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Abstract. Secure two-party computation is becoming a necessary com-
ponent in many real-world systems. Tremendous progress has been made
in making secure two-party protocols concretely efficient. Recently, more
and more attention is being diverted to making secure multiparty com-
putation truly practical as well. In particular, the last couple of years
saw a resurgence of interest in constant round secure protocols, based on
the multiparty garbling paradigm of Beaver et al. (STOC 1990). Such
protocols generally offer improved performance in high latency networks,
such as the internet.
In this paper we consider the case where a majority of the parties are
honest, and construct highly efficient constant round protocols for both
the semi-honest setting and the malicious setting. Our protocols in the
semi-honest setting significantly improve over the recent multiparty gar-
bling protocols for honest majority of Ben Efraim et al. (ACM CCS
2016), both in asymptotic complexity and in concrete running time.
In the malicious setting, we consider security with abort when assum-
ing more than 2/3 of the parties are honest. We show that by assuming
the existence of simple preprocessing primitives, which do not require
knowledge of the computed function, we get malicious security at almost
the same cost as semi-honest security. I.e., the function dependent pre-
processing and the online phase are almost identical to the semi-honest
setting.
We ran experiments to measure the effect of our optimizations and to
show that our protocols compete with the state-of-the-art constant round
protocols.

Keywords: Constant Round MPC, Garbled Circuits, Concrete Efficiency,
Honest Majority
1 Introduction
Protocols for secure multiparty computation (MPC) enable a set of mutually
distrusting parties to carry out a joint computation on private inputs, correctly
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and without revealing anything but the output. Secure computation was intro-
duced for the 2-party case by Yao [41], who also introduced the notion of garbled
circuits. These are essentially encrypted versions of the circuit, which can be
evaluated without the evaluator learning intermediate wire values. Definitions
and protocols for secure multiparty computation soon followed in [21] and [11, 5].
Multiparty garbled circuits were introduced by Beaver et al. [1], who constructed
a constant round multiparty protocol.

These feasibility results were initially thought to be of theoretical interest
only, but since the first 2-party implementation of Fairplay [32], a huge amount
of work (e.g., [27, 36, 34, 28, 2, 37, 42, 29, 35, 40] to name but a few) has brought
down the running time of 2-PC tremendously, making it truly practical today.

The progress for the multiparty case has been somewhat slower, but is quickly
catching up. The first implementation of secure multiparty computation, Fair-
playMP [3], was based on the multiparty garbling paradigm. However, since
then, most implementations were based on the secret-sharing paradigm, e.g.,
[8, 9, 16, 7, 12, 18, 17, 25]. In the secret-sharing paradigm, the parties secret-
share the values of the input wires of the circuit. Then, for each layer of the
circuit, the parties compute shares for the next layer using interaction. Finally,
the output wires’ values are reconstructed. Thus, the number of rounds depends
on the depth of the circuit.

Interestingly, the last couple of years saw a resurgence of interest in constant
round protocols based on the multiparty garbling paradigm, e.g., [30, 4, 31,
23, 39]. Such protocols generally offer improved performance in high latency
networks, such as the internet, as demonstrated in [4].

Our Results and Techniques. We consider the case where a majority of
the parties are honest, and construct highly efficient constant round protocols
for both the semi-honest setting and the malicious setting. Our protocols in the
semi-honest setting significantly improve over the recently published constant
round protocols for honest majority of Ben-Efraim et al. [4], both asymptotically
and in concrete running time.

We achieve our main improvement by observing that not all values necessary
for computing the multiparty garbled circuit need to be secret-shared. This is
done in two steps: First, we replace the round reduction technique of [4] with
the round reduction technique for BGW presented by Ishai and Kushilevitz [24].
In [24], the last round of BGW is omitted by performing share conversion to (not
uniformly random) additive sharing, and then masking with additive shares of
zero. Second, we use the fact that the shares are additive to locally add the nec-
essary values after the share conversion step. Using this, we manage to bypass
the most computationally expensive part of the protocols of [4]. We then op-
timize further by observing that in the honest majority setting not all parties
need to contribute keys. Also, using standard optimizations from the literature,
we efficiently compute additive secret-shares of zero locally and distribute the
workload in the last round of the offline phase.

We then investigate malicious security with abort when assuming that more
than 2/3 of the parties are honest. It is well-known that, from a theoretical stand-
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point, in this scenario full fairness is achievable. However, we relax the security
definition, with the aim of obtaining better running times. We present a new
2-round protocol that is secure against malicious adversaries in the linear pre-
processing model defined by Damg̊ard and Ishai [15]. The linear preprocessing
functionalities can be used before the function is known. Then, the function de-
pendent preprocessing and the online phase in our malicious protocol are almost
identical to our protocols in the semi-honest setting.

We ran experiments to measure the effect of our optimizations. For 31 par-
ties, we found that our optimized protocols are more than 70%, and sometimes
even more than 85%, faster than the respective protocols in [4]. We also ran ex-
periments comparing our protocol with existing state-of-the-art constant round
MPC protocols that use oblivious transfer. We show that in some scenarios, our
new protocols outperform all other constant round protocols.

Related Works. Recently, two works have studied constant round MPC
based on multiparty garbling in the malicious setting [23, 39]. The protocols in
these works use oblivious transfer and are secure up to n − 1 corrupt parties.
Thus, assuming oblivious transfer, they provide a stronger security guarantee,
and so are suitable also in scenarios where our protocols are not. Nevertheless, we
show that in some scenarios our protocols could be preferred. Furthermore, our
protocols do not require OT. Therefore, the results of these works are orthogonal
to ours. Previous works for malicious security in constant rounds, such as [15,
30, 31], provided no implementation, so it is not clear how concretely efficient
they are.

Other works, such as [13, 33, 10], study constant round MPC only in a very
restrictive scenario, e.g., only 3 or 5 parties and/or only 1 or 2 corrupt parties. It
is not clear if and how these results generalize to an arbitrary number of parties.

There has also been a significant amount of work done in non-constant round
MPC, e.g., [18, 17, 25, 19, 26], but for deep circuits in high latency setting, these
protocols have a slow online phase due to the number of rounds. Hence, they are
incomparable with our work.

Organization. In Section 2, we review multiparty garbling. In Section 3,
we explain our optimized protocols for the semi-honest setting. In section 4, we
present a new protocol that is secure against malicious adversaries, in the linear
preprocessing model of Damg̊ard and Ishai [15]. In Section 5, we present experi-
mental results, measuring the efficiency of our optimizations and comparing our
protocols to state-of-the-art constant round protocols.

2 Preliminaries
In this section, we recall the basic definitions and constructions of multiparty gar-
bling. We assume familiarity with the definitions of secure multiparty computa-
tion, with Yao’s garbled circuit construction [41], with Shamir secret-sharing [38],
and with the BGW protocol and its improvement [5, 20].
Conventions and Notations. We list some of the conventions and notations that
we will use throughout this paper. We assume the existence of a circular 2-
correlation robust PRF, which we denote by F2. When separating the offline
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and online phases, we even assume that F2 is a random oracle.3 We consider a
static adversary A corrupting a strict minority of the parties (or when stated also
less than 1/3 of the parties). In the malicious setting we consider security with
abort, namely, the adversary is allowed to prematurely abort the computation,
even after seeing the output. In this case, honest parties that need to output a
result need to output ⊥. We denote by || concatenation of strings. The circuit
of the function to be computed is denoted by C, and g ∈ C denotes both the
gate and its index. The set of wires is denoted by W , and W denotes the wires
that are not outputs of XOR gates. The number of parties in the protocol is n,
and t is the bound on the number of corrupt parties. The security parameter
will be κ = 128, and ⊕ will denote both XOR of strings and addition in fields
of characteristic 2.

Multiparty Garbling. In the multiparty setting, the first proposal for constructing
a multiparty garbled circuit was given in [1]. We follow a simplified description
for the semi-honest model, given in [4], which also adopts the free-XOR technique
of Kolesnikov and Schneider [27].

The protocol consists of two phases. In the first phase, often called the offline
phase, the parties collaboratively construct a garbled circuit. Then, in the online
phase, the parties exchange masked input values and the corresponding keys.
After that, each party locally computes the outputs of the function.

For constructing the garbled circuit, each party Pi chooses, for each wire
ω ∈ W, two random keys, kiω,0 and kiω,1. To enable the free-XOR technique [27],
the parties need to choose the keys such that kiω,1 = kiω,0 ⊕ Ri for some global
offset Ri. A sometimes useful notion is the term “superseed”, which refers to the
concatenation of the keys of all the parties, for some wire ω and either the zero
or the one key, i.e., kω,0

def= k1
ω,0|| . . . ||knω,0 and kω,1

def= k1
ω,1|| . . . ||knω,1.

Each wire ω in the circuit is assigned a random secret permutation bit λω.
This bit masks the real values of the wires during the online phase. For an
AND gate with input wires in1, in2 and output wire out, the garbled gate is the
encryptions g̃1

α,β || · · · ||g̃nα,β for (α, β) ∈ {0, 1}2, where

g̃jα,β =
(

n⊕
i=1
F2
kiin1,α,k

i
in2,β

(g||j)
)
⊕kjout,0⊕

(
Rj · ((λin1 ⊕ α) · (λin2 ⊕ β)⊕ λout)

)
.

(1)
Notice that all the values are “encrypted” by all the parties. XOR gates are
computed using the free-XOR technique of Kolesnikov and Schneider [27] – the
permutation bit and keys on the output wire are set to be the XOR of those
on the input wires; they require no cryptographic operations or communication.
For the circuit output wires, the permutation bits are revealed. For input wires
of party Pi, the corresponding permutation bits are disclosed to party Pi.

During the online phase, an evaluating party learns at each wire a bit, called
the external or public value, and the corresponding superseed. The external value

3This is to allow the garbled circuit to be revealed at the end of the offline phase.
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is the XOR of the real value with the random permutation bit. Since the permu-
tation bit is random and secret, the external value reveals nothing about the real
value to the evaluating party. The evaluating party uses the external value and
keys to continue the evaluation of the proceeding garbled gates. For the output
wires of the circuit, the permutation bit values are revealed, and thus the output
is learnt by XORing with the external values.

In the following last part of this section, we explain an abstraction of the
general multiparty garbling paradigm. We do this informally and slightly impre-
cisely for clarity. Precise treatments can be found in [23] and in the full version.

The offline phase can be seen as an invocation of the functionality FGC ,
given in Figure 1, which constructs the garbled circuit and assigns the random
permutation bits. In the FGC-hybrid model, after invoking the functionality
FGC , running the online protocol Πonline, given in Figure 2, securely computes
the output of the function in the semi-honest model.

In fact, a much stronger statement is true, as shown in [23]: running the online
protocol in the FGC-hybrid model is secure also against malicious adversaries,
even if the adversary is allowed to abort (i.e., see the output and hide it from
the honest parties). Furthermore, the correctness requirement of FGC can be
weakend – the adversary can choose either to abort or to insert any additive
error into the garbled gates after seeing the garbled circuit. The intuition is that
the adversary cannot base its additive error on the permutation bits, or on the
keys and inputs of the honest parties – the attack is only based on the garbled
circuit, which appears random to the adversary. Thus, in the online phase, an
honest evaluator will either notice the error and output ⊥, or output the correct
result. We denote this modified functionality, introduced in [23], by FmalGC .

3 Optimizations for BGW based Sub-Protocols

In this section we describe our protocols that are secure in the semi-honest
setting. These protocols compute a multiparty garbled circuit using the BGW
protocol [5, 20]. Our protocols are similar in spirit to the protocols that were
presented in [4] for honest majority, specifically to BGW3 and BGW2. We first
present the main ideas of the optimizations in Sections 3.1 and 3.2. Then, we
give a full description of our protocol with all the optimizations in Section 3.3.
We state security of our optimized protocol in Section 3.4. The proof will appear
in the full version.

The protocols we describe in this section are secure against semi-honest ad-
versaries. However, in Section 4 we show that our 2-round protocol can be made
secure also for malicious adversaries. As often happens, the optimizations pre-
sented in this section, in the semi-honest model, carry over also to the malicious
model.

3.1 Reducing the Computational Complexity

In this section we explain how we reduce the computational complexity of the
BGW based protocols described in [4] from being cubic in the number of parties
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Functionality FGC

Computation Course:

1. The functionality assignsa a random global offset Ri ∈ {0, 1}κ for every
party Pi.

2. For each wire ω ∈ W, the functionality assignsa

– A random permutation bit λω ∈ {0, 1}.
– Random zero keys kiω,0 ∈ {0, 1}κ, and the one keys kiω,1 = kiω,0⊕Ri,

for each party Pi.
3. For each XOR gate g ∈ C with input wires in1, in2 and output wire

out, the functionality computes
– The permutation bit of the output wire λout = λin1 ⊕ λin2.
– The zero keys of the output wire, kiout,0 = kiin1,0 ⊕ kiin2,0 for each

party Pi.
4. The functionality computes the garbled circuit GC. For every AND gate

g ∈ C with input wires in1, in2 and output wire out, every α, β ∈ {0, 1},
and every j ∈ [n], compute:

g̃
j
α,β

=

(
n⊕
i=1

F2
kiin1,α,k

i
in2,β

(g||j)

)
⊕ kjout,0 ⊕

(
R
j · ((λin1 ⊕ α) · (λin2 ⊕ β)⊕ λout)

)
Outputs:

1. The functionality outputs the garbled gates,
(
g̃1
α,β || · · · ||g̃nα,β

)
for every

α, β ∈ {0, 1} and every g ∈ C, to the evaluating party.b
2. For output wires of the circuit, the functionality outputs the permuta-

tion bits to the evaluating party.b
3. The functionality outputs to each party Pi its global difference Ri, its

zero key, kiw,0, for each wire w ∈ W, and the permutation bit of each
of its input wires.

a Unlike [4], we follow [23] and make this functionality inputless.
b We slightly divert from [4, 23] by having only one evaluating party.

Fig. 1: Functionality FGC for Constructing a Multiparty Garbled Circuit

to being quadratic in the number of parties. This involves using techniques sug-
gested in [24, Appendix A]. The idea there was to reduce the number of rounds
for computations that use the BGW protocol, by omitting the last degree reduc-
tion step. This is done by multiplying the shares by the interpolation constants,
to convert the Shamir shares into additive shares, and then masking these with
additive shares of 0.4 Thus, the last round reduction becomes redundant.

In [4], they instead reduced the number of rounds by sharing the PRF values
at a higher degree at the onset. Thus, the multiplication of shares were added to

4Note that in our protocol, as well as in [24], this “share conversion” is done on
multiplication of shares, so the resulting “shares” are not fully random. Nevertheless,
they indeed sum to the secret, and the security is maintained by the masking.
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Protocol Πonline

1. Send garbled labels associated with inputs: For every circuit-input
wire w:
(a) Let Pi be the party whose input is associated with wire w and let

xiw be Pi’s input bit associated with the wire. Then, Pi sends ew =
xiw ⊕ λw to all parties. For every wire w, we denote by ew the XOR
of the actual value on the wire (based on the input) and λw; we call
this the external value.

(b) Each party Pj sends its part kjw,ew of the garbled label on w to the
evaluating party.

(c) At this point, the evaluating party holds k1
w,ew , . . . , k

n
w,ew for every

circuit-input wire.
2. Local circuit computation: The evaluating party P0 locally evaluates

the garbled circuit by traversing the circuit in a topological order, com-
puting gate by gate. Let g be the current gate with input wires in1, in2
and output wire out. Let ein1 and ein2 be the extrenal values on wires in1
and in2, respectively.
(a) If g is a XOR gate, then P0 sets eout = ein1 ⊕ ein2. In addition, for

every j = 1, . . . , n, it computes kjout,eout
= kjin1,ein1

⊕ kjin2,ein2
.

(b) If g is an AND gate, then P0 computes

kjout,eout = g̃jα,β ⊕

(
n⊕
i=1

F2
kiin1,α,k

i
in2,β

(g||j)

)
for every j ∈ [n], and for α = ein1, β = ein2, which are the external

values on wires in1, in2 as above. Given k0
out,eout , the evaluating party

P0 compares it to the garbled labels k0
out,0, k

0
out,1 that it received in

the offline phase on this wire. If it equals k0
out,0 then eout = 0. If it

equals k0
out,1 then eout = 1. Otherwise, an honest P0 outputs ⊥.a

3. Output determination: For every output wire w, the evaluating party
computes the real output bit of wire w to be ew ⊕ λw, where ew is the
external value on wire w and λw is as received in the offline phase.

aNote that outputting ⊥ can only happen in the malicious setting.

Fig. 2: The online phase – circuit evaluation
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the PRF value shares, resulting in legitimate Shamir shares. Therefore, additive
shares of 0 were not needed.

The problem with all previous BGW-based protocols for computing a multi-
party garbled circuit, such as in [4], is that the outputs of the PRFs (or PRGs)
were secret-shared using Shamir secret-sharing.5 Since the length of these out-
puts is linear in the number of parties, and Shamir secret-sharing is computa-
tionally quadratic in the number of parties, the total computational complexity
of these protocols is cubic in the number of parties.

To overcome this, we show that the PRF values, as well as the keys, do not
need to be shared at all! Instead, only the global offset and permutation bits are
shared in Shamir secret-sharing. The keys and outputs of the PRFs are instead
simply added, after the share-conversion step. Since the result is then masked by
additive shares of 0, this is secure. The formal statement is given in Section 3.4.

The number of values shared (by each party) using Shamir secret-sharing
in the resulting scheme is independent of the number of parties. Therefore, the
total complexity of computing these Shamir shares is quadratic in the number
of parties. Furthermore, using an observation made in [24], each of these values
needs to be shared only once. This is regardless of the number of times the
value is used. The number of secrets shared additively is linear in the number of
parties, but computing additive sharing is also linear in the number of parties.
Thus, the total complexity of computing the additive shares is also quadratic in
the number of parties.

To summarize, our new protocols have computational complexity O(|C|κn2)
while the computational complexity of previous honest majority protocols, such
as those of [4], is O(|C|κn3). Our protocols also require slightly less communi-
cation.

3.2 Further Optimizations

In this section, we describe some further optimizations to our protocol.

Shortening the “Superseed”. When assuming an honest majority, or even just a
known bound on the number of corrupt parties, the length of the “superseeds”
can be shortened. That is, only a subset of the parties need to choose input keys.
If the bound on the number of corrupt parties is t, then it is sufficient that t+ 1
parties choose keys, so the length of a “superseed” is (t + 1)κ, where κ is the
security parameter.

Assuming up to n − 1 corrupt parties results in the standard “superseed”
length. However, when assuming an honest majority, the length of the “super-
seed” is cut in half. This gives a significant improvement to running time, both
in the offline phase and the online phase. To the best of our knowledge, this
optimization has not been noticed, or at least not published, in previous works
for multiparty garbling with an honest majority, e.g., [1, 3, 4, 15].

5An exception is [15] who used the outputs of PRGs for encrypting only, but they
instead secret-shared 0’s of the same length using Shamir secret-sharing.
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This optimization is “for free” when only the evaluating party needs to re-
cover the output. However, when more than one party needs to recover the
output, we need to explain how the parties receive the output, because not all
the parties can actually perform the evaluation. In the semi-honest model, we
can let the evaluating party simply send back the output to all the parties.

In the malicious model, we can solve the issue using a broadcast channel.
The evaluating party broadcasts the superseeds of the output wires. Then, each
of the t + 1 parties that contributed for the superseed broadcasts the external
value of the output wires (which they can check by comparing with their key).
If any single party aborts or if any two parties broadcast different sets of values,
then all honest parties abort. Otherwise, t+ 1 parties broadcast the same value.
Since at least one of these parties is honest, it can be shown that this is the true
output – informally, if the adversary can fake the other key for an honest party,
then the adversary can recover the global offset of an honest party, which means
the adversary already effectively broke security. A formal statement and proof
will be given in the full version.

More Efficient Zero Secret Sharing. Assuming the existence of a PRG, there is
a standard method to generate additive zero shares locally, and therefore more
efficiently in terms of communication, and hence, also in concrete running time.
This is done as follows:

Setup: Each party Pi that will need to share 0, sends a private random seed sji
to every other party Pj .

Computation: In order for party Pi to additively share 0 among all the parties
– Each party Pj locally computes its share of desired length by using the

PRG with the seed sji .
– Party Pi locally computes the sum (XOR) of all the above as its share.6

Distributing the Last Round. In the last round in our offline protocol, all parties
send their shares to the evaluating party. The evaluating party receives the
messages from all other parties and sums them together (along with its own
shares). This implies that the evaluating party is performing much more work
than all other parties. However, in many cases, the computational power and
network capabilities of all the parties is approximately equal. Therefore, in some
scenarios, it is preferable to distribute the workload between all the parties.

To do this, we use a technique known as “hypercube” [6]. The idea is that the
‘last round’ in the offline phase is done in logn rounds (instead of 1). At each
round, the remaining parties pair up, and at each pair one sends the message
to the other, which sums up the shares with its own shares, and proceeds to
the next round. It might seem counter-intuitive to go from a constant round
protocol to one which has logn number of rounds, but the idea is to to evenly
distribute the workload. Notice that the overall amount of information sent over
the network remains unchanged.

6In fields of characteristic other than 2, party Pi computes the negation of the sum.
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An example scenario where this optimization could be particularly useful
is when the parties are in two far away clusters. Then, all the parties at each
cluster can sum their shares together, and only one message needs to be sent
over the high latency network. We will see in Section 5 that this optimization
resulted in significant improvement for the LAN setting. However, we remark
that preliminary results for the WAN setting suggest this optimization might
not be suitable when there is high latency between every pair of parties.

3.3 The Optimized Protocol

In this section, we give the full details of our offline protocols, that include all the
above mentioned optimizations. We recall that in the offline phase, the parties
securely compute functionality FGC . The online protocol we use, described in
Figure 2, is the same as [4], with the only difference being that here only one
party evaluates.

We first give a description of our 3-round protocol, which optimizes BGW3
from [4]. We will refer to it as BGW3opt.
Protocol Description. All g̃jα,β values (for all j = 1, . . . , t + 1, all α, β ∈ {0, 1}
and all gates) are computed in parallel. Each value is computed as follows (with
some of the computations done only once globally, as explained in Section 3.1):
Communication round 1: Each party shares a random bit λiω for every wire
ω ∈ W, using (t+ 1)-out-of-n Shamir secret sharing, with t = dn/2e − 1. For an
input wire, the λ is shared only by the party choosing the input of that wire.
Each party Pi, i ∈ {1, . . . , t+ 1} also shares its random offset Ri using (t + 1)-
out-of-n Shamir secret sharing. In addition, the first t+1 parties share a 0-string
of length 4|C|(t+ 1)κ in an n-out-of-n additive (XOR) secret-sharing scheme.
Local computation 1: The parties carry out local additions, as required by the
circuit (e.g., free-XOR), in order to obtain shares of λω = ⊕ni=1λ

i
ω for every

wire of the circuit. For every AND gate with input wires u, v, the parties locally
multiply their shares of λu and λv. Denote this product by λuv.
Communication round 2: The parties run the GRR [20] degree reduction step
on the product λuv to recover Shamir shares of λuλv of degree t.
Local computation 2: The parties locally compute shares of (λu⊕α)(λv⊕β)⊕λω
by a linear combination of their shares of λu, λv, λw, and λuλv. Next, the parties
locally multiply the result with their share of Rj . The parties next perform a
share-conversion step, where each party multiplies the result by the reconstruc-
tion constant.7 Next, each party Pi locally adds F2

kiu,α,k
i
v,β

(g||j), and party Pj

also locally adds kjω,0, to the result. This is then masked with a fresh additive
sharing of 0.
Communication round 3: The parties send the above masked values to the evalu-
ator, who sums the received shares to obtain g̃jα,β . As explained in Section 3.2, it

7If there are redundant parties for interpolation, then these parties multiply by 0
instead.
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is sometimes preferable to perform this step in logn rounds, using the hypercube
technique, instead of in one round. In addition, for each circuit output wire ω,
each party sends its share of λω to the evaluator, and the evaluator recovers λω.

The above protocol has 3 rounds (or 2 + logn rounds) of interaction. As
observed in [4] for their 3-round protocol, if more than 2/3 of the parties are
honest, then 3t < n. Thus, the degree reduction round can be omitted, resulting
in the 2-round protocol BGW2.

It turns out that also here, if more than 2/3 of the parties are honest, then the
degree reduction is unnecessary by setting t = dn/3e − 1. The parties use their
local multiplication, λuv, for the rest of the computations. The reconstruction
of the gates works as before. This gives us a two (or 1 + logn) round protocol,
which we call BGW2opt.

3.4 Security

In this section we state the security of the protocols presented in Section 3.3
in the semi-honest model. Following [4, Theorem 2.1], if the above protocols
securely compute FGC , then there is an efficient constant round MPC protocol
secure in the semi-honest setting. Thus, we give our main security statement.
The proof is given in the full version.

Theorem 1. The protocols BGW3opt and BGW2opt securely compute FGC in
the standard model, when there are at most t semi-honest corrupt parties, for
t < n

2 and t < n
3 respectively.

4 Protocol for the Malicious Model

In this section we describe a new protocol that is secure against malicious ad-
versaries, based on protocol BGW2opt. The protocol requires that > 2/3 of the
parties are honest and allows the adversary to abort prematurely (i.e., learn the
output and hide it from the honest parties).

The protocol we describe shares many similarities with the constant round
protocol of Damg̊ard and Ishai [15], and uses the same preprocessing function-
alities. The protocol of Damg̊ard and Ishai guarantees full security, while ours
guarantees only security with abort. However, by allowing the adversary to abort,
we gain several efficiency benefits:

– Our online is significantly faster: in [15] they perform error correction and
polynomial interpolation for reconstructing the gates in the online phase. In
our protocol the interpolation is implicitly achieved using share conversion,
in the offline phase. Errors result in abort.

– Our computational complexity and concerete efficiency are better than those
of [15]. In particular, allowing abort enables us to use the optimizations
described in Section 3.
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– We can allow a greater number of corrupt parties for a two round MPC
protocol in the linear preprocessing model than the two-round protocol of [15]
– we require > 2/3 honest parties whereas they require either > 4/5 honest
parties or more rounds.

The Linear Preprocessing Model. The functionalities we require appear in [15],
under the name the linear preprocessing model. We did not implement these
functionalities, but we note that they are used only independently of the com-
puted function. A suggested implementation appears in [15], but we believe it
can be much improved using modern techniques. We leave a fast implementation
of these functionalities for future work. We recall the functionalities here:

RandSS(t) – Each party Pi obtains f(i), where f is a random polynomial over
GF(2κ) of degree at most t.

RandSS0(t) – Same as RandSS(t), except that f is subject to the restriction
that f(0) = 0.

RandSSbin(t) – Same as RandSS(t), except that f is subject to the restriction
that f(0) ∈ {0, 1}.

RandSSPi(t) – Same as RandSS(t), except that party Pi additionally receives
the polynomial f .

RandSSPi
bin(t) – Same as RandSSbin(t), except that party Pi additionally re-

ceives the polynomial f .

We further add another simple preprocessing functionality:
AdditiveZeroSharing(AZS) – The parties receive additive (XOR) n-out-of-n
shares of 0.

In the semi-honest model, these functionalities are easily achieved, e.g., in
RandSSbin(t) each party shares a random bit using Shamir secret-sharing and
the parties sum their received shares. This does not extend to the malicious
model, as the parties could share a number not in {0, 1}, or even inconsistent
shares.

In contrast, for the functionality AZS, using the semi-honest protocol in
which t+1 parties additively share 0 and then the parties sum the received shares,
suffices for our protocol – an attack on this protocol would be translated to an
additive attack on the output of FmalGC , which is allowed. The formal statement
and proof will be given in the full version.

Fixing the External Values of the Output Wires. In most descriptions of the BMR
protocol, e.g., [1, 3, 4, 23], the evaluating parties receive the hidden permutation
bits of the output wires. That way, they can XOR this value with the external
value that they recover from the evaluation of the circuit, and thus recover the
output.

A possible solution would be to force the parties to commit to their shares
of the output wires, as done, e.g., in [23]. However, in order to base our protocol
solely on the above preprocessing functionalities, we proceed in a slightly differ-
ent manner; instead of revealing the hidden output bits of the output wires, they

12



are fixed to be 0. Therefore, the evaluating party can recover the true output
value from the output external value, as they are equal.

There are two obvious obstacles. The first is that an output wire may be
an output wire of an XOR or XNOR gate.8 These gates are free in the BMR
protocol [4], and this effectively means that the permutation bits of these wires
are correlated with permutation bits of the input wires of the gate; the shares
of the output wires of XOR gates are computed by XORing the shares of the
input wires of the respective gates.

This obstacle can be overcome by changing output “free-XOR” gates to reg-
ular garbled XOR gates. But a more efficient solution is to add garbled buffer
gates for each output wire which is the output wire of an XOR/XNOR gate.
These buffer gates are garbled as follows: for input wire in and output wire out,
the garbled rows are

g̃jα =
(

n⊕
i=1
F2
kiin,α

(g||j)
)
⊕ kjout,0 ⊕

(
Rj · ((λin ⊕ α)⊕ λout)

)
, (2)

for α ∈ {0, 1}. Now the permutation bit λout can be set to 0, simplifying further.
Notice that the size of a garbled buffer gate is half the size of a garbled AND
gate. Thus, the total size of the garbled circuit is increased by only two garbled
rows for every output wire that is the output of an XOR/XNOR gate.

The second obstacle is if the different parties are supposed to recover different
outputs. If each wire is supposed to be recovered by either exactly one party
or by all parties, then for output wires recovered by party Pi, we could use
RandSSPi

bin(t) to share its permutation bit. Allowing other types of subsets
would require adding another preprocessing functionality, in order to fix the
permutation bits on those output wires.

4.1 Protocol Description

In this section we describe our maliciously secure protocol, in the linear prepro-
cessing model.

Upon receiving the circuit, the parties first add to the circuit a buffer gate for
each output wire that is an output of a XOR/XNOR gate.9 These buffer gates
will be garbled (cf. Equation 2). Now the parties follow the protocol BGW2opt,
with the following changes to the first communication round:

1. For permutation bits, the parties execute RandSSbin(t) instead of each
party sharing a random bit and then summing the received shares.

2. For permutation bits of input wires of party Pi, party Pi receives the ran-
dom permutation bit and all parties receive the shares by executing the
functionality RandSSPi

bin(t).

8We ignore NOT gates, as they can be eliminated by modifying the circuit, without
enlarging the number of garbled gates.

9We again assume that there are no NOT gates in the circuit.
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3. For each required i, each party Pi receives its random offset Ri ∈ GF(2κ),
and all parties receive Shamir shares of Ri, by executing functionality
RandSSPi(t).

4. Shares of the permutation bits of the output wires, which are fixed to 0, are
received using functionality RandSS0(t).

5. Additive shares of 0 are generated using functionality AZS.

The rest of the protocol is identical to BGW2opt (recall that communication
round 2 in BGW3opt is omitted in BGW2opt), except that the output per-
mutation bit shares are not sent (the output permutation bits are fixed to 0).
This implies that the function dependent offline phase of our maliciously secure
protocol is almost the same as the function dependent preprocessing of our semi-
honest protocol – the only difference is the extra garbled buffer gates sent and
that the shares of the output permutation bits are not sent. We call the above
protocol BGW2malopt .

Security. We next give the security statement of our protocol. The proof is given
in the full version. Using the result of Hazay et al. [23], this suffices to realize an
efficient constant round MPC protocol in the malicious setting.

Theorem 2. Protocol BGW2malopt securely computes FmalGC in the linear prepro-
cessing model in the presence of t maliciously corrupt parties, with t < n

3 .

5 Experimental Results

In this section we measure the running times of our protocols and compare our
results with state-of-the-art constant round protocols.

Implementation and Running Environment. Our code was written in C++; we
will make our code publicly available. For implementing F2, we used 128-bit
fixed-key AES, as suggested in [2],10 with pipelined AES-NI. For efficient field
multiplications in GF(2128), we used the CLMUL commands [22]. We ran our
experiments in a computer cluster comprised of Intel XEON 2.20 GHz machines
(E5-2420) with 6 cores running Linux (Ubuntu1404-64-STD), and with a 1Gb
connection and approximately 0.2ms ping time.

We benchmarked the timing of our protocols for 13 and for 31 parties on
both the AES circuit, consisting of 6800 AND gates, and the SHA256 circuit,
consisting of 90875 AND gates. All experiment results are the average on 25 pro-
tocol timings - 5 runs with 5 repetitions in each run. Synchronization steps were
placed before and after each timed phase described below. Following convention,
e.g., [35, 23, 39], we split our timings into the following phases:

Function Independent Preprocessing The knowledge required at this
phase is only an upper bound on the number of AND gates in the circuit.
This part consists of Shamir secret-sharing the permutation bits and offsets,
and also of the additive zero-sharing.

10This gives slightly less than 128 bits of security, cf. [2].
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Function Dependent Preprocessing This phase requires knowledge of the
function to be evaluated. It consists of local multiplication, share conversion
and reconstruction of the garbled circuit by the evaluator.11 In BGW3 there
is also a degree reduction round performed at this phase.

Online This phase requires the inputs of the parties. It consists of exchanging
masked inputs, sending the corresponding input keys to the evaluator, and
the evaluation of the garbled circuit by the evaluator.

In addition, there is a short Setup phase that is done once regardless of
the number of functions/gates evaluated (but requires fixing the parties that
will participate throughout). In this phase the parties exchange private keys and
precompute the reconstruction constants.

Optimizations Measurements. We tested the effect of our different optimizations
with comparison to the original protocols of [4]. We give here the results for 31
parties on the SHA-256 circuit. Basic refers to the original sub-protocol of [4]
(with only one evaluator). Reduced Complexity is including the optimization
described in Section 3.1. Short Superseeds, Efficient Zero-Sharing and Hypercube
are including the respective optimizations described in Section 3.2 (optimizations
are aggregated). For 31 parties our optimizations reduced the total time by over
70% in BGW3 and over 80%, and in some case over 85%, in BGW2!

SHA256, 31 parties Basic Red. Complexity Short S.seeds Eff. Zero-Sharing Hypercube
Ind. Pre. 28.006 13.027 6.944 6.094 6.196

BGW3 Dep. Pre. 6.557 6.427 3.224 3.222 1.092
(t = 15) Online 1.151 1.153 0.381 0.376 0.401

Ind. Pre. 27.827 12.710 4.697 4.296 4.26
BGW2 Dep. Pre. 6.345 6.186 2.088 2.085 0.712
(t = 10) Online 1.127 1.164 0.27 0.257 0.282

Table 1: Measuring the effect of our different optimizations on a LAN. Times are
average in seconds.

Remark 1. We did not measure the running time of our malicious protocol, as we
did not implement the necessary preprocessing functionalities in Section 4. How-
ever, we note that the running time of the function dependent preprocessing and
the running time of the online time should be almost identical to the semi-honest
case – the only difference is adding buffer gates to the output wires which are
output of XOR gates. This corresponds to < 1% and < 0.2% of the total number
of AND gates in the AES and the SHA256 circuits respectively (recall that buffer
gates are only half the size of an AND gate). As for the function indpenedent
preprocessing, we believe that a fast implementation of the preprocessing func-
tionalities, which would make our malicious protocol truly practical, is possible

11As mentioned, performing the reconstruction of the garbled circuit at the offline
phase, before the inputs are given, requires assuming RO for proving security.
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with today’s techniques. We leave this for future work. Furthermore, as noted
in [15], if the number of parties is small, then these preprocessing functionalities
can be computed locally, by using a one-time setup and share conversion [14]
(but this works only for a very small number of parties, as the setup time grows
exponentially with the number of parties).
Comparison with the State-of-the-Art. The state-of-the-art, concretely efficient,
constant round, secure multiparty (for an arbitrary number of parties) computa-
tion protocols are implementations of multiparty garbled circuits using oblivious
transfer – the work of [4] for the semi-honest case,12 and the works of [23] and [39]
for the malicious case.

We note that, in contrast to our protocols, these protocols are secure up to
n−1 corrupt parties. Thus, there are 2 possible comparisons – with respect to the
same number of parties or with respect to the same number of corrupt parties.
For example, for 13 participating parties, if an honest majority is assumed then
one could compare running the OT protocols with 13 parties or with 7 parties.
If more than 2/3 of the parties are assumed to be honest, one could compare to
13 parties or to 5 parties. We give a comparison of our protocols, for 13 parties,
with the BGW and OT protocols of [4].13

BGW3opt OT protocol of [4] BGW3 of [4]
13 parties 13 parties 7 parties 13 parties

Ind. Pre. 0.115 0.01 0.007 0.315
AES Dep. Pre. 0.05 0.244 0.102 0.142

Online 0.021 0.037 0.018 0.033
Ind. Pre. 1.322 0.125 0.089 3.563

SHA256 Dep. Pre. 0.448 2.389 1.090 1.154
Online 0.149 0.303 0.144 0.309

BGW2opt OT protocol of [4] BGW2 of [4]
13 parties 13 parties 5 parties 13 parties

Ind. Pre. 0.084 0.01 0.006 0.308
AES Dep. Pre. 0.025 0.244 0.071 0.119

Online 0.016 0.037 0.011 0.034
Ind. Pre. 1.005 0.125 0.079 3.514

SHA256 Dep. Pre. 0.234 2.388 0.802 1.071
Online 0.1 0.303 0.093 0.303

Table 2: Comparison of our protocols with the protocols of [4]. Times are average in
seconds. For the OT protocol, we compare for both the same number of parties and
the same number of corrupt parties.

We see that for the same number of parties, our protocols outperform the
protocols of [4]. When comparing the same number of corrupt parties, we observe

12The work of [4] also presented the BGW protocols BGW2 and BGW3 along with
their OT protocol. However, in their work they found that their OT protocol almost
always significantly outperforms their BGW protocols for the same number of parties.

13For fair comparison, we changed the code of [4] so only one party evaluates the
circuit also there.
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that although our total offline time is slightly slower than that of the OT version
of [4], our function dependent preprocessing time is significantly faster. In some
scenarios, the function might not be known a long time in advance, and this could
therefore be significant. Also, our setup time is faster, because we don’t need to
perform baseOTs. We remark that since we used the same online protocol as [4],
the timing for the same number of corrupt parties should be approx. equal, with
ours being slightly slower because more parties need to exchange masked inputs.

Unfortunately, at the time of writing, the codes of [23] and of [39] were not
yet publicly available. However, as noted in both [23] and [39], their timings
are very similar to the timings of the OT protocol of [4] (albeit having a much
stronger security guarantee). Thus, following Remark 1, it seems that for the
function dependent preprocessing and for the online phase, the comparison of
BGW2opt with the OT protocol of [4] is a good indication for the comparison
of BGW2malopt with the protocols of [23] and [39]. For the function independent
preprocessing times, see Remark 1.

To conclude, our protocols are competitive with the state of the art constant
round protocols in the semi-honest setting. In the linear preprocessing model,
our BGW2malopt protocol is also competitive in the malicious setting. Thus, in
some circumstances, our protocols might be considered as good alternatives.
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