-
tices. The difference between both types of lattices is that ideal lattices include
a fundamental structure and thus allow a more efficient instantiation. It is, how-
ever, unclear whether this additional structure can be exploited by an attacker.
So far no attacks that exploit the structure of ideal lattices and have a bet-
ter runtime than the best known lattice attacks are known. Due to the higher
memory consumption, Frodo is less suited for implementation on low-cost hard-
ware. Another lattice-based key exchange has been developed by Del Pino et
al. [L0]. They present a generic approach and their scheme can be instantiated
with any suitable signature scheme and public-key encryption scheme. Note that
the scheme of [10] is an authenticated key exchange while NewHope and Frodo
are unauthenticated and thus require an additional signature scheme for the
authentication part.

While we are not aware of any hardware implementations of NewHope, the
ring-learning with errors encryption scheme (ring-LWE) has been implemented in
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works like [19,20,24]. Furthermore, there is an implementation of a lattice-based
identity-based encryption scheme (IBE) for Xilinx FPGAs [14]. IBE, ring-LWE,
and NewHope-Simple share most operations like the number theoretic transform
and the Gaussian sampling. Additionally to the operations required by ring-LWE
and IBE, NewHope-Simple also requires the on-the-fly generation of the polyno-
mial a (usually precomputed in the implementations of ring-LWE), SHAKE-128,
SHA3-256, and a compression function.

1.2 Contribution

NewHope has been first proposed in late 2015 [3]. But there are still no hardware
implementations of the scheme published. In this work we aim to close this gap.
We present the up to our knowledge first implementation of NewHope-Simple
for reconfigurable hardware devices. We optimized our implementation for area
while taking care to still achieving a decent performance. Our work shows that
NewHope-Simple is practical on constrained reconfigurable hardware. Our im-
plementations takes 1,483 slices, 4,498 LUTSs, and 4,635 FF's for the client and
1,708 slices, 5,142 LUTSs, and 4,452 FFs for the server. Both cores use only 2
DSPs and four 18-kb block memories. It has a constant execution time to prevent
timing attacks and hamper simple power analysis. We achieved a performance
of 350,416 cycles at a frequency of 117 MHz for the entire protocol run. We will
also provide the source code with the publication of our work 3.

2 Preliminaries

In this chapter, we discuss the mathematical background that is crucial for the
understanding of this paper.

2.1 Notation

Let Z be the ring of rational integers. We denote by R the polynomial ring
Zlx]q/(xz™ + 1) where n is a power of two and z™ + 1 is the modulus. The
coefficients of the polynomials have the modulus ¢. In case x is a probability

distribution over R, then z & x means the sampling of = according to x. The
point-wise multiplication of two polynomials is denoted by the operator o. Poly-
nomials in the time domain are denoted by bold lower case letters (e.g. a) and
polynomials in the frequency domain are described by an additional hat-symbol
(e.g. &). Polynomials that have been compressed by the NHSCompress function
are marked by a bar (e.g. a).

3 https://www.seceng.rub.de/research/publications/
implementing-newhope-simple-key-exchange-low-cost-/
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2.2 The NewHope Scheme

In this paper we implemented the Simple version [1] of the NewHope protocol
[2] that improves previous approaches to lattice-based key exchange [3,11,17].
NewHope is a server-client key exchange protocol as described in Protocol 1. Its
security is based on the ring learning with errors problem. Note that NewHope is
unauthenticated. Thus, an additional signature scheme is required. The scheme
is parametrized by a lattice dimension n, a modulus ¢, and a standard deviation
o = +/k/2 where k is used as a parameter for the binomial sampler. In this
work, we implemented the scheme with the parameters n = 1024, ¢ = 12289,
and k = 16. As stated in [l], the security of NewHope-Simple is the same as
the security of NewHope and therefore the chosen parameters yield at least a
post-quantum security level of 128 bits with a comfortable margin [2], or more
specifically 255 bits of security against known quantum attackers and 199 bits
of security against the best plausible attackers.

Parameters: ¢ = 12289 < 2™, n = 1024

Error distribution: 7

Alice (server) Bob (client)
seed & {0, ... ,255}°2

a<—Parse(SHAKE-128(seed))

s,e &Yl s e e’ &l
$NTT(s)
b«aos+ NTT(e)

mq=encodeA(seed,b)

(b, seed)«—decodeA (m.a)

a+Parse(SHAKE-128(seed))
tNTT(s")

t—aot +NTT(e)

v & H0,...,255)%2

V' +SHA3-256 (1)

1824 Bytes

k+NHSEncode(v")
cNTT *(bot)+e” +k
(1, €)«—decodeB(my) mb;e::’;ei(u@ c«NHSCompress(c)
ytes
¢’+~NHSDecompress(€) u—SHA3-256(v")

k'<c —NTT (i108)
v'+NHSDecode(k")
114~ SHA3-256(1)

Protocol 1: A full description of the NewHope-Simple key exchange. The func-
tions NHSEncode, NHSDecode, NHSCompress, and NHSDecompress are defined
in [1]. The functions encodeA, encodeB, decodeA, and decodeB describe a simple
transformation into a representation that dependents on the channel over which
the information will be sent (e.g. bit-wise or byte-wise format).
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The most notable difference between NewHope and NewHope-Simple is that
NewHope avoids the error-reconciliation mechanism originally proposed by Ding
[11]. As a consequence, NewHope-Simple is less complex but also 6.25% bigger in
terms of the size of the transmitted messages. The polynomial a could be fixed
to a constant. The authors of NewHope decided to generate a fresh a for every
run to prevent backdoors and all-for-the-price-of-one attacks.

The idea behind the key exchange is that the server generates an ephemeral
key pair and transmits the public key to the client. The client uses the public key
to encrypt a secret symmetric key and transmits the ciphertext to the server.
The server decrypts the ciphertext to retrieve the same symmetric key that can
be used for further communication. As the scheme is based on the ring learning
with errors problem, error polynomials are used to hide the symmetric key in the
ciphertext. Therefore an error correction mechanism is required to recover the
symmetric key. NewHope-Simple itself has no built-in authentication, it relies
on external authentication, for instance with a signature scheme. The major
components of the scheme are a Parse function that is used to generate a, a
binomial sampler to generate error polynomials, the number-theoretic transform
(NTT) to speed up polynomial multiplication, and the Keccak function that is
used to compute SHA3-256 hashes and for the SHAKE-128 extendable output
function.

2.3 Binomial Sampling

In [2] a binomial sampler is used as substitution for the Gaussian sampler that is
required in many lattice-based schemes. The discrete, centered Gaussian distri-
bution is defined by assigning a weight proportional to exp( 5;22 ) where o is the
standard deviation of the Gaussian distribution. According to [2] the binomial
distribution that is parametrized by k = 20?2 is sufficiently close to a discrete
Gaussian distribution with standard deviation ¢ and does not significantly de-
crease the security level. A binomial sampler is basically realized by uniformly
sampling two k-bit vectors and computing their respective Hamming weights.
The binomial distributed result is obtained by subtracting the Hamming weights
of both bit vectors. Binomial sampling does not require any look-up tables and
has a constant runtime. But as k scales quadratically with o the binomial ap-
proach is only suited for small o as used in lattice-based encryption or key ex-
change schemes. Signature schemes usually require larger standard deviations.

2.4 Number-Theoretic Transform (NTT)

The number-theoretic transform (NTT) is a discrete Fourier transform over a
finite field. An interesting property of the discrete Fourier transform, which is
also highly interesting for lattice-based cryptography, is the ability to reduce
the overall complexity of (polynomial) multiplication to O(n - logn). To allow
efficient computation of the NTT the coefficient ring has to contain primitive
roots of unity.
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Definition 1 (Primitive root of unity [12]). Let R be a ring, n € N>1, and
w € R. The value w is an n-th root of unity if w™ = 1. The value w is a primitive
n-th root of unity (or root of unity of order n) if it is an n-th root of unity, n € R
is a unit in R, and w™'* — 1 is not a zero divisor for any prime divisor t of n.

For a given primitive n-th root of unity w in Z,, the NTT of a vector a =
(an-1,...,a0) is the vector A = (A, _1,...,Ap) and computed as

Aizzo<j<najwij mod ¢,7=0,1,...,n— 1.

The idea is to transform two polynomials @ = an—1 - 2" 1 4+ ... +ap and b =
bp_1-2" L +...+ by into their NTT representations A = A, -z ' +...+ A
and B = B,,_1-2" ' +...4+ By and computing the coefficient-wise multiplication
as C = 3 gcicn Ai- By - x*. The result ¢ = a - b is obtained after applying the
inverse transform to C. For ¢ = 1 mod 2n the way the result has to be interpreted
depends on the input.

— Assuming one expanded a and b to vectors of length 2n by padding n ze-
ros, the result ¢ equals the schoolbook multiplication of a and b without
reduction.

— Without padding, the result c¢ is already reduced modulo f = z™ — 1. This
is called the positive wrapped convolution. In contrast to the first case, the
resulting polynomial is only of degree n.

This reduction for free is beneficial concerning the computation time, but for
NewHope one performs arithmetic in Z[x]/(x"+1). Thus, the input and output
have to be modified so that the negative wrapped convolution gets computed to
exploit the reduction property. Let 1 be the square root of w. Now one computes
A = gcicn@i- ¥ -atand b =3 ., bi - ¥ - 2" before the polynomials are
transformed into their NTT representation. To obtain @ -b mod z™ + 1, one also
has to multiply ¢/, the output of the inverse transform of C, by powers of the
inverse of 1.

There are many ways to compute the number-theoretic transform. In this work,
we follow the optimized approach from [21]. For a complete description of the
algorithms we refer to [21].

3 FPGA Implementation

In this chapter, we present the details of our implementation and explain our
design decisions.

3.1 Overview

Our target device is a Xilinx Artix-7 FPGA. It features DSPs blocks that can
multiply, add, and subtract and have a configurable number of pipeline stages.
It furthermore has several 18 Kb block memories that can be used in dual-port
mode. The LUTSs of the Artix-7 can either be used as 6-input LUTSs or 5-input
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Fig. 1. Our server architecture.

LUTSs with two outputs. Figure 1 and Figure 2 provide an overview of our server
architecture and the client architecture. We incorporated two read/write-BRAM
blocks with a width of 14 bits and a depth of n = 1024 in dual-port mode to
store polynomials (Reg0 and Regl). Two read-only memories are used to store
the twiddle factors used in the NTT. One DSP block with subsequent modular
reduction serves as general-purpose DSP that is used in most sub-modules, like
the NTT or the point-wise multiplication.

The client and the server side of the scheme contain almost the same set
of operations. However there are slight differences, for instance the decoding
operation is replaced by an encoding and the decompression is replaced by a
compression module. We decided to develop two separate modules for the server
and the client side as we expect an embedded device to usually be either server
or client but not both. Applications that require both sides can share many
of the components, like the NTT or the sampler. A neat solution for such an
applications could be to replace the components that are required by only one
side through dynamic partial reconfiguration. In Algorithm 1 we present the
temporal structure of our implementation in pseudocode. Each line of Algorithm
1 lists operations that are executed simultaneously. All operations are constant-
time, i.e. the execution time is independent from data that is processed and thus
the implementation is invulnerable to timing attacks. We employed the modular
reduction from [18] for the prime ¢ = 12289.

3.2 Efficient Implementation of NTT

The optimized NTT approach from [21] uses a Cooley-Tukey butterfly for the for-
ward transformation and a Gentleman-Sande butterfly for the backwards trans-
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Algorithm 1 Pseudocode for our implementation. Operations in the same line
are executed simultaneously.

1: procedure NEWHOPE(Registers Ro, R1)

2: Server-side computations:

3: Ro<Sample()

4: Ro+NTT(Rp); Ri+Sample()

5: Ri+NTT(R1)

6: R+ Parse(SHAKE-128(seed)) o Ry + R1
T Transmit seed and b = Ry

8:

9: Client-side computations:
10: Ro<+Sample()
11: Ro<NTT(Rop); Ri<Sample()
12: Rl(—NTT(Rl)
13: R+ Parse(SHAKE-128(seed)) o Ro + R1
14: Transmit a = Ry
15:  Ro+Roob
16: Ro<NTT *(Ry); Ri+Sample()
17: Ro+—NHSCompress(Ry + R1 + NHSEncode(v')); v’ +-SHA3-256(random)
18: puSHA3-256(v")
19: Transmit ¢ = Ry
20:
21: Server-side computations:
22: Ro(—fl o Ry
23: Ro+NHSDecompress(c) — NTT™*(Ry)
24: u<—SHA3-256(NHSDecode(Ry))
25: end procedure
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Fig. 2. Our client architecture.

formation. A butterfly takes two coeflicients as input and combines them ac-
cording to the butterfly instructions. As the transformation operates in-place, it
outputs two coefficients that replace the input coefficients. Both butterfly con-
structions can be computed with a regular Artix-7 DSP block. To accelerate the
butterfly computation, we use two DSP blocks and compute both output coeffi-
cients in parallel. We use the multi-purpose DSP of our NewHope-Simple core and
add another DSP to the NTT core. As the lattice dimension in NewHope-Simple
is n = 1024, the computation of the NTT could be further parallelized, i.e. up to
512 butterflies could be computed in parallel. However, this would require more
DSPs and a complicated memory scheduling as we can only access two coeffi-
cients at the same time with a dual-port memory block. Therefore we decided
to compute the butterflies serially to keep the area consumption of the imple-
mentation low. The only other difference between the forward and the backward
transformation is the address generation for the memory blocks storing the input
coefficients. Hence minimal changes to the state machine allow our NT'T core to
be able to perform both operations, the forward and the backward transforma-
tion. The computation of a butterfly takes 7 clock cycles that consist of 2 cycles
for the memory access, 1 cycle for the DSP calculation and 4 cycles for the mod-
ular reduction. In total, F log(n) butterfly computation per transformation are
necessary, therefore 512 - 10 -7 = 35,840 cycles.

3.3 Point-Wise Multiplication

Our implementation of the point-wise multiplication is straight-forward. We use
the multi-purpose DSP of our NewHope-Simple core with subsequent modu-
lar reduction to serially compute the product of two coefficients. Therefore the
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point-wise multiplication is a simple counter to access the coefficients of the
polynomials to be multiplied iteratively. A point-wise multiplication of two co-
efficients takes 9 cycles. It could be sped up to take only 7 cycles like a butterfly
operation but to keep the point-wise multiplication in sync with the generation
of the polynomial a (see below) we slow it down to 9 cycles per coefficient, i.e.
1024 - 9 = 9,216 cycles in total.

3.4 Generation of a

The implementation of the generation of the Parse function is a challenging task.
Usually a b-bit number is sampled from a source of uniform randomness for a
modulus ¢ with 2= < ¢ < 2°. Simply applying a modular reduction to this
number to obtain a result in [0,¢ — 1] will introduce a bias in the result. Thus
the authors of NewHope reject any sampled number that is larger or equal to the
modulus and restarting the sampling. Gueron and Schlieker [13] proposed a faster
method to generate the polynomial a. By increasing b such that 2°~! < 5¢ < 2°
they managed to reduce the rejection rate from 25% per sample to 6% per
sample. However, this method requires up to four subtractions of the modulus
q to get a properly reduced result.

For our implementation, we avoided these subtractions and sampled [log, 12289] =
14 bits. But we still want to achieve a lower rejection rate. Thus we perform one
execution of SHAKE-128 that gives us 1344 bits of pseudo-randomness. Three
processes analyze this randomness buffer word-by-word in parallel and store 14-
bit words that are smaller than the modulus in a buffer. As 96 14-bit words
fit into the 1344-bit output of SHAKE-128, the probability that less than three
words are found that are smaller than the modulus is 0.25% 4 96 - 0.75 - 0.25% +
9695 .0.752 - 0.25%4 &~ 2717 and can therefore be neglected.

To generate the 1344-bit output of SHAKE-128 we need 27 cycles. As the
point-wise multiplication takes 9 cycles, we can run it three times during the
execution of SHAKE-128. Therefore, the runtime of the generation of a is equal
to the runtime of the point-wise multiplication, i.e. 9,216 cycles.

3.5 Binomial Sampling

We implemented a binomial sampler that counts the Hamming weight of two
k-bit vectors and subtracts theses Hamming weights. The required randomness
is generated by a Trivium PRNG [18] that outputs one bit per clock cycle. This
implementation of Trivium uses a fixed seed that in practice would have to
be generated from a secure random number generator. However, true random
number generators in FPGAs is a research field on its own and out of scope for
this work. As k = 16 the generation of a binomial distributed sample takes 33
cycles and thus 33,792 cycles for an entire polynomial. More instances of the
Trivium PRNG would accelerate the generation of the samples. However, we re-
frained from applying this optimization to keep the implementation small. Only
the generation of the first error polynomial of each party has an influence on the
performance as the remaining error polynomials can be generated during other
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computations (like the NTT). One possible optimization would be to perform
the generation of the first error polynomial in an offline computation so that
every time a key exchange is triggered, an error polynomial is already available.

3.6 Hash Function

NewHope-Simple requires the instantiation of a hash function and an extendable
output function. Thus our design contains a Keccak core that is able to compute
both, SHA3-256 and SHAKE-128. Our implementation of Keccak executes one
round per clock cycle. To synchronize it with the generation of a, we slow it
down to take 27 cycles for the entire 24 rounds of Keccak.

3.7 Compression

The compression function as described in [1] requires a division by ¢g. However,
as the modulus ¢ is fixed and the result is limited to [0, 8], we precompute the
thresholds at which the result of the division changes and use a simple multi-
plexer cascade to implement the division. By doing so we obtain the compressed
result in two clock cycles. Similarly, the decompression requires a multiplication
by ¢. Again, we use multiplexers as the input is limited to [0, 7].

4 Results and Comparison

In this chapter, we discuss the results of our implementation and compare it
with others.

4.1 Evaluation Methodology

We implemented NewHope-Simple for a Xilinx Artix-7 FPGA with the part
number XC7AA35TCPG236. Our development environment was Xilinx Vivado

v2015.3. If not stated otherwise all results were obtained after post-place and
route (Post-PAR).

4.2 Results

We optimized our implementation for area-efficiency. Our implementation takes
1,483 slices, 4,498 LUTSs, and 4,635 FFs for the client and 1,708 slices, 5,142
LUTs, and 4,452 FFs for the server. We restricted our design to two DSPs to
address a use-case for moderate throughput. Note that the use of additional
DSPs will lead to a considerable speed-up. Our implementation uses four 18-kb
block memories, two for the NTT twiddle factors and two as temporary storage
for intermediate polynomials. The overall runtime of 350,416 cycles is divided
into 115,784 cycles for the first set of server-side operations, 179,292 cycles for
the client-side operations, and 55,340 cycles for the second set of server-side
operations. The client-side design was successfully placed and routed with a
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Table 1. This table presents the exact cycle counts for our implementation. The line
numbers given in the table refer to the line numbers of Algorithm 1 and are followed
by a short summary of the respective step.

Operations (server) Cycles||Operations (client) Cycles
Line 3: Sampling 33,794||Line 10: Sampling 33,794
Line 4: Sampling + NTT 35,843||Line 11: NTT + Sampling 35,843
Line 5: NTT 35,845||Line 12: NTT 35,845
Line 6: Parse+Multiplication 9,277||Line 13: Parse + Multiplication 9,277
Line 7: Output b 1,025||Line 14: Output 1,025
Total 115,784(|Line 15: Multiplication 9,220
Line 16: Inverse NTT+Sampling| 35,845
Line 22: Multiplication 9,219||Line 16: Multiplication with n~* 9,221
Line 23: Inverse NTT 35,845||Line 17-19: Encode 4+ Output ¢ 9,219
Line 23: Multiplication with n=! 9,219|| Total 179,292
Line 24: Decode 1,028
Line 25: Hashing 29
Total 55,340

maximum frequency is thus 117 MHz. The maximum path delay is 8.037 ns and
is located between the DSP output and the modular reduction. The server-side
design achieved a slightly better performance and was successfully placed and
routed with a a frequency of 125 MHz. In this case the maximum path delay
is 7.179 ns and located between the output of the modular reduction and the
input of the BRAM. The actual cycle counts for our implementation are listed
in Table 1.

4.3 Comparison

To the best of our knowledge, this is the first hardware implementation of
NewHope or NewHope-Simple. Hence, a comparison with previous work is some-
what difficult. We therefore add references to works that implement basic en-
cryption schemes, such as ring-LWE or lattice-based IBE. Table 2 summarizes
our results and previous related work. However, please note again that a straight
comparison of the presented schemes is neither fair nor possible, for the following
reasons:

— Parameter sizes. When comparing the implementations we have to con-
sider that in our implementation the lattice dimension is n = 1024 while
most other implementations use n = 512 or even n = 256. The lattice di-
mension n determines how much memory is needed to store polynomials. It
furthermore has a linear influence on the run time of every module beside
the Keccak core. The NTT is even slowed down by a factor of 2.22. when
increasing n from 512 to 1024.
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— Additional components. The implementation of NewHope-Simple requires
a number of components that are not present in ring-LWE, standard-LWE,
and IBE. Especially NHSCompress, NHSDecompress, SHA3-256, and SHAKE-
128 are required by NewHope-Simple only and thus lead to a higher resource
consumption.

— Key generation. The NewHope-Simple protocol basically performs all three
ring-LWE operations: key generation, encryption, decryption. The works of
[14,23,15] only present implementations of the encryption and the decryp-
tion. Thus, the cost of the key generation would have to be added first for a
fair comparison.

— Precomputation. NewHope-Simple requires the on-the-fly generation of
the public polynomial a, while previous work usually assumes that a is a
global constant and is thus treated as precomputed value. In contrast to
that, NewHope-Simple requires the implementation of a Parse function. Fur-
thermore, to minimize the communication cost, both parties have to generate
a while in lattice-based encryption schemes, a is usually generated only once
during the key generation if not assumed to be a global constant anyway.
Thus, we have to spend additional cycles and FPGA resources to meet the
requirement of generating a on-the-fly.

— Security level. The authors of NewHope-Simple claim a security level of 255
bits against known quantum attackers [2] while the works on ring-LWE have
a much lower security level of 131 bits against known quantum attackers [16].
The work of Roy et al. [23] further reduces the security as they limit the secret
key to have binary coefficients instead of Gaussian distributed coefficients
without discussing the implications on the security level. Such a limitation
has a huge impact on the performance as a polynomial multiplication can be
replaced by simple additions. We decided to stick to the recommendations of
[2] as we do not want to lower the security level significantly. The parameters
for lattice-based IBE are chosen to have a 80-bit resp. 192-bit security level
against classical attackers.

Considering the aforementioned factors, our implementation compares well
to other lattice-based schemes. Further optimization might even lead to a smaller
implementation or better performance.

5 Conclusion

In this work, we presented the first implementation of the NewHope-Simple key
exchange. The scheme is arguably one of the most promising candidates for
quantum-secure key exchange. Hence, we expect a high interest in an instantia-
tion of NewHope-Simple in hardware. We demonstrate that NewHope-Simple is
well suited for implementations on constrained hardware devices and still main-
tains a decent performance on available platforms. To allow independent veri-
fication of our results and further improvements, our source files will be made
publicly available with publication of this work.
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Table 2. Our implementation results in comparison with implementations of similar
schemes. The first row denotes the server-side operations for key exchange and encryp-
tion for encryption schemes. The second row denotes the client-side operation for key
exchange and decryption for encryption schemes. If only one of the two rows contains
numbers for the resource consumption, the authors of the respective work present a
combined implementation for both operations. The clock frequency is given in MHz.

Implementation Clock|(LUT-FF-BRAM-DSP)| Cycles
NewHope-Simple (XC7A35T, this work)| 125 | (5,142 - 4,452 - 4 - 2) 171,124
(1024/12289) 117 | (4,498 - 4,635 - 4 - 2) [179,292
IBE (S6LX25, [11)) 174 [ (7,023 - 6,067 - 16 - 4) | 13,958
(512/16813057) 9,530
IBE (S6LX25, [11]) 174 | (8,882 - 8,686 - 27 - 4) | 28,586
(1024,/134348801) 19,535
ring-LWE (V6LX75T, [10]) 251 | (5,595 - 4,760 - 14 - 1) | 13,769
(512/12289) 8,883
ring-LWE (V6LX75T, [23)) 278 | (1,536-953-3-1) | 13,300
(512/12289) 5,800
standard-LWE (S6LX45, [10]) 125 | (6,078 - 4,676 - 73 - 1)] 98,304
(256/4096) 144 |  (63-58-13-1) | 32,768

For future work, we plan to further improve the performance of the imple-
mentation. Especially the NTT could benefit from some ideas that Roy et al.
incorporated in their implementation of ring-LWE [24]. Furthermore an in-depth
analysis of side-channel vulnerabilities of the scheme is required before NewHope
hardware accelerators could be deployed in the field. Due to the ephemeral nature
of the scheme, an attacker is limited to a single execution to gain side-channel
information. Nevertheless, simple power analysis or template attacks should be
considered.
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