
Improved XKX-based AEAD Scheme: Removing
the Birthday Terms

Yusuke Naito

Mitsubishi Electric Corporation, Kanagawa, Japan
Naito.Yusuke@ce.MitsubishiElectric.co.jp

Abstract. Recently, Naito [ToSC 2017, Issue 2] proposed XKX, a tweak-
able blockcipher (TBC) based on a blockcipher (BC). It offers efficient
authenticated encryption with associated data (AEAD) schemes with
beyond-birthday-bound (BBB) security, by combining with efficient TBC-
based AEAD schemes such as ΘCB3. In the resultant schemes, for each
data block, a BC is called once. The security bound is roughly ℓ2q/2n +
σ2
A/2

n + σ2
D/2n, where n is the block size of the BC in bits, ℓ is the

number of BC calls by a query, q is the number of queries, σA is the
number of BC calls handing associated data by encryption queries, and
σD is the number of BC calls by decryption queries. Hence, assuming
ℓ, σA, σD ≪ 2n/2, the AEAD schemes achieve BBB security. However,
the birthday terms σ2

A/2
n, σ2

D/2n might become dominant, for example,
when n is small such as n = 64 and when DoS attacks are performed.
The birthday terms are introduced due to the modular proof via the
XKX’s security proof.

In this paper, in order to remove the birthday terms, we slightly modify
ΘCB3 called ΘCB3†, and directly prove the security of ΘCB3† with XKX.
We show that the security bound becomes roughly ℓ2q/2n.

Keywords: Blockcipher, tweakable blockcipher, efficient authenticated
encryption, beyond-birthday-bound security

1 Introduction

Background.1 Confidentiality and authenticity of data are the most important
properties to securely communicate over an insecure channel. In the symmetric-
key setting, an authenticated encryption with associated data (AEAD) scheme
ensures jointly these properties. AEAD schemes have been mainly designed from
a blockcipher (BC). In AEAD research, designing an efficient AEAD scheme is
a main theme. In efficient AEAD schemes such as OCB schemes [26, 24, 25, 13]
and OTR [20], a BC is called once for each data block2 (for associated data or
a plaintext).

1 Our result is an extension of the result in [21], and thus several parts of the back-
ground are reused from [21].

2 The data block is equal to the block size of the underlying BC.
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Efficient BC-based AEAD schemes have been designed by incorporating
an efficient BC-based TBC into an efficient tweakable-BC(TBC)-based AEAD
scheme: in efficient TBC-based AEAD schemes such as ΘCB3 [13] and OTR [20],
a TBC is called once for each data block; in efficient BC-based TBCs such as
LRW2-type TBCs [16, 25, 13], a BC is called once for each query. Since the ef-
ficient BC-based TBCs have birthday-bound security, i.e., security up to 2n/2

BC calls, so are the combined schemes, where n is the block size in bits. How-
ever, birthday-bound security sometimes becomes unreliable; for example, when
a lightweight BC is used, when large amounts of data are processed, or when a
large number of connections need to be kept secure. Hence, designing an AEAD
scheme with beyond-birthday-bound (BBB) security is also important.

Landecker et al. [15] proposed a TBC called Chained LRW2 (CLRW2) with
security up to 22n/3 BC calls, where LRW2 is iterated twice. Lampe and Seurin [14]
considered a more general scheme called r-CLRW with security up to 2rn/(r+2) BC
calls, where LRW2 is iterated r times. Using the TBCs, BC-based AEAD schemes
with BBB security can be obtained. Iwata [8] proposed an AEAD scheme with
security up to 22n/3 BC calls. In the default setting of the AEAD scheme, for
each 4 data blocks, it requires 6 BC calls, and for each data block, it requires
one multiplication. Iwata and Yasuda [11, 12] pointed out that a combination
of the xor of BCs [17] and the Feistel network with six rounds [22] offers BBB-
secure AEAD schemes. However, the resultant AEAD schemes require 6 BC calls
for each data block. Iwata and Minematsu [10] proposed AEAD schemes with
security up to 2rn/(r+1) BC calls, where for each data block, a BC is called r
times, and a tag is generated by using r almost XOR universal hash functions.
These AEAD schemes have BBB security but are not efficient.

Recently, Naito [21] proposed XKX, a BC-based TBC that offers efficient
nonce-based AEAD schemes with BBB security, by combining with ΘCB3 or
OTR. XKX is a combination of Minematsu’s TBC Min [19] and LRW2, where a
BC’s key is defined by using a pseudorandom function (PRF) whose input is a
nonce, and then a data block is encrypted by LRW2 with the nonce dependent
key.3 In XKX-based ΘCB3 (or OTR), for each query, after the nonce dependent
key is defined, a BC is called once for each data block. The security bounds
of the XKX based AEAD schemes are roughly ℓ2q/2n + σ2

A/2
n + σ2

D/2
n, where

ℓ is the number of BC calls by a query, q is the number of queries, σA is the
number of BC calls handing associated data by encryption queries, and σD is
the number of BC calls by decryption queries.4 Hence, if ℓ, σA, σD ≪ 2n/2, the
AEAD schemes have BBB security.

3 He gave BC-based instantiations of the PRF; the XOR of BCs and the concatenation.
The PRF advantage of the XOR is roughly q/2n. The PRF advantage of the con-
catenation is roughly q2/2n. Using these instantiations, these terms are introduced
in the security bounds of the XKX-based AEAD schemes.

4 More precisely, (the PRF-security advantage) and q×(the strong pseudo-random
permutation advantage) are defined in the security bound. For simplicity, assume
that these terms are negligible.
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Motivation. The birthday terms σ2
A/2

n, σ2
D/2

n might become dominant, when
n is small e.g., n = 64. Security bounds define a span of changing a key, and if
the threshold is e.g., 1/220 (a key is changed when a security bound reaches the
threshold), the security bound reaches the threshold when σA = 222 or σD = 222,
which might cause frequent key updates due to DoS attacks.

The reason why the birthday terms are introduced is the modular proof,
which is a combination of the security proofs of ΘCB3 (or OTR) and of XKX. In
the security bound of XKX, the term ν2/2n is defined, where ν is the number of
BC calls with the same key. Hence, the birthday term σ2

A/2
n is introduced, since

in the AEAD schemes, the same BC’s key is used for every associated data block.
The birthday term σ2

D/2
n is introduced, since an adversary can make decryption

queries with the same nonce (i.e, the corresponding BC’s keys are the same).
Instead of the modular proof, the birthday terms might be removed by di-

rectly proving the security of the AEAD scheme. However, it might be be hard.
In XKX-based ΘCB3, the checksum of plaintext blocks is encrypted, associated
data is hashed, and the tag is defined by XOR-ing the encrypted checksum with
the hash value. For this construction, an adversary can make decryption queries
where the encrypted checksums are the same, and thus the randomnesses of the
tags depend on the hash values. Since the BC’s key to handle associated data
(to define hash values) is fixed, the birthday term regarding associated data by
decryption queries might remain in the security bound due to the PRF-PRP
switch for the BC’s outputs.

Our Result. In order to remove the birthday terms, we slightly modify XKX-
based ΘCB3 called ΘCB3†, and then directly prove the security of ΘCB3†. In
this modification, the hash value is XOR-ed with the checksum (instead of the
encrypted checksum). Hence, one does not need to consider the randomnesses
of hash values. We show that the birthday terms can be removed, that is, the
security bound becomes roughly ℓ2q/2n. Note that in this modification, since
one does not need to keep a hash value when generating a tag, the memory size
can be reduced by the hash value.

Related Works. Mennink [18] proposed two TBCs with BBB security in the
ideal cipher model (ICM). Wang et al. [27] generalized his TBCs and gave 32
TBCs with BBB security in the ICM, where some of the TBCs offer efficient
AEAD schemes with BBB security in the ICM. Note that our target scheme is
an efficient AEAD scheme with BBB security in the standard model.

Organization. In Section 2, we start by giving notations and security defini-
tions. In Section 3, we give the previous result for XKX, where the specifications
of XKX schemes and the security results are given. In Section 4, we give our result,
where the specification of ΘCB3† with XKX, the security bounds, and the proofs
are given. In Section 5, we give how to realize ΘCB3† with XKX from only a BC
with respect to the PRF (in Min) and the almost XOR universal hash function
(in LRW2). Finally, in Section 6, we give a conclusion of this paper.
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2 Preliminaries

2.1 Notations

{0, 1}∗ denotes the set of all bit strings, and λ denotes the empty string. For a
natural integer n, {0, 1}n denotes the set of n-bit strings, and 0n denotes the
bit string of n-bit zeroes. We write [i] := {1, 2, . . . , i} for a positive integer i.

For a finite set X , x
$←− X means that an element is randomly drawn from

X and is assigned to x. For a bit string x and a set X , |x| and |X | denote
the bit length of x and the number of elements in X , respectively. For a bit
string x and an integer i ≤ |x|, [x]i denotes the first i-bit string of x. For a

bit string M , M1, . . . ,Mm,M∗
n←− M means that M is partitioned into n-bit

strings M1, . . . ,Mm and (|M | − mn)-bit string M∗ such that |M∗| < n and
M = M1∥ . . . ∥Mm∥M∗. Let Perm(B) be the set of all permutations over a non-

empty set B. A random permutation over B is defined as P
$←− Perm(B). The

inverse is denoted by P−1. For an adversaryA with oracle access to O, its output
is denoted by AO. In this paper, an adversary is a computationally bounded
algorithm and the resource is measured in terms of time and query complexities.

2.2 Definitions of (Tweakable) Blockciphers

Blockcipher (BC). A BC E : K × B → B is a family of permutations over
the set of blocks B indexed by the set of keys K. EK(·) denotes the encryption
function E having a key K ∈ K. The decryption function is denoted by E−1, and
E−1

K denotes E−1 having a key K ∈ K, and becomes the inverse permutation of
EK . BC(K,B) denotes the set of all encryptions of BCs.

We consider Strong-Pseudo-Random Permutation (SPRP) security. The ad-
vantage function of an sprp-adversary A that outputs a bit are defined as

Advsprp
E (A) =Pr[K

$←− K;AEK ,E−1
K = 1]− Pr[P

$←− Perm(B);AP,P−1

= 1] ,

where the probabilities are taken over A, K and P . We say A is a (q, t)-sprp-
adversary if A makes q queries and runs in time t.

Tweakable Blockcipher (TBC). A TBC Ẽ : K×T W×B → B is a family of
permutations over the set of blocks B indexed by the set of keys K and the set
of tweaks T W. ẼK(tw, ·) denotes the encryption of Ẽ having a key K ∈ K and

a tweak tw ∈ T W. The decryption function is denoted by Ẽ−1, and Ẽ−1
K (tw, ·)

is the inverse permutation of ẼK(tw, ·).
We consider Tweakable-Strong-Pseudo-Random Permutation (TSPRP) se-

curity. Let P̃erm(T W,B) be the set of all tweakable permutations with the sets

of tweaks T W and of blocks B, where P̃ ∈ P̃erm(T W,B) is a family of per-
mutations over B indexed by T W, and a tweakable RP (TRP) is defined as
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P̃
$←− P̃erm(T W,B). The inverse is denoted by P̃−1. The advantage function of

a tsprp-adversary A that outputs a bit is defined as

Advs̃prp

Ẽ
(A) =Pr

[
K

$←− K;AẼK ,Ẽ−1
K = 1

]
− Pr

[
P̃

$←− P̃erm(T W,B);AP̃ ,P̃−1

= 1
]

,

where the probabilities are taken over A, K and P̃ . We say A is a (q, t)-tsprp-
adversary if A makes at most q queries and runs in time t.

2.3 Definition of Pseudo-Random Function

Let Func(X ,Y) be the set of all functions from a set X to a set Y. Let F ⊆
Func(X ,Y) be a family of functions that maps X to Y. We consider Pseudo-
Random-Function (PRF) security of F that is indistinguishability from a ran-

dom function (RF), where an RF is defined as f
$←− Func(X ,Y). The advantage

function of a prf-adversary A that outputs a bit is defined as

Advprf
F (A) = Pr[F

$←− F ;AF = 1]− Pr[f
$←− Func(X ,Y);Af = 1] ,

where the probabilities are taken over A, F and f . We say A is a (q, t)-prf-
adversary if A makes at most q queries and runs in time t.

2.4 Definition of Nonce-Based Authenticated Encryption with
Associated Data

In this paper, we consider nonce-based authenticated encryption with associated
data (nAEAD) schemes. The syntax and the definition of nAEAD schemes are
given below.

An nAEAD scheme Π is a pair of encryption and decryption algorithms
Π = (Π.Enc,Π.Dec). K,N ,M, C,A and T are the sets of keys, nonces, messages,
ciphertexts, associated data and tags of the nAEAD scheme. The encryption
algorithm with a key K ∈ K, Π.EncK , takes a nonce N ∈ N , associated data A ∈
A, and a plaintextM ∈M. Π.EncK(N,A,M) returns, deterministically, a pair of
a ciphertext C ∈ C and a tag T ∈ T . The decryption algorithm with a keyK ∈ K,
Π.DecK , takes a tuple (N,A,C, T ) ∈ N×A×C×T . Π.DecK(N,A,C, T ) returns,
deterministically, either the distinguished invalid symbol ⊥ or a plaintext M ∈
M. We require |Π.EncK(N,A,M)| = |Π.EncK(N,A,M ′)| when |M | = |M ′|.

We follow the security definition in [1, 24] that considers privacy and authen-
ticity of an nAEAD scheme Π. The privacy advantage of an adversary A that
outputs a bit is defined as

Advpriv
Π (A) = Pr[K

$←− K;AΠ.EncK = 1]− Pr[A$ = 1] ,

where a random-bits oracle $ has the same interface as Π.EncK , and for query
(N,A,M) returns a random bit string of length |Π.EncK(N,A,M)|. The au-
thenticity advantage of an adversary A is defined as

Advauth
Π (A) = Pr[K

$←− K;AΠ.EncK ,Π.DecK forges] ,
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where “AΠ.EncK ,Π.DecK forges” means that A makes a query to Π.DecK whose
response is not ⊥. We call queries to Π.EncK “encryption queries,” and those to
Π.DecK “decryption queries.” We demand that A is nonce-respecting, namely,
never asks two encryption queries with the same nonce, that A never asks a
decryption query (N,A,C, T ) such that there is no prior encryption query with
(C, T ) = Π.EncK(N,A,M), and that A never repeats a query.

2.5 Definition of Almost XOR Universal Hash Function

We will need a class of non-cryptographic functions called universal hash func-
tions [4] defined as follows.

Definition 1. Let H be a family of functions from (some set) T Wctr to {0, 1}n
indexed by the set of keys K. H is said to be (ϵ, δ)-almost XOR universal ((ϵ, δ)-

AXU) if for any c ∈ {0, 1}n and ctr, ctr′ ∈ T Wctr with ctr ̸= ctr′, Pr[H
$←− H :

H(ctr)⊕H(ctr′) = c] ≤ ϵ and Pr[H
$←− H : H(ctr) = c] ≤ δ .

3 XK and XKX [21]

3.1 Specification

XK and XKX are a combination of Minematsu’s TBC Min [19] and Liskov et al.’s
TBC LRW2 [16]. Let n and k be positive integers, and T WN and T Wctr non-
empty sets. Let F ⊆ Func(T WN , {0, 1}k) and H ⊆ Func(T Wctr, {0, 1}n) be
families of functions used in XK and XKX. Let E ∈ BC({0, 1}k, {0, 1}n), F ∈ F
and H ∈ H. For a tweak tw ∈ T WN and a plaintext block M ∈ {0, 1}n, the
encryption of Minematsu’s TBC is defined as

Min[E,F ](N,M) = EKN
(M) where KN = F (N) .

For tweaks (N, ctr) ∈ T WN × T Wctr and a plaintext M ∈ {0, 1}n, the
encryption of XK is defined as

XK[E,F, h]((N, ctr),M) := Min[E,F ](∆⊕M) where ∆ := H(ctr) ,

and the encryption of XKX is defined as

XKX[E,F, h]((N, ctr),M) := ∆⊕ Min[E,F ](∆⊕M) where ∆ := H(ctr) .

Hereafter, F is called a first tweak function, and H is called a second tweak
function. N is called a first tweak, and ctr is called a second tweak. Note that
using XK and XKX in a scheme, the second tweak spaces of XK and of XKX should
not be overlapped with each other. The combination of XK and XKX is denoted
by XKX∗.
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3.2 Security of XKX∗

XKX∗ is a secure TSPRP [21] as long as E is a secure SPRP, F is a secure PRF,
H is AXU, an adversary does not make a decryption query to XK and does not
make queries to XKX∗ such that the second tweak spaces of XK and of XKX are
not overlapped with each other. The security bound is given below.

Theorem 1 (TSPRP Security of XKX∗ [21]). Assume that H is (ϵ, δ)-AXU.
Let A be a (σ, t)-tsprp-adversary that does not make a decryption query to XK.
Here, q is the number of distinct first tweaks, and ℓN is the number of queries
with first tweak N ∈ T WN . Then, there exist a (σ, t+O(σ))-sprp-adversary AE

and (q, t+O(σ))-prf-adversary AF such that

Advs̃prp
XKX∗(A) ≤ q ·Advsprp

E (AE) +Advprf
F (AF ) +

∑
N∈N

ℓ2N ·max{ϵ, δ} .

3.3 XKX∗-based AEAD schemes

In [21], XKX∗ is applied to TBC-based nAEAD schemes such as ΘCB3 [13] and
OTR [20]. Consider ΘCB3 with XKX∗. In ΘCB3, each plaintext block is encrypted
by the TBC, where a nonce and a counter are inputted as a tweak, and then
the checksum of the plaintext blocks are encrypted. Each associated data block
is encrypted by the TBC, where a counter is inputted as a tweak, and then a
hash value is defined as the xor of the encrypted values. Finally, a tag is defined
as the xor of the encrypted checksum and the hash value. In [21], the security
bounds of ΘCB3 with XKX∗ are given by using Theorem 1. Here, we assume that
an adversary makes qE encryption queries and q queries such that the number of
BC calls of handing associated data by encryption queries is σA and the number
of BC calls by decryption queries is σD. For simplicity, we fix ℓ the number
of BC calls by a query, and use the optimal parameters for H: ϵ = δ = 1/2n.
Regarding the privacy, for each query to ΘCB3 with XKX∗, the BC’s key to take
plaintext blocks and the checksum is changed, whereas the BC’s key to handle
associated data is fixed. Hence, using Theorem 1, the privacy bound becomes
roughly ℓ2qE/2

n + σ2
A/2

n. Regarding the authenticity, when an adversary can
make decryption queries with the same nonce, the BC’s keys to take ciphertext
blocks and the checksums by decryption queries are the same. Hence, using
Theorem 1, the term σ2

D/2
n is introduced in addition to ℓ2qE/2

n + σ2
A/2

n, that
is, the authenticity bound becomes roughly ℓ2q/2n+(σ2

A+σ2
D)/2

n. Note that we

assume that the terms q ·Advsprp
E (AE) and Advprf

F (AF ) are negligible compared
with other terms.

4 Our Result: Improved Security Bound of XKX∗-based
nAEAD scheme

In stead of the modular proof via XKX’s result (Theorem 1), the birthday terms
σ2
A/2

n and σ2
D/2

n might be removed by directly proving the security of the
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Fig. 1. ΘCB3†.Enc where K0 ← F (0) and KN ← F (N).

XKX∗-based nAEAD scheme. However, as mentioned in Section 1, it might be
hard. When an adversary makes decryption queries with the same nonce, the
encrypted checksums are the same. Thus, the randomnesses of the tags depend
on the hash values of associated data. Since the BC’s key to handle associated
data is fixed, the birthday term regarding associated data by decryption queries
might be introduced due to the PRF-PRP switch for the BC’s outputs.

In this paper, in order to remove the birthday terms, we modify ΘCB3, where
the has value is XOR-ed with the checksum (instead of the encrypted checksum).
We call the variant ΘCB3†. Note that by this modification, the memory size is
reduced by the hash value, since one does not keep a hash value of associated
data when the checksum is encrypted.

4.1 Specification of XKX∗-based ΘCB3†

We give the specification of ΘCB3† with XKX∗ by following the notations in [13].
For simplicity, we call it ΘCB3†. Let N be the set of nonces of ΘCB3† such that
0 ̸∈ N . The sets of first tweaks and of second tweaks of XKX∗ are defined as

T WN := N ∪ {0}
T Wctr := N1 ∪ (N0 × {∗}) ∪ (N0 × {$}) ∪ (N0 × {∗$}) ∪ N1 ∪ (N0 × {∗})
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Algorithm 1 ΘCB3†

Encryption ΘCB3†.Enc(N,A,M)

1: Σ ← ΘCB3†.Hash(A); KN ← F (N); C∗ ← λ; M1, . . . ,Mm,M∗
n←−M

2: for i = 1 to m do
3: Ci ← EKN (Mi ⊕H(i))⊕H(i) ▷ XKX

4: Σ ← Σ ⊕Mi

5: end for
6: if M∗ = λ then
7: T ← [EKN (Σ ⊕H(m, $))]τ ▷ XK

8: else
9: Pad← EKN (0n ⊕H(m, ∗)) ▷ XK

10: C∗ ← [Pad]|M∗| ⊕M∗; Σ ← Σ ⊕M∗∥10∗
11: T ← [EKN (Σ ⊕H(m, ∗$))]τ ▷ XK

12: end if
13: return (C1∥ · · · ∥Cm∥C∗, T )

Decryption ΘCB3†.Dec(N,A,M, T )

1: Σ ← ΘCB3†.Hash(A); KN ← F (N); M∗ ← λ; C1, . . . , Cm, C∗
n←− C

2: for i = 1 to m do
3: Mi ← E−1

KN
(Ci ⊕H(i))⊕H(i) ▷ XKX

4: Σ ← Σ ⊕Mi

5: end for
6: if M∗ = λ then
7: T ∗ ← [EKN (Σ ⊕H(m, $))]τ ▷ XK

8: else
9: Pad← EKN (0n ⊕H(m, ∗)) ▷ XK

10: C∗ ← [Pad]|M∗| ⊕M∗; Σ ← Σ ⊕M∗∥10∗
11: T ∗ ← [EKN (Σ ⊕H(m, ∗$))]τ ▷ XK

12: end if
13: if T ∗ = T then return M1∥ · · · ∥Mm∥M∗
14: if T ∗ ̸= T then return ⊥

Subroutine ΘCB3†.Hash(A)

1: K0 ← F (0); ΣA ← 0n; A1, . . . , Aa, A∗
n←− A

2: for i = 1 to a do ΣA ← ΣA ⊕ EK0(Ai ⊕H(i)) ▷ XK

3: if A∗ ̸= λ then ΣA ← ΣA ⊕ EK0(A∗∥10∗ ⊕H(i, ∗)) ▷ XK

4: return ΣA
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where N1 and N0 are positive and nonnegative integers, respectively. “0” is used
to define a BC’s key to handle associated data. Hence, ΘCB3† uses six types
of permutations with tweaks (N, i), (N, i, ∗), (N, i, $), (N, i, ∗$), (i), and (i, ∗).
The first two permutations are used to encrypt plaintext blocks. The next two
permutations are used to generate a tag. The last two permutations are used to
handle associated data. In each procedure, the latter permutation is used to avoid
an additional permutation call by the padding. The sets of keys, associated data,
plaintexts and ciphertexts of ΘCB3† is defined as K := {0, 1}k, A := {0, 1}∗,
M := {0, 1}∗ and C := {0, 1}∗. In ΘCB3†, plaintext blocks are encrypted by XKX,
and other data blocks (a checksum and associated data blocks) are encrypted
by XK. In ΘCB3, a one-zero padding 10∗ is used, where X∥10∗ is a bit string
that 1 is appended to the bit string X and an appropriate number of bits 0 is
appended so that the bit length becomes n. ΘCB3† is specified in Algorithm 1
and is illustrated in Fig. 1.

4.2 Security Bounds of ΘCB3†

The adversarial parameters are defined as follows.

– qE : the number of encryption queries.

– qD: the number of decryption queries.

– q = qE + qD.

– σE : the number of BC calls by encryption queries.

– σ: the number of BC calls by all queries.

– ℓH,α: the number of BC calls in ΘCB3†.Hash at the α-th encryption query,
where α ∈ [qE ].

– lH,β : the number of BC calls in ΘCB3†.Hash at the β-th decryption query,
where β ∈ [qD].

– ℓE,α: the number of BC calls except for those in ΘCB3†.Hash at the α-th
encryption query, where α ∈ [qE ].

– lD,β : the number of BC calls except for those in ΘCB3†.Hash at the β-th
decryption query, where β ∈ [qD].

– lD,β := lH,β + lD,β , where β ∈ [qD].

– ℓE := max{ℓE,α|α ∈ [qE ]}.
– lD := max{lD,β |β ∈ [qD]}.
– ℓE := max{ℓE,α + ℓH,α|α ∈ [qE ]}.
– lD := max{lD,β + lH,β |β ∈ [qD]}.

Theorem 2 (Privacy of ΘCB3†). Assume that H is (ϵ, δ)-AXU. Let A be
a priv-adversary that runs in time t. Then, there exist a (σE , t + O(σE))-sprp-
adversary AE and (qE , t+O(σE))-prf-adversary AF such that

Advpriv
ΘCB3†

(A) ≤ qE ·Advsprp
E (AE) +Advprf

F (AF ) +

qE∑
α=1

ℓ2E,α ·max{ϵ, δ} .
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Theorem 3 (Authenticity of ΘCB3†). Assume that H is (ϵ, δ)-AXU. Let A
be a auth-adversary that runs in time t. Then, there exist a (σ, t + O(σ))-sprp-
adversary AE and (q, t+O(σ))-prf-adversary AF such that

Advauth
ΘCB3† ≤(q + 1) ·Advsprp

E (AE) +Advprf
F (AF )

+
qD(2

n−τ + 2)

2n − (ℓE + lD)
+ (ℓE + ℓ2H) · qD · ϵ+

qD∑
β=1

2l2D,β · ϵ .

Before giving the security proofs, we study the security bounds. Assume that the
SPRP-security and PRF-security terms are negligible, which can be achieved by
using a BC with a long-size key such as k = 2n (See Section 6 in [21] for the
detail). For simplicity, we fix ℓ the number of blockcipher calls by a query, and use
the optimal parameters for H: ϵ = δ = 1/2n. Then, the privacy bound becomes
roughly ℓ2qE/2

n, since ℓE,α ≤ ℓ. Regarding the authenticity bound, the term
qD(2n−τ+2)
2n−(ℓE+lD) becomes roughly q/2τ and the terms (ℓE+ ℓ2H) · qD · ϵ+

∑qD
β=1 2l

2
D,β · ϵ

become roughly ℓ2qD/2
n, since ℓE, ℓH, lD,β ≤ ℓ. Hence, the authenticity bound

becomes roughly q/2τ + ℓ2qD/2
n, and assuming q/2τ ≪ ℓ2qD/2

n, it is roughly
ℓ2qD/2

n. Hence the birthday terms σ2
A/2

n, σ2
D/2

n are absent in the security
bounds.

4.3 Proof of Theorem 2

Firstly, XKX∗ except for XK in ΘCB3†.Hash are replaced with a TRP P̃
$←−

P̃erm(T WN × T Wctr, {0, 1}n). In this replacement, from Theorem 1, the fol-
lowing terms are introduced.

qE ·Advsprp
E (AE) +Advprf

F (AF ) +

qE∑
α=1

ℓ2E,α ·max{ϵ, δ}

In the modified ΘCB3†, for each encryption query, the output blocks are defined
by P̃ , and for each P̃ call, a distinct tweak is used. Thereby, all outputs are
randomly drawn (regardless of outputs of ΘCB3†.Hash). Hence, the upper-bound
in Theorem 2 is obtained.

4.4 Proof of Theorem 3

Let Π0 := ΘCB3†, and

Game0 :=
(
F

$←− F ;H $←− H;AΠ0 forges
)

.

This game is called Game 0.
We next consider Game 1. From Game 0 to Game 1, Minematsu’s TBC, Min,

is replaced with a TRP. Π1 := (Π1.Enc,Π1.Dec) denotes the resultant scheme
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Algorithm 2 Scheme Π1

Encryption Π1.Enc(N,A,M)

1: Σ ← Π1.Hash(A); C∗ ← λ; M1, . . . ,Mm,M∗
n←−M

2: for i = 1 to m do Ci ← P̃N (Mi ⊕H(i))⊕H(i); Σ ← Σ ⊕Mi

3: if M∗ = λ then

4: T ←
[
P̃N (Σ ⊕H(m, $))

]τ
5: else
6: Pad← P̃N (0n ⊕H(m, ∗))
7: C∗ ← [Pad]|M∗| ⊕M∗; Σ ← Σ ⊕M∗∥10∗

8: T ←
[
P̃N (Σ ⊕H(m, ∗$))

]τ
9: end if
10: return (C1∥ · · · ∥Cm∥C∗, T )

Decryption Π1.Dec(N,A,M, T )

1: Σ ← Π1.Hash(A); M∗ ← λ; C1, . . . , Cm, C∗
n←− C

2: for i = 1 to m do Mi ← P̃−1
N (Ci ⊕H(i))⊕H(i); Σ ← Σ ⊕Mi

3: if M∗ = λ then

4: T ∗ ←
[
P̃N (Σ ⊕H(m, $))

]τ
5: else
6: Pad← P̃N (0n ⊕H(m, ∗));
7: C∗ ← [Pad]|M∗| ⊕M∗; Σ ← Σ ⊕M∗∥10∗

8: T ∗ ←
[
P̃N (Σ ⊕H(m, ∗$))

]τ
9: end if
10: if T ∗ = T then return M
11: if T ∗ ̸= T then return ⊥

Subroutine Π1.Hash(A)

1: Σ ← 0n; A1, . . . , Aa, A∗
n←− A

2: for i = 1 to a do Σ ← Σ ⊕ P̃0(Ai ⊕H(i))

3: if A∗ ̸= λ then Σ ← Σ ⊕ P̃0(A∗∥10∗ ⊕H(i, ∗))
4: return Σ

using a TRP P̃
$←− P̃erm(T WN , {0, 1}n), which is defined in Algorithm 2, where

P̃N (·) := P̃ (N, ·). In Game 1, the following event is considered.

Game1 :=
(
P̃

$←− P̃erm(T WN , {0, 1}n);H $←− H;AΠ1 forges
)

.

Pr[Game0]−Pr[Game1] can be upper-bounded by using the following lemma.

Lemma 1 (TSPRP-Security of Min [19]). Let A be a (µ, t)-tsprp-adversary
whose queries include ν distinct tweaks in T WN . Then there exist a (µ, t+O(µ))-
sprp-adversary AE and a (ν, t+O(µ))-prf-adversary AF such that

Advs̃prp
Min (A) ≤ ν ·Advsprp

E (AE) +Advprf
F (AF ) .
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Hence, Min can be replaced with a TRP P̃
$←− P̃erm(T WN , {0, 1}n) with the

above security loss where ν = q + 1 and µ = σ, that is,

Pr[Game0]− Pr[Game1] ≤ (q + 1) ·Advsprp
E (AE) +Advprf

F (AF ) . (1)

Next, Pr[Game1] is upper-bounded. The probability can be upper-bounded

by the similar analysis as PMAC [3] that considers a collision in inputs to P̃N

that define tags. If no such collision occurs, all tags are randomly drawn from
roughly 2n values, thereby the probability that A forgers is roughly qD/2

n. In
the following, the detailed analysis of Pr[Game1] is given.

Analysis of Game1. Let xi := Mi ⊕ H(i), yi := Ci ⊕ H(i), x∗ := H(j, ∗),
x$ := Σ⊕H(m, $) (if M∗ = λ); x$ := Σ⊕H(m, ∗$) (if M∗ ̸= λ), wi := Ai⊕H(i),
and w∗ := A∗∥10∗ ⊕ H(a, ∗). See also Fig. 1 for these notations. Note that x∗
is absent if M∗ = λ. We first consider the case where A forges at the β-th
decryption query where β ∈ [qD]. The event is denoted by Forge[β]. Hereafter, a
value v defined at the β-th decryption query is denoted by v̂. Then the following
cases are considered.

• Case 1: N̂ is new, i.e., N̂ is distinct from all nonces defined at the previous
encryption queries. In this case, the following cases are considered.
— Subcase 1-1: x̂$ ̸∈ {x̂1, x̂2, . . . , x̂m̂, x̂∗}. Since x̂$ is a new input to P̃N , the
output T̂ is randomly drawn from at least 2n − lD values, thereby we have
Pr[Forge[β]] ≤ 1/(2n − lD).
— Subcase 1-2: x̂$ ∈ {x̂1, x̂2, . . . , x̂m̂, x̂∗}. In this case, Pr[Forge[β]] is upper-
bounded by the probability that Subase 1-2 occurs. Assume that x̂$ = x̂i where
x̂i ∈ {x̂1, x̂2, . . . , x̂m̂, x̂∗}. x̂$ has the form x̂$ = Σ̂⊕H(t̂w$), and x̂i has the form
x̂i = M̂i ⊕H(t̂wi) where t̂w$ ≠ t̂wi. x̂$ = x̂i implies that

Σ̂ ⊕H(t̂w$) = M̂i ⊕H(t̂wi)⇒ H(t̂w$)⊕H(t̂wi) = Σ̂ ⊕ M̂i,

Since H is ϵ-AXU, the probability that Subcase 1-2 occurs is at most lD,β · ϵ.

• Case 2: N̂ is not new. In this case, the following cases are considered. Assume
that the nonce defined at the α-th encryption query equals N̂ , where α ∈ [qE ].
Note that since A is nonce-respecting, the number of encryption queries whose
nonces equal N̂ is at most 1. Hereafter, a value v defined at the α-th encryption
query is denoted by v̄.
— Subcase 2-1: x̂$ ̸∈ {x̂1, x̂2, . . . , x̂m̂, x̂∗, x̄1, x̄2, . . . , x̄m̄, x̄∗, x̄$}. Since x̂$ is a new
input to PN̂ , the output is randomly drawn from at least 2n− (ℓE + lD), thereby
Pr[Forge[β]] ≤ 2n−τ/(2n − (ℓE + lD)).
— Subcase 2-2: x̂$ ∈ {x̂1, x̂2, . . . , x̂m̂, x̂∗, x̄1, x̄2, . . . , x̄m̄, x̄∗}. Assume that x̂$ =
x′ where x′ ∈ {x̂1, x̂2, . . . , x̂m̂, x̂∗, x̄1, x̄2, . . . , x̄m̄, x̄∗}. x̂$ has the form x̂$ = Σ̂ ⊕
H(t̂w$), and x′ has the form x′ = X ′⊕H(tw′) for some n-bit value X ′ such that
t̂w∗ ̸= tw′. x̂$ = x′ implies that

Σ̂ ⊕H(t̂w$) = X ′ ⊕H(tw′)⇒ H(t̂w$)⊕H(tw′) = Σ̂ ⊕X ′ .



14 Yusuke Naito

Pr[Forge[β]] is upper-bounded by the collision probability. Since H is (ϵ, δ)-AXU,
the collision probability is at most (ℓE,α + lD,β − 2) · ϵ.
— Subcase 2-3: x̂$ = x̄$ and t̂w$ ̸= t̄w$. x̂∗ has the form x̂∗ = Σ̂ ⊕H(t̂w$), and
x̄∗ has the form x̄∗ = Σ̄ ⊕H(t̄w$). x̂∗ = x̄∗ implies that

Σ̂ ⊕H(t̂w$) = Σ̄ ⊕H(t̄w$)⇒ H(t̂w$)⊕H(t̄w$) = Σ̂ ⊕ Σ̄.

Pr[Forge[β]] is upper-bounded by the collision probability. Since H is (ϵ, δ)-AXU,
the collision probability is at most ϵ.
— Subcase 2-4: x̂$ = x̄$ and t̂w$ = t̄w$ and Â = Ā. In this case, Σ̂ = Σ̄, and
by t̂w$ = t̄w$, m̂ = m̄ and ℓE,α = lD,β are satisfied. Let I := {1, 2, . . . , m̂}. We

remove trivial induces from I, i.e., induces i ∈ I such that M̂i = M̄i are removed.
The resultant subset is denoted by I ′. Then

Σ̂ = Σ̄ ⇔

(
m̂⊕
i=1

M̂i

)
⊕ P̂ ⊕Π1.Hash(Â) =

(
m̄⊕
i=1

M̄i

)
⊕ P̄ ⊕Π1.Hash(Ā)

⇔

(⊕
i∈I′

M̂i ⊕ M̄i

)
= P̂ ⊕ P̄ (2)

where P̂ = M̂∗∥10∗ or 0n, and P̄ = M̄∗∥10∗ or 0n. Pr[Forge[β]] is upper-bounded
by Pr[(2)] (the probability that (2) is satisfied).

Pr[(2)] is upper-bounded. By Â = Ā, Ĉ ̸= C̄ is satisfied, and thus I ′ ̸= ∅ is
satisfied. Let Ŷ := {ŷi|i ∈ I ′} and Y := {ŷi, ȳi|i ∈ I ′} be multisets for I ′. The
following cases are considered.

– The first case is ∃ŷ† ∈ Ŷ, y‡ ∈ Y\{ŷ†} s.t. ŷ† = y‡. In this case, Pr[(2)]
is upper-bounded by the probability that ŷ† = y‡. ŷ† has the form ŷ† =

Ĉ† ⊕ H(t̂w
†
), and y‡ has the form y‡ = C‡ ⊕ H(t̄w

‡
), where t̂w

† ̸= t̄w
‡
.

ŷ† = y‡ implies that

Ĉ† ⊕H(t̂w
†
) = C‡ ⊕H(t̄w

‡
)⇔ H(t̂w

†
)⊕H(tw‡) = Ĉ† ⊕ C‡ .

Since |Ŷ| ≤ lD,β − 1, |Y| ≤ 2lD,β − 3 and H is (ϵ, δ)-AXU, in this case,
Pr[(2)] ≤ (lD,β − 1)(2lD,β − 3) · ϵ.

– The second case is ∀ŷ† ∈ Ŷ, y‡ ∈ Y\{ŷ†} : ŷ† ̸= y‡. In this case, ŷ† ∈ Ŷ is
a new input to P−1

N̂
, and thus the output is randomly drawn from at least

2n − lD values. Hence, in this case, Pr[(2)] ≤ 1/(2n − lD).

— Subcase 2-5: x̂$ = x̄$ and t̂w$ = t̄w$ and Â ̸= Ā. In this case, Σ̂ = Σ̄ and
m̂ = m̄ are satisfied. Let I := {1, 2, . . . ,max{â, ā}, ∗} be the set of induces for
associated data blocks. We first remove trivial induces from I, i.e., induces i ∈ I
s.t. Âi = Āi are removed. The resultant subset is denoted by I ′. By Â ̸= Ā,
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I ′ ̸= ∅ is satisfied. Then

Σ̂ = Σ̄ ⇔

(
m̂⊕
i=1

M̂i

)
⊕ P̂ ⊕Π1.Hash(Â) =

(
m̄⊕
i=1

M̄i

)
⊕ P̄ ⊕Π1.Hash(Ā)

⇔ Π1.Hash(Â)⊕Π1.Hash(Ā) =

(
m̂⊕
i=1

M̂i ⊕ M̄i

)
⊕ P̂ ⊕ P̄ (3)

where P̂ = M̂∗∥10∗ or 0n, and P̄ = M̄∗∥10∗ or 0n. Hence, Pr[Forge[β]] is upper-
bounded by Pr[(3)] (the probability that (3) is satisfied), and similar to Sub-
case 2-4, the probability can be upper-bounded by considering a collision in
inputs to P̃0. The detail is given below. Let W := {ŵi, w̄i|i ∈ I ′} be the multiset

of inputs to P̃0 in Π1.Hash with respect to induces I ′. Then the following cases
are considered.

– The first case is ∃w†, w‡ ∈ W s.t. w† = w‡. This case is a collision in
inputs to P̃0. w

† has the form w† = A† ⊕ H(tw†), and w‡ has the form
w‡ = A‡ ⊕H(tw‡), where tw† ̸= tw‡. w† = w‡ implies that

A† ⊕H(tw†) = A‡ ⊕H(tw‡)⇔ H(tw†)⊕H(tw‡) = A† ⊕A‡ .

In this case, Pr[(3)] is upper-bounded by the collision probability. Since H is
ϵ-AXU, the collision probability is at most

(
ℓH,α+lH,β

2

)
·ϵ ≤ 0.5(ℓH,α+ lH,β)

2 ·ϵ.
– The second case is ∀w†, w‡ ∈ W : w† ̸= w‡. In this case, for w† ∈ W, P0(w

†)
is not canceled out and is randomly drawn from at least 2n−(ℓH+ lH) values,
since |W| ≤ ℓH,α+ lH,β ≤ ℓH+ lH. We thus have Pr[(3)] ≤ 1/(2n− (ℓH+ lH)).

Conclusion of the Proof. From the above analyses,

Pr[Forge[β] ∧ Case 1] ≤ 1

2n − lD
+ lD,β · ϵ

Pr[Forge[β] ∧ Case 2] ≤ 2n−τ

2n − (ℓE + lD)
+ (ℓE,α + lD,β − 2) · ϵ+ ϵ

+ (lD,β − 1)(2lD,β − 3) · ϵ+ 1

2n − lD

+ 0.5(ℓH,α + lH,β)
2 · ϵ+ 1

2n − (ℓH + lH)

≤ 2n−τ + 2

2n − (ℓE + lD)
+ (ℓE,α + 2l2D,β + ℓ2H,α + l2H,β) · ϵ

≤ 2n−τ + 2

2n − (ℓE + lD)
+ (ℓE + ℓ2H + 2l2D,β) · ϵ .
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Summing the above bounds gives

Pr[Game1] ≤
qD∑
β=1

Pr[Forge[β]]

≤
qD∑
β=1

max{Pr[Forge[β] ∧ Case 1],Pr[Forge[β] ∧ Case 2]}

≤
qD∑
β=1

Pr[Forge[β] ∧ Case 2]

≤ qD(2
n−τ + 2)

2n − (ℓE + lD)
+ (ℓE + ℓ2H) · qD · ϵ+

qD∑
β=1

2l2D,β · ϵ . (4)

Finally, the upper-bound in Theorem 3 is obtained by (1) and (4)

5 BC-based Instantiations

BC-based Instantiations of F . As mentioned in [21], F can be instantiated
from a BC. Let w0, w1, . . . , w⌊k/n⌋ ∈ {0, 1}c be distinct bit strings for a positive
integer c. The first tweak space is defined as T WN := {0, 1}n−c. Then the
instantiations are given below.

– F
(1)
K (N) =

[
Y0∥Y1∥ · · · ∥Y⌊k/n⌋−1

]k
where Yi = EK(wi∥N).

– F
(2)
K (N) =

[(
Y0⊕Y1

)
∥
(
Y0⊕Y2

)
∥ · · · ∥

(
Y0⊕Y⌊k/n⌋

)]k
where Yi = EK(wi∥N).

Incorporating the above function into ΘCB3†, “0” is defined as some bit string
const0 ∈ {0, 1}n−c and N := {0, 1}n−c\{const0}. Note that 2c ≥ ⌊k/n⌋ for F (1),
and 2c − 1 ≥ ⌊k/n⌋ for F (2).

As mentioned in [21], the security bound of F (1) is obtained by the PRP-PRF
switch [2], and that of F (2) is obtained by the security result of CENC [23, 7, 9].

Lemma 2 (PRF Security of F (1) [2]). For any (q, t)-prf-adversary A, there
exists a (⌊k/n⌋ · q, t+O(q))-prp-adversary AE such that

Advprf
F (1)(A) ≤ Advprp

E (AE) +
⌊k/n⌋ · q2

2n+1
.

Lemma 3 (PRF Security of F (2) [23, 7, 9]). For any (q, t)-prf-adversary A
such that q ≤ 2n/134, there exists a ((⌊k/n⌋+ 1)q, t+ O(q))-prp-adversary AE

such that

Advprf
F (2)(A) ≤ Advprp

E (AE) +
(⌊k/n⌋)2 · q

2n
.

Hence, incorporating these PRFs into XKX∗, these terms are introduced into the
security bounds.
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BC-based Instantiations of H. The function H in XKX∗ can be instantiated
from a BC by the powering-up scheme [25], the gray-code-based scheme [13,
26], and the LFSR-based scheme [5, 6]. Consider the powering-up scheme. It
uses the multiplications by 2, 3 and 7 over GF (2n). H is realized as follow.
Define L = EK(constH) for some constant constH ∈ {0, 1}n. Then, for a non-
negative integer i, H(i) := 2i · L, H(i, ∗) := 2i · 3 · L, H(i, $) := 2i · 7 · L, and
H(i, ∗$) := 2i · 3 · 7 · L. Regarding the probabilities ϵ and δ, replacing EK with
a random permutation, since L is randomly drawn from {0, 1}n, ϵ = δ = 1/2n

is satisfied.

Remark. Using the above instantiation of F and the powering-up scheme to-
gether, constH should be distinct from all inputs to the BC in F , i.e., constH ̸=
wi∥N for ∀i ∈ {0, 1, . . . , ⌊k/n⌋}, N ∈ T WN .

6 Conclusion

In this paper, we improved the security bounds of the XKX∗-based AEAD scheme.
The previous security bounds were given by the modular proof, which are roughly
ℓ2q/2n + σ2

A/2
n + σ2

D/2
n, where ℓ is the number of BC calls by a query, q is the

number of queries, σA is the number of BC calls to handle associated data by
encryption queries, and σD is the number of BC calls by decryption queries. The
birthday terms σ2

A/2
n, σ2

D/2
n might become dominant, for example, when n is

small and when DoS attacks are performed. In this paper, in order to remove the
birthday terms, we modified ΘCB3 called ΘCB3†, and proved that for ΘCB3†

with XKX∗, the birthday terms can be removed, i.e., the security bounds become
roughly ℓ2q/2n.

Acknowledgments

We would like to thank Atul Luykx for his comments and suggestions.

References

1. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. J. Cryptology 21(4), 469–491
(2008)

2. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of triple
encryption. IACR Cryptology ePrint Archive 2004, 331 (2004)

3. Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable mes-
sage authentication. In: Advances in Cryptology - EUROCRYPT 2002, Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Amsterdam, The Netherlands, April 28 - May 2, 2002, Proceedings. pp. 384–397
(2002)

4. Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst.
Sci. 18(2), 143–154 (1979)



18 Yusuke Naito

5. Chakraborty, D., Sarkar, P.: A general construction of tweakable block ciphers and
different modes of operations. IEEE Trans. Information Theory 54(5), 1991–2006
(2008)

6. Granger, R., Jovanovic, P., Mennink, B., Neves, S.: Improved masking for tweak-
able blockciphers with applications to authenticated encryption. In: Advances in
Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part I. pp. 263–293 (2016)

7. Iwata, T.: New blockcipher modes of operation with beyond the birthday bound
security. In: Fast Software Encryption, 13th International Workshop, FSE 2006,
Graz, Austria, March 15-17, 2006, Revised Selected Papers. pp. 310–327 (2006)

8. Iwata, T.: Authenticated encryption mode for beyond the birthday bound security.
In: Progress in Cryptology - AFRICACRYPT 2008, First International Conference
on Cryptology in Africa, Casablanca, Morocco, June 11-14, 2008. Proceedings. pp.
125–142 (2008)

9. Iwata, T., Mennink, B., Vizár, D.: CENC is optimally secure. IACR Cryptology
ePrint Archive 2016, 1087 (2016)

10. Iwata, T., Minematsu, K.: Stronger security variants of GCM-SIV. IACR Trans.
Symmetric Cryptol. 2016(1), 134–157 (2016)

11. Iwata, T., Yasuda, K.: BTM: A single-key, inverse-cipher-free mode for determin-
istic authenticated encryption. In: Selected Areas in Cryptography, 16th Annual
International Workshop, SAC 2009, Calgary, Alberta, Canada, August 13-14, 2009,
Revised Selected Papers. pp. 313–330 (2009)

12. Iwata, T., Yasuda, K.: HBS: A single-key mode of operation for deterministic
authenticated encryption. In: Fast Software Encryption, 16th International Work-
shop, FSE 2009, Leuven, Belgium, February 22-25, 2009, Revised Selected Papers.
pp. 394–415 (2009)

13. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Fast Software Encryption - 18th International Workshop, FSE 2011,
Lyngby, Denmark, February 13-16, 2011, Revised Selected Papers. pp. 306–327
(2011)

14. Lampe, R., Seurin, Y.: Tweakable blockciphers with asymptotically optimal se-
curity. In: Fast Software Encryption - 20th International Workshop, FSE 2013,
Singapore, March 11-13, 2013. Revised Selected Papers. pp. 133–151 (2013)

15. Landecker, W., Shrimpton, T., Terashima, R.S.: Tweakable blockciphers with be-
yond birthday-bound security. In: Advances in Cryptology - CRYPTO 2012 - 32nd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012.
Proceedings. pp. 14–30 (2012)

16. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Advances in
Cryptology - CRYPTO 2002, 22nd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 18-22, 2002, Proceedings. pp. 31–46 (2002)

17. Lucks, S.: The sum of prps is a secure PRF. In: Advances in Cryptology - EURO-
CRYPT 2000, International Conference on the Theory and Application of Crypto-
graphic Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding. pp. 470–484
(2000)

18. Mennink, B., Reyhanitabar, R., Vizár, D.: Security of full-state keyed sponge and
duplex: Applications to authenticated encryption. In: Advances in Cryptology -
ASIACRYPT 2015 - 21st International Conference on the Theory and Application
of Cryptology and Information Security, Auckland, New Zealand, November 29 -
December 3, 2015, Proceedings, Part II. pp. 465–489 (2015)



Improved XKX-based AEAD Scheme: Removing the Birthday Terms 19

19. Minematsu, K.: Beyond-birthday-bound security based on tweakable block cipher.
In: Fast Software Encryption, 16th International Workshop, FSE 2009, Leuven,
Belgium, February 22-25, 2009, Revised Selected Papers. pp. 308–326 (2009)

20. Minematsu, K.: Parallelizable rate-1 authenticated encryption from pseudorandom
functions. In: Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Copenhagen, Denmark, May 11-15, 2014. Proceedings. pp. 275–292 (2014)

21. Naito, Y.: Tweakable blockciphers for efficient authenticated encryptions with be-
yond the birthday-bound security. ePrint 2017/466 and IACR Trans. Symmetric
Cryptol. 2017(2), 1–26 (2017)

22. Patarin, J.: Security of random feistel schemes with 5 or more rounds. In: Advances
in Cryptology - CRYPTO 2004, 24th Annual International CryptologyConference,
Santa Barbara, California, USA, August 15-19, 2004, Proceedings. pp. 106–122
(2004)

23. Patarin, J.: Introduction to mirror theory: Analysis of systems of linear equalities
and linear non equalities for cryptography. IACR Cryptology ePrint Archive 2010,
287 (2010)

24. Rogaway, P.: Authenticated-encryption with associated-data. In: Proceedings of
the 9th ACM Conference on Computer and Communications Security, CCS 2002,
Washington, DC, USA, November 18-22, 2002. pp. 98–107 (2002)

25. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements
to modes OCB and PMAC. In: Advances in Cryptology - ASIACRYPT 2004,
10th International Conference on the Theory and Application of Cryptology and
Information Security, Jeju Island, Korea, December 5-9, 2004, Proceedings. pp.
16–31 (2004)

26. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: CCS 2001, Proceedings of the
8th ACM Conference on Computer and Communications Security, Philadelphia,
Pennsylvania, USA, November 6-8, 2001. pp. 196–205 (2001)

27. Wang, L., Guo, J., Zhang, G., Zhao, J., Gu, D.: How to build fully secure tweak-
able blockciphers from classical blockciphers. In: Advances in Cryptology - ASI-
ACRYPT 2016 - 22nd International Conference on the Theory and Application of
Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016, Pro-
ceedings, Part I. pp. 455–483 (2016)


