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Abstract. Tweakable block ciphers are important primitives for design-
ing cryptographic schemes with high security. In the absence of a stan-
dardized tweakable block cipher, constructions built from classical block
ciphers remain an interesting research topic in both theory and practice.
Motivated by Mennink’s F̃ [2] publication from 2015, Wang et al. pro-
posed 32 optimally secure constructions at ASIACRYPT’16, all of which
employ two calls to a classical block cipher each. Yet, those constructions
were still limited to n-bit keys and n-bit tweaks. Thus, applications with
more general key or tweak lengths still lack support. This work proposes
the XHX family of tweakable block ciphers from a classical block cipher
and a family of universal hash functions, which generalizes the construc-
tions by Wang et al. First, we detail the generic XHX construction with
three independently keyed calls to the hash function. Second, we show
that we can derive the hash keys in efficient manner from the block ci-
pher, where we generalize the constructions by Wang et al.; finally, we
propose efficient instantiations for the used hash functions.
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1 Introduction

Tweakable Block Ciphers. A tweakable block cipher (TBC for short), is a
cryptographic transform that adds an additional public parameter called tweak

to the usual inputs key and plaintext of a classical block cipher. This means
that a tweakable block cipher Ẽ : K × T × M → M is a permutation on
the plaintext/ciphertext space M for every combination of some key K ∈ K
and tweak T ∈ T , where K, T , and M are assumed to be non-empty sets.
Tweakable block ciphers have been used first by Schroeppel and Orman in the
Hasty Pudding Cipher, where the tweak still was called Spice [18]. Liskov, Rivest,
and Wagner [11] have formalized the concept then in 2002.
In the past, one can observe a trend that the role of tweakable block ciphers
has become much more prominent, last but not least due to the advent of recent
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dedicated constructions, such as those proposed alongside the TWEAKEY frame-
work [7], or e.g., SKINNY [1]. However, in the absence of a standard, tweakable
block ciphers based on classical ones remain a highly interesting topic.

Blockcipher-based Constructions. Liskov et al. [11] had described two con-
structions, known as LRW1 and LRW2. Rogaway [17] proposed XE and XEX as
refinements of LRW2 for updating tweaks efficiently and reducing the number
of keys. These schemes are efficient in that they need one block cipher call plus
one (computational) universal hash function. Both XE and XEX are provably
secure under standard model, i.e., assuming the block cipher is a (strong) pseu-
dorandom permutation, they are secure up to O(2n/2) queries, when using an
n-bit block cipher. Since this security bound results from the birthday paradox
on collisions of inputs to the block cipher, their security is inherently limited by
the birthday bound (BB-secure).

Constructions with Stronger Security. Beyond-birthday-bound (BBB) se-
cure schemes that overcome this barrier have been an interesting research topic
from both theory and practice. Minematsu [13] introduced a rekeying-based con-
struction. Landecker, Shrimpton and Terashima [9] proposed a cascade of two
independent LRW2 instances, called CLRW2. Both constructions are secure up
to O(22n/3) queries, however, at the price of decreased efficiency of using two
block-cipher calls per block plus per-tweak rekeying or plus two calls to a uni-
versal hash function, respectively.
For settings that require stronger security, Lampe and Seurin [8] proved that
the chained cascade of more instances of LRW2 could asymptotically approach
a security of up to O(2n) queries, i.e. full n-bit security. However, the downside is
drastically decreased performance. An alternative direction has been initiated by
Mennink [12], who also proposed TBC constructions from classical block ciphers,
but proved the security in the ideal-cipher model. Mennink’s constructions could
achieve full n-bit security quite efficiently when both input and key are n bits.
In particular, his second construction F̃ [2] required only two block-cipher calls.
Following Mennink’s work, Wang et al. [20] proposed 32 constructions of opti-
mally secure tweakable block ciphers from classical block ciphers. Their designs
share an n-bit key, n-bit tweak and n-bit plaintext, and linearly mix tweak, key,
and the result of a second offline call to the block cipher. Their constructions
have the desirable property of allowing to cache the result of the first block-
cipher call; moreover, given a-priori known tweaks, some of their constructions
allow further to precompute the result of the key schedule.
All constructions by Wang et al. were restricted to n-bit keys and tweaks. While
this limit was reasonable, it did not address tweakable block ciphers with tweaks
longer than n bit. Such constructions are interesting since they allow significantly
increased security than those with n bit, which is useful for e.g., authenticated
encryption or variable-input-length ciphers, such as [19]. In general, extending
the key length in the ideal-cipher-model is far from trivial (see, e.g., [2,6,10]), and
the key size in this model does not necessarily match the required tweak length.
Moreover, many ciphers, like the AES-192 or AES-256, possess key and block
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lengths for which the constructions in [12,20] are inapplicable. In general, the
tweak represents additional data accompanying the plaintext/ciphertext block,
and no general reason exists why tweaks must be limited to the block length.
Applications include but are not limited to, e.g., schemes for high-security AE or
full-disk encryption. For example, Shrimpton and Terashima [19] proposed the
AE scheme Protected IV, which required a TBC with variable-length tweak and
BBB security. Moreover, disk-encryption schemes are typically based on TBCs,
where the physical location on disk (e.g., the sector ID) is used as tweak, which
can be arbitrarily long.
Before proving the security of a construction, we have to specify the employed
model. The standard model is well-established in our community despite the fact
that proofs base on few unproven assumptions, such as that a block cipher is a
PRP, or ignore practical side-channel attacks. In the standard model, the adver-
sary is given access only to either the real construction Ẽ or an ideal construction

π̃. In contrast, the ideal-cipher model differs in the sense that it assumes an ideal
primitive—in our case the classical ideal block cipher E which is used in Ẽ—
which the adversary has also access to in both worlds. Although a proof in the
ideal-cipher model is not an unexceptional guarantee that no attacks may exist
when instantiated in practice [3], for us, it allows to capture away the details
of the primitive for the sake of focus on the security of the construction, and is
employed by a wide range of applications [4].
For schemes proven in the standard model, one can look at the XTX construction
[14], which was proposed earlier by Minematsu and Iwata at IMACC’15. XTX

extended the tweak domain of a given tweakable block cipher Ẽ : {0, 1}k ×
{0, 1}t × {0, 1}n → {0, 1}n by hashing the arbitrary-length tweak to an (n+ t)-
bit value. The first t bits serve as tweak and the latter n bits are XORed to both
input and output of Ẽ. Given an ǫ-AXU family of hash functions and an ideal
tweakable cipher, XTX is secure for up to O(2(n+t)/2) queries in the standard
model. However, no alternative to XTX exists in the ideal-cipher model yet.
Recently, Naito [15] proposed the XKX framework of beyond-birthday-secure
tweakable block ciphers, which shares similarities to ours. He proposed two in-
stances, the birthday-secure XKX(1) and the beyond-birthday-secure XKX(2).
More detailed, the nonce is processed by a block-cipher-based PRF which yields
the block-cipher key for the current message; the counter is hashed with a uni-
versal hash function under a second, independent key to mask the input. As
a contrast to other and to our proposal, Naito’s construction demands both a
counter plus a nonce as parameters to overcome the birthday bound; as a stan-
dalone construction, its security reduces to n/2 bits if an adversary could use
the same “nonce” value for all queries. Hence, XKX(2) is tailored only to cer-
tain domains, e.g., modes of operation in nonce-based authenticated encryption
schemes. Our proposal differs from XKX in four aspects: (1) we do not pose
limitations on the reuse of input parameters; moreover, (2) we do not require a
minimum key length of n+k bits; (3) we do not use several independent keys, but
employ the block cipher to derive hashing keys; (4) finally, Naito’s construction
is proved in the standard model, whereas we consider the ideal-cipher model.
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Table 1: Summary of Our Results. ICM(n, k) denotes the ideal-cipher model for a
block cipher with n-bit block and k-bit key; BC(n, k) and TBC(n, t, k) denote the
standard-model (tweakable) block cipher of n-bit block, t-bit tweak, and k-bit key.
#Enc. = #calls to the (tweakable) block cipher, and #Mult. = #multiplications
over GF(2n). a(b) = b out of a calls can be precomputed with the secret key; we
define s = ⌈k/n⌉.

Scheme Model Tweak Key Security Efficiency Reference

length in bit in bit #Enc. #Mult.

F̃ [2] ICM(n, n) n n n 2 [12]

Ẽ1, . . . , Ẽ32 ICM(n, n) n n n 2 (1) [20]

XTX TBC(n, t, k) any ℓ k + 2n (n+ t)/2 1 2⌈ℓ/n⌉ [14]

XKX
(2) BC(n, k) –* k + n min{n, k/2} 1 1 [15]

XHX ICM(n, k) any ℓ k (n+ k)/2 s+ 1 (s) s⌈ℓ/n⌉ This work

XHX ICM(n, k) 2n k n s+ 1 (s) s This work

*
XKX

(2) employs a counter as a tweak and therefore is not as general as the
remaining constructions.

Contribution. This work proposes the XHX family of tweakable block ciphers
from a classical block cipher and a family of universal hash functions, which
generalizes the constructions by Wang et al. [20]. Like them, the present work
also uses the ideal-cipher model for our security analysis of XHX. As the major
difference to their work, our proposal allows arbitrary tweak lengths, and works
for any block cipher of n-bit block and k-bit key. The security is guaranteed
up to O(2(n+k)/2) queries, hence is full n-bit secure when k ≥ n. Our contribu-
tions, are threefold: First, we detail the generic XHX construction with three
independently keyed calls to the hash function. Second, we show that we can
derive the hash keys in an efficient manner from the block cipher, generalizing
the constructions by Wang et al.; finally, we propose efficient instantiations for
the employed hash functions for concreteness.
The remainder is structured as follows: Section 2 briefly gives the preliminaries
necessary for the rest of this work. Section 3 then defines the general construction,
that we call GXHX for simplicity, which hashes the tweak to three outputs.
Section 4 continues with the definition and analysis of XHX, which derives the
hashing keys from the block cipher. Section 5 describes efficient instantiations
for our hash functions depending on the tweak length. In particular, we propose
instantiations for 2n-bit and arbitrary-length tweaks.

2 Preliminaries

General Notation. We use lowercase letters x for indices and integers, upper-
case letters X,Y for binary strings and functions, and calligraphic uppercase
letters X ,Y for sets. We denote the concatenation of binary strings X and Y
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by X ‖ Y and the result of their bitwise XOR by X ⊕ Y . For tuples of bit
strings (X1, . . . , Xx), (Y1, . . . , Yx) of equal domain, we denote by (X1, . . . , Xx)⊕
(Y1, . . . , Yx) the element-wise XOR, i.e., (X1⊕Y1, . . . , Xx⊕Yx). We indicate the
length of X in bits by |X |, and write Xi for the i-th block. Furthermore, we de-
note by X և X that X is chosen uniformly at random from the set X . We define
three sets of particular interest: Func(X ,Y) be the set of all functions F : X → Y,
Perm(X ) the set of all permutations π : X → X , and TPerm(T ,X ) for the set of

tweaked permutations over X with associated tweak space T . (X1, . . . , Xx)
n
←− X

denotes that X is split into n-bit blocks i.e., X1 ‖ . . . ‖Xx = X , and |Xi| = n for
1 ≤ i ≤ x− 1, and |Xx| ≤ n. Moreover, we define 〈X〉n to denote the encoding
of a non-negative integer X into its n-bit representation. Given a integer x ∈ N,
we define the function truncx : {0, 1}∗ → {0, 1}x to return the leftmost x bits
of the input. For two sets X and Y, a uniform random function ρ : X → Y which
maps inputs X ∈ X independently from other inputs and uniformly at random
to outputs Y ∈ Y. For an event E, we denote by Pr[E] the probability of E.

Adversaries. An adversary A is an efficient Turing machine that interacts
with a given set of oracles that appear as black boxes to A. We denote by A

O

the output of A after interacting with some oracle O. We write ∆A

(
O1;O2

)
:=

|Pr[AO1

⇒ 1] − Pr[AO2

⇒ 1]| for the advantage of A to distinguish between
oracles O1 and O2. All probabilities are defined over the random coins of the
oracles and those of the adversary, if any. W.l.o.g., we assume that A never asks
queries to which it already knows the answer.
A block cipher E with associated key space K and message spaceM is a mapping
E : K ×M → M such that for every key K ∈ K, it holds that E(K, ·) is a
permutation overM. We define Block(K,M) as the set of all block ciphers with

key space K and message spaceM. A tweakable block cipher Ẽ with associated
key space K, tweak space T , and message spaceM is a mapping Ẽ : K×T ×M→
M such that for every key K ∈ K and tweak T ∈ T , it holds that Ẽ(K,T, ·) is

a permutation overM. We also write ẼT
K(·) as short form in the remainder.

The STPRP security of Ẽ is defined via upper bounding the advantage of a
distinguishing adversary A in a game, where we consider the ideal-cipher model
throughout this work. There, A has access to oracles (O, E±), where E± is the
usual notation for access to the encryption oracle E and to the decryption oracle
E−1. O is called construction oracle, and is either the real construction Ẽ±

K(·, ·),

or π̃ և TPerm(T ,M). E±
և Perm(M) is an ideal block cipher underneath Ẽ.

The advantage of A is defined as ∆A

(
Ẽ±

K(·, ·), E±(·, ·); π̃±(·, ·), E±(·, ·)
)
, where

the probabilities are taken over K և K, E և Perm(M), π̃ և TPerm(T ,M), and
the coins of A if any. For the remainder, we say that A is a (qC , qP )-distinguisher
if it asks at most qC queries to its construction oracle and at most qP queries to
its primitive oracle.

Definition 1 (Almost-Uniform Hash Function). Let H : K×X → Y be a
family of keyed hash functions. We call H ǫ-almost-uniform (ǫ-AUniform) if, for
K և K and all X ∈ X and Y ∈ Y, it holds that PrKևK [H(K,X) = Y ] ≤ ǫ.
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Definition 2 (Almost-XOR-Universal Hash Function). Let H : K×X →
Y be a family of keyed hash functions with Y ⊆ {0, 1}∗. We say that H is ǫ-
almost-XOR-universal (ǫ-AXU) if, for K և K, and for all distinct X,X ′ ∈ X
and any ∆ ∈ Y, it holds that PrKևK [H(K,X)⊕H(K,X ′) = ∆] ≤ ǫ.

Minematsu and Iwata [14] defined partial-almost-XOR- universality to capture
the probability of partial output collisions.

Definition 3 (Partial-AXU Hash Function). Let H : K × X → {0, 1}n ×
{0, 1}k be a family of hash functions. We say that H is (n, k, ǫ)-partial-AXU
((n, k, ǫ)-pAXU) if, for K և K, and for all distinct X,X ′ ∈ X and all ∆ ∈ {0, 1}n,
it holds that PrKևK

[
H(K,X)⊕H(K,X ′) = (∆, 0k)

]
≤ ǫ.

The H-Coefficient Technique. The H-coefficients technique is a method due
to Patarin [5,16]. It assumes the results of the interaction of an adversary A

with its oracles are collected in a transcript τ of the attack: τ = 〈(M1, C1, d1),
. . . , (Mq, Cq, dq)〉, where (Mi, Ci) denotes input and output of the i-th query of
A and a Boolean variable di denotes the direction of the query; di = 1 indicates
that Ci was result of an encryption query, and di = 0 that Mi was the result of
a decryption query.
The task of A is to distinguish the real world Oreal from the ideal world Oideal. A
transcript τ is called attainable if the probability to obtain τ in the ideal world is
non-zero. One assumes that A does not ask duplicate queries or queries prohib-
ited by the game or to which it already knows the answer. Denote by Θreal and
Θideal the distribution of transcripts in the real and the ideal world, respectively.
Then, the fundamental Lemma of the H-coefficients technique states:

Lemma 1 (Fundamental Lemma of the H-coefficient Technique [16]).
Assume, the set of attainable transcripts is partitioned into two disjoint sets
GoodT and BadT. Further assume, there exist ǫ1, ǫ2 ≥ 0 such that for any
transcript τ ∈ GoodT, it holds that

Pr [Θreal = τ ]

Pr [Θideal = τ ]
≥ 1− ǫ1, and Pr [Θideal ∈ BadT] ≤ ǫ2.

Then, for all adversaries A, it holds that ∆A (Oreal;Oideal) ≤ ǫ1 + ǫ2.

The proof is given in [5,16].

3 The Generic GXHX Construction

Let n, k, ℓ ≥ 1 be integers and K = {0, 1}k, L = {0, 1}ℓ, and T ⊆ {0, 1}∗. Let
E : K× {0, 1}n → {0, 1}n be a block cipher. Further, let H : L× T → {0, 1}n×
K × {0, 1}n be a family of hash functions. Then, we define by GXHX[E,H] :
L × T × {0, 1}n → {0, 1}n the tweakable block cipher instantiated with E and
H that, for given key L ∈ L, tweak T ∈ T , and message M ∈ {0, 1}n, computes
the ciphertext C, as shown on the left side of Algorithm 1. Likewise, given key
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M CE

T

H

X Y

H1 H2 H3

Fig. 1: Schematic illustration of the encryption process with the general GXHX[E,H]
tweakable block cipher. E : K × {0, 1}n → {0, 1}n is a keyed permutation and H :
L × T → {0, 1}n ×K× {0, 1}n a keyed universal hash function.

Algorithm 1 Encryption and decryption algorithms of the general
GXHX[E,H] construction.

11: function GXHX[E,H]L(T,M)
12: (H1,H2,H3)←H(L, T )
13: C ← EH2

(M ⊕H1)⊕H3

14: return C

21: function GXHX[E,H]−1
L (T,C)

22: (H1,H2,H3)←H(L, T )
23: M ← E−1

H2
(C ⊕H3)⊕H1

24: return M

L ∈ L, tweak T ∈ T , and ciphertext C ∈ {0, 1}n, the plaintext M is computed by
M ← GXHX[E,H]−1

L (T,C), as shown on the right side of Algorithm 1. Clearly,
GXHX[E,H] is a correct tweakable permutations since for all keys L ∈ L, and
all tweak-plaintext inputs (T,M) ∈ T × {0, 1}n and all tweak-ciphertext inputs
(T,C) ∈ T × {0, 1}n, we assume correctness and tidiness, i.e., it holds that

GXHX[E,H]−1
L (T,GXHX[E,H]L(T,M)) = M and

GXHX[E,H]L(T,GXHX[E,H]−1
L (T,C)) = C.

Figure 1 illustrates the encryption process schematically.

4 XHX: Deriving the Hash Keys from the Block Cipher

In the following, we adapt the general GXHX construction to XHX, which
differs from the former in the sense that we split the hash function into three
functions H1, H2, and H3, and – since we need at least n+ k bit of key material
for the hash functions – in the sense that the hash-function key is derived from
a key K using the already available block cipher E.
We denote by an integer s ≥ 0 the number of derived hash-function keys Li. We
collect them together with the user-given key K ∈ {0, 1}k into a vector L :=
(K,L1, . . . , Ls). Moreover, we define a set of variables Ii and Ki, for 1 ≤ i ≤ s,
which denote input and key to the block cipher E for computing: Li := EKi

(Ii).
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PSfrag

M CE EIi

Ki

Li

H1(L, T )

H2(L, T )

H3(L, T )

X Y

Fig. 2: Schematic illustration of the XHX[E,H] construction where we derive the
hash-function keys Li from the block cipher E.

Algorithm 2 Encryption and decryption algorithms of XHX where the keys
are derived from the block cipher. We define H := (H1,H2,H3). Note that the
exact definitions of Ii and Ki are usecase-specific.

11: function XHX[E,H].KeySetup(K)
12: for i← 1 to s do

13: Li ← EKi
(Ii)

14: L← (K,L1, . . . , Ls)
15: return L

21: function H(L, T )
22: H1 ←H1(L, T )
23: H2 ←H2(L, T )
24: H3 ←H3(L, T )
25: return (H1,H2,H3)

31: function XHX[E,H]K(T,M)
32: L← XHX[E,H].KeySetup(K)
33: (H1,H2,H3)←H(L, T )
34: C ← EH2

(M ⊕H1)⊕H3

35: return C

41: function XHX[E,H]−1
K (T,C)

42: L← XHX[E,H].KeySetup(K)
43: (H1,H2,H3)←H(L, T )
44: M ← E−1

H2
(C ⊕H3)⊕H1

45: return M

We allow flexible, usecase-specific definitions for the values Ii and Ki as long as
they fulfill certain properties that will be listed in Section 4.1. We redefine the
key space of the hash functions to L ⊆ {0, 1}k× ({0, 1}n)s. Note that the values
Li are equal for all encryptions and decryptions and hence, can be precomputed
and stored for all encryptions under the same key.

The Constructions by Wang et al. The 32 constructions Ẽ[2] by Wang et
al. are a special case of our construction with the parameters s = 1, key length
k = n, with the inputs Ii,Ki ∈ {0

n,K}, and the option (Ii,Ki) = (0n, 0n)
excluded. Their constructions compute exactly one value L1 by L1 := EK1

(I1).
One can easily describe their constructions in the terms of the XHX framework,
with three variables X1, X2, X3 ∈ {K,L1,K⊕L1} for which holds that X1 6= X2

and X3 6= X2, and which are used in XHX as follows:

H1(L, T ) := X1,

H2(L, T ) := X2 ⊕ T,

H3(L, T ) := X3.
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4.1 Security Proof of XHX

This section proves the security of the XHX construction for which the hash-
function keys are derived by the block cipher in the ideal-cipher model.

Properties of H. Prior, we list a set of properties that we require for H. We
assume that L և L, i.e., L is sampled uniformly at random from L. To address
parts of the output of H, we also use the notion Hi : L×T → {0, 1}

oi to refer to
the function that computes the i-th output of H(L, T ), for 1 ≤ i ≤ 3, with o1 :=
n, o2 := k, and o3 := n. Moreover, we define H1,2(T ) := (H1(L, T ),H2(L, T )),
and H3,2(T ) := (H3(L, T ),H2(L, T )).

Property P1. For all distinct T, T ′ ∈ T and all ∆ ∈ {0, 1}n, it holds that

max
i∈{1,3}

Pr
LևL

[
Hi,2(T )⊕Hi,2(T

′) =
(
∆, 0k

)]
≤ ǫ1.

Property P2. For all T ∈ T and all (c1, c2) ∈ {0, 1}
n × {0, 1}k, it holds that

max
i∈{1,3}

Pr
LևL

[Hi,2(T ) = (c1, c2)] ≤ ǫ2.

Note that Property P1 is equivalent to saying H1,2 and H3,2 are (n, k, ǫ1)-pAXU;
Property P2 is equivalent to the statement that H1,2 and H3,2 are ǫ2-AUniform.
Clearly, it must hold that ǫ1, ǫ2 ≥ 2−(n+k).

Property P3. For all T ∈ T , all chosen Ii,Ki, for 1 ≤ i ≤ s, and all ∆ ∈
{0, 1}n, it holds that

Pr
LևL

[
H1,2(T )⊕ (Ii,Ki) =

(
∆, 0k

)]
≤ ǫ3.

Property P4. For all T ∈ T , all chosen Ki, Li, for 1 ≤ i ≤ s, and all ∆ ∈
{0, 1}n, it holds that

Pr
LևL

[
H3,2(T )⊕ (Li,Ki) =

(
∆, 0k

)]
≤ ǫ4.

Properties P3 and P4 represent the probabilities that an adversary’s query hits
the inputs that have been chosen for computing a hash-function key. We list a
further property which gives the probability that a set of constants chosen by
the adversary can hit the values Ii and Ki from generating the keys Li:

Property P5. For 1 ≤ i ≤ s, and all (c1, c2) ∈ {0, 1}
n × {0, 1}k, it holds that

Pr
KևK

[(Ii,Ki) = (c1, c2)] ≤ ǫ5.

In other words, the tuples (Ii,Ki) contain a sufficient amount of close to n bit
entropy, and cannot be predicted by an adversary with greater probability, i.e.,
ǫ5 should not be larger than a small multiple of 1/2n. From Property 5 and the
fact that the values Li are computed from EKi

(Ii) with an ideal permutation E,
it follows that for 1 ≤ i ≤ s and all (c1, c2) ∈ {0, 1}

n × {0, 1}k

Pr
KևK

[(Li,Ki) = (c1, c2)] ≤ ǫ5.
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Ẽ±

L (·, ·) E±(·, ·) π̃±(·, ·) E±(·, ·)

A

Fig. 3: Schematic illustration of the oracles available to A.

Theorem 1. Let E և Block(K, {0, 1}n) be an ideal cipher. Further, let Hi :
L×T → {0, 1}oi, for 1 ≤ i ≤ 3 be families of hash functions for which Properties
P1 through P4 hold, and let K և K. Moreover, let Property P5 hold for the
choice of all Ii and Ki. Let s denote the number of keys Li, 1 ≤ i ≤ s. Let A be
a (qC , qP )-distinguisher on XHX[E,H]K . Then

∆
A

(
XHX[E,H], E±; π̃±, E±

)
≤q2Cǫ1+2qP qCǫ2+qCs(ǫ3+ǫ4)+2qP sǫ5+

s2

2n+1
.

Proof Idea. The proof of Theorem 1 follows from Lemmas 1, 2, and 3. For
the sake of space limitations, it is deferred to Appendix A. Let Ẽ denote the
XHX[E,H] construction in the remainder. Figure 3 illustrates the oracles avail-
able to A. The queries by A are collected in a transcript τ . We will define a
series of bad events that can happen during the interaction of A with its oracles:

– Collisions between two construction queries,
– Collisions between a construction and a primitive query,
– Collisions between two primitive queries,
– The case that the adversary finds an input-key tuple in either a primitive or

construction query that was used to derive a key Li.

The proof will bound the probability of these events to occur in the transcript
in Lemma 2. We define a transcript as bad if it satisfies at least one such bad

event, and define BadT as the set of all attainable bad transcripts.

Lemma 2. It holds that

Pr [Θideal ∈ BadT] ≤ q2Cǫ1 + 2qP qCǫ2 + qCs(ǫ3 + ǫ4) + 2qP sǫ5 +
s2

2n+1
.

Due to space limitations, the proof is deferred to Appendix A.1.

Good Transcripts. Above, we have considered bad events. We define a tran-
script as bad if it satisfies at least one event badi, for some 1 ≤ i ≤ 16, and define
BadT as the set of all attainable bad transcripts. In contrast, we define GoodT

as the set of all good transcripts, i.e., all attainable transcripts that are not bad.

Lemma 3. Let τ ∈ GoodT be a good transcript. Then

Pr [Θreal = τ ]

Pr [Θideal = τ ]
≥ 1.

The proof is given in Appendix A.2.
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5 Efficient Instantiations

The hash function for XHX needs to satisfy multiple conditions for the construc-
tion to be secure. This section provides concrete instantiations of hash functions
which satisfy those conditions. While it is rather straight-forward to design hash
functions in the case of independent keys, by using two independent n-bit AXU
and AUniform hash functions, the additional conditions for XHX require more
analysis. We present two instantiations depending on the maximum tweak length.
While the case of n-bit tweaks has already been covered by Wang et al., there
is the general important case of having a variable-length tweak still open, that
we address with an instantiation. Additionally, we also present a second hash
function that is more efficient for the special case of having a 2n-bit tweak.
Our proposals use field multiplications over GF(2n) and need (k+n) bits of key
material, where the ideal cipher is used for key derivation. We define Ki := K
and Ii := 〈i〉, for 1 ≤ i ≤ s, i.e., we compute the subkeys Li as Li ← EK(〈i〉).

H∗ – A Hash Function for Variable-Length Tweaks. We propose a first
instantiationH∗ for variable-length tweaks.H∗ uses two universal hash functions
keyed by K and L1, and takes T as input. Assume k ≥ n be positive integers and
s ≤ 2k−1. More specifically, let F := {F | F : {0, 1}n × {0, 1}∗ → {0, 1}n} denote
an ǫ(m)-AXU and ρ(m)-AUniform family of hash functions. Here, ǫ(m) and ρ(m)
denote the maximum AXU and AUniform biases for any input pair whose length
is at most m in n-bit blocks. Then,H∗ : L×{0, 1}∗ → {0, 1}n×{0, 1}k×{0, 1}n is
defined in Algorithm 3. We suggest a polynomial hash for FK(·) with a minimum
degree of one; this means, it holds that FK(ε) = K for the empty string ε to
avoid fixed points. For simplicity, H∗ conducts all computations in the same field
GF(2n) in all calls to F . In general, we have to consider three potential cases for
the relation of state size and key lengths:

– Case k = n. In this case, the hash values H1, H2, and H3 are the results of
polynomial hash functions F . In this case, H∗ employs K directly as hashing
key to generate H1 and H3, and a derived key L1 to compute H2. Hence, it
holds that s = 1 in this case.

– Case k < n. In this case, we could simply truncate H2 from n to k bits.
Theoretically, we could derive a longer key from K for the computation of
H1 and H3; however, we disregard this case since ciphers with smaller key
than state length are very uncommon.

– Case k > n. In the third case, we truncate the hash key K for the computa-
tion of H1 and H3 to n bits. Moreover, we derive s hashing keys L1, . . . , Ls

from the block cipher E. For H2, we concatenate the output of s instances
of F , and truncate the result to k bits if necessary. This construction is
well-known to be ǫs(m)-pAXU if F is ǫ(m)-pAXU.

A definition is given in Algorithm 3.

Lemma 4. H∗ is 2sn−kǫs+1(m)-pAXU and 2sn−kρs+1(m)-Uniform. Moreover,
it satisfies Properties P3 and P4 with probability 2sn−kρs+1(m) each, and Prop-
erty P5 with ǫ5 ≤ 2/2k for our choice of the values Ii and Ki.
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Algorithm 3 Polynomial hash for F .

11: function H∗
L(T )

12: (K,L1, . . . , Ls)← L
13: K′ ← truncn(K)
14: H1 ← FK′(T )
15: H2 ← trunck (FL1

(T ) ‖ · · · ‖FLs(T ))
16: H3 ← FK′(T )
17: return (H1,H2, H3)

31: function FK(T )
32: p← |T | mod n
33: Parse T1, . . . , Tm

n
←− (T ‖ 0n−p)

34: Tm+1 ← 〈|T |〉n
35: Y ← 0
36: for i← 1 to m+ 1 do

37: Y ← (Y ⊕ Ti) ·K

38: return (Y ·K) ⊕K

T

. . .

. . .

H1 H2 H3

FK′ FK′FL1
FL2

FLs

k

Fig. 4: H∗. The trapezoid indicates truncation to k bits, K′ is equal to K if k = n and
is K truncated to n bits otherwise.

Remark 1. The term 2sn−k results from the potential truncation of H2 if the key
length k of the block cipher is no multiple of the state size n. H2 is computed by
concatenating the results of multiple independent invocations of a polynomial
hashing function F in GF(2n) under assumed independent keys. Clearly, if F is
ǫ-AXU, then their sn-bit concatenation is ǫs-AXU. However, after truncating sn
to k bits, we may lose information, which results in the factor of 2sn−k. For the
case k = n, it follows that s = 1, and the terms 2sn−kǫs+1(m) and 2sn−kρs+1(m)
simplify to ǫ2(m) and ρ2(m), respectively.

Our instantiation of F has ǫ(m) = ρ(m) = (m+2)/2n. Before we prove Lemma 4,
we derive from it the following corollary for XHX when instantiated with H∗.

Corollary 1. Let E and XHX[E,H∗] be defined as in Theorem 1, where the
maximum length of any tweak is limited by at most m n-bit blocks. Moreover,
let K և K. Let A be a (qC , qP )-distinguisher on XHX[E,H∗]. Then

∆
A

(
XHX[E,H∗], E±; π̃±, E±

)
≤
(q2C+2qCqP +2qCs)(m+2)s+1

2n+k
+
4qP s

2k
+

s2

2n+1
.

The proof of the corollary stems from the combination of Lemma 4 with Theo-
rem 1 and can be omitted.

Proof of Lemma 4. In the following, we assume that T, T ′ ∈ {0, 1}∗ are distinct
tweaks of at most m blocks each. Again, we consider the pAXU property first.
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Partial Almost-XOR-Universality. This is the probability that for any ∆ ∈
{0, 1}n:

Pr
LևL

[(FK′(T ),FL1,...,Ls
(T ))⊕ (FK′(T ′),FL1,...,Ls

(T ′)) = (∆, 0n)]

= Pr
LևL

[FK′(T )⊕FK′(T ′) = ∆,FL1,...,Ls
(T )⊕FL1,...,Ls

(T ′) = 0n]

≤ 2sn−k · ǫs+1(m).

We assume independent hashing keys K ′, L1, . . . , Ls here. When k = n, this
probability is upper bounded by ǫ2(m) since F is ǫ(m)-AXU. Note that s = 1 in
this case. In the case k > n, we compute s words of H2 that are concatenated
and truncated to k bits. Hence, FL1,...,Ls

is 2sn−k · ǫs(m)-AXU. In combination
with the AXU bound for FK′ , we obtain the pAXU bound for H∗ above.

Almost-Uniformity. This is the probability that for any ∆1, ∆2 ∈ {0, 1}
n

Pr
LևL

[(FK′(T ),FL1,...,Ls
(T ))=(∆1, ∆2)] = Pr

LևL
[FK′(T )=∆1,FL1,...,Ls

(T )=∆2]

≤ 2sn−k · ρs+1(m)

since F is ρ(m)-AUniform, and using a similar argumentation for the cases k = n
and k > n as for partial-almost-XOR universality.

Property P3. For all T ∈ T and ∆ ∈ {0, 1}n, Property P3 is equivalent to

Pr
LևL

[FK′(T ) = (∆⊕ Ii),FL1,...,Ls
(T ) = K]

for a fixed 1 ≤ i ≤ s. Here, this property is equivalent to almost uniformity;
hence, the probability for the latter equality is upper bounded by 2sn−k · ρs(m).
The probability for the former equality by ρ(m) since the property considers a
fixed value i. Since we assume independence of K and L1, . . . , Ls, it holds that
ǫ3 ≤ 2sn−k · ρs+1(m).

Property P4. For all T ∈ T and ∆ ∈ {0, 1}n, Property P4 is equivalent to

Pr
LևL

[FK′(T ) = (∆⊕ Li),FL1,...,Ls
(T ) = K]

for a fixed 1 ≤ i ≤ s. Using a similar argumentation as for Property P3, the
probability is upper bounded by ǫ4 ≤ 2sn−k · ρs+1(m).

Property P5. We derive the hashing keys Li with the help of the block cipher
and the secret key K. So, in the simple case that s = 1, the probability that the
adversary can guess any tuple (Ii,Ki), for 1 ≤ i ≤ s, that is used to derive the
hashing keys Li, or guess any tuple (Li,Ki) is at most 1/2k. In the general case,
the probability becomes for fixed i

Pr
KևK

[(Ii,Ki) = (c1, c2)] ≤
1

2k − s
≤

2

2k

under the reasonable assumption s < 2k−1. A similar argument holds that the
adversary can guess any tuple (Li,Ki), for 1 ≤ i ≤ s. Hence, it holds for H∗

that ǫ5 ≤ 2/2k.
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ǫ(m) and ρ(m). It remains to determine ǫ(m) and ρ(m) for our instantiation
of FK(·). It maps tweaks T = T1, . . . , Tm to the result of

(
m⊕

i=1

Ti ·K
m+3−i

)
⊕ 〈|T |〉n ·K ⊕K.

This is a polynomial of degree m + 2, which is well-known to be (m + 2)/2n-
AXU. Moreover, over L ⊂ L, it lacks fixed points but for every ∆ ∈ {0, 1}n, and
any fixed subset of m blocks of T1, . . . , Tm, there are at most m + 2 out of 2n

values for the block Tm+1 that fulfill FK(T ) = ∆. Hence, F is also (m + 2)/2n-
AUniform.

H∗ is a general construction which supports arbitrary tweak lengths. Though, if
we used H∗ for 2n-bit tweaks, we would need four Galois-Field multiplications.
However, we can hash more efficiently, even optimal in terms of the number of
multiplications in this case. For this purpose, we define H2.

H2 – A Hash Function for 2n-bit Tweaks. Naively, for two-block tweaks
|T | = 2n, an ǫ-pAXU construction with ǫ ≈ 1/22n could be achieved by sim-
ply multiplying the tweak with some key L ∈ GF(22n) sampled uniformly over
GF(22n). We can perform this even more efficiently by using two multiplications
over the smaller field GF(2n). Additional conditions, such as uniformity, are sat-
isfied by introducing squaring in the field to avoid fixed points in multiplication-
based universal hash function. Following the notations from the previous sections,
let L = (K,L1) be the 2n-bit key of our hash function. For X,Y ∈ GF(2n), we
define the operation � : GF(2n)×GF(2n)→ GF(2n) as

X � Y :=

{
X · Y if X 6= 0

Y 2 otherwise.

We assume the standard encoding between the bit space and GF(2n), i.e. a
polynomial in the field is represented as its coefficient vector, e. g., the all-zero
vector denotes the zero element 0, and the bit string (0 . . . 01) denotes the identity
element. Hereafter, we write X interchangeably as an element of GF(2n) or of
{0, 1}n. For L = ({0, 1}n)2, X = ({0, 1}n)2 and Y = {0, 1}n × {0, 1}k × {0, 1}n,
the construction H2 : L × X → Y is defined in Algorithm 4. We stress that the
usage of keys has been chosen carefully, e.g., a swap of K and L1 in H2 would
invalidate Property P4.

Lemma 5. H2 is 2s+1/2n+k-pAXU, 2s/2n+k-AUniform, satisfies Properties P3
and P4 with probability 2/2n+k each, and Property P5 with ǫ5 = s/2n for our
choices of Ii and Ki, for 1 ≤ i ≤ s.

Before proving Lemma 5, we derive from it the following corollary for XHX

when instantiated with H2.
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Algorithm 4 Definition of H2.

11: function H2
L(T )

12: (K,L1, . . . , Ls)← L
13: (T1, T2)

n
←− T

14: K′ ← truncn(K)
15: H1 ← T1 � K′

16: H2 ← trunck (FL1
(T ) ‖ · · · ‖FLs(T ))

17: H3 ← T1 � K′

18: return (H1,H2, H3)

21: function FLi
(T1 ‖ T2)

22: return (T1 � Li)⊕ T2

Corollary 2. Let E and XHX[E,H2] be defined as in Theorem 1. Moreover,
let K և K. Let A be a (qC , qP )-distinguisher on XHX[E,H2]K . Then

∆
A

(
XHX[E,H2], E±; π̃±, E±

)
≤

2s+2q2C + 2s+1qCqP + 4qCs

2n+k
+

2qP s
2

2n
+

s2

2n+1
.

Again, the proof of the corollary stems from the combination of Lemma 5 with
Theorem 1 and can be omitted.

Proof of Lemma 5. Since H1 and H3 result from an identical calculation, we can
restrict the analysis of the properties of Lemma 5 to only the outputs (H1, H2).
Moreover, note that K and L1 are independent. In the following, we denote the
hash-function results for some tweak T as H1, H2, H3, and those for some tweak
T ′ 6= T as H ′

1, H
′
2, H

′
3. Moreover, we denote the n-bit words of H2 as (H1

2 , . . . ,

Hs
2), and those of H ′

2 as (H ′
2
1
, . . . , H ′

2
s
).

Partial Almost-XOR-Universality. First, let us consider the pAXU property.
It holds that H1 := T1�K and H2 := trunck(FL1

(T ), . . . ,FLs
(T )). Considering

H1, it must hold that H ′
1 = H1 ⊕∆, with

∆ = (T ′
1 � K)⊕ (T1 � K).

For any X 6= 0n, it is well-known that X � Y is 1/2n-AXU. So, for any fixed
T1 and fixed ∆ ∈ {0, 1}n, there is exactly one value T ′

1 that fulfills the equation
if H ′

1 6= K � K, and exactly two values if H ′
1 = K � K, namely T ′

1 ∈ {0
n,K}.

Hence, it holds that

Pr
KևL

[(T1 � K)⊕ (T ′
1 � K) = ∆] ≤ 2/2n.

The argumentation for H2 is similar. The probability that any Li = 0n, for
1 ≤ i ≤ s, is at most s/2n. In the remainder, we can then assume that all
Li 6= 0n. W.l.o.g., we focus for now on the first word of H2, H

1
2 , in the following.

For fixed (T1, T2), H
1
2 , and T ′

2, there is exactly one value T ′
1 s.t. H ′

2
1 = H1

2 if

H ′
2
1
6= L1 � (L1 ⊕ T ′

2), namely T ′
1 := T1 ⊕ (T2 ⊕ T ′

2) � L−1
1 . There exist exactly

two values T ′
1 if H ′

2
1
= L1 �L1⊕T ′

2, namely T ′
1 ∈ {0

n, L1}. Hence, it holds that

Pr
L1ևL

[
H1

2 = H ′
2
1
]
≤ 2/2n.
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The same argumentation follows for 2 ≤ i ≤ s since the keys Li are pairwise
independent. Since ns−k bits of Hs

2 and H ′
2
s

are truncated if k is not a multiple
of n, the bound has to be multiplied with 2sn−k. With the factor of 2/2n for H1,
it follows for fixed ∆ ∈ {0, 1}n that H2 is ǫ-pAXU for ǫ upper bounded by

2

2n
· 2sn−k ·

2s

2sn
=

2s+1

2n+k
.

Almost-Uniformity. For almost-uniformity, we are interested in the probabil-
ity for any H1 and H2:

Pr
LևL

[T1 � K = H1,trunck(FL1
(T ), . . . ,FLs

(T )) = H2] .

If K = 0n and H1 = 0n, then the first equation may be fulfilled for any T1.
Though, the probability for K = 0n is 1/2n. So, we can assume K 6= 0n in the
remainder. Again, we focus on the first word of H2 next. For fixed L1 and H1

2 ,
there exist at most two values (T1, T2) to fulfill (T1 � L1) ⊕ T2 = H1

2 . In the
case H1 6= K � K, there is exactly one value T1 := H1 � K−1 that yields H1.
Then, T1, L1, and H1

2 determine T2 := H1
2 ⊕ (T1 �L1) uniquely. In the opposite

case that H1 = K � K, there exist exactly two values (T1, T
′
1) that yield H1,

namely 0n and K. Each of those determines T2 uniquely. The probability that
the so-fixed values T1, T2 yield also H2

2 , . . . , Hs
2 is at most (2/2n)s−1 if k is a

multiple of n since the keys Li are pairwise independent; if k is not a multiple of
n, we have again an additional factor of 2sn−k from the truncation. Hence, H2

is 2sn−k · 2s/2n+sn = 2s/2n+k-AUniform.

Property P3. Given Ii = 〈i − 1〉 and Ki = K, for 1 ≤ i ≤ s, ǫ3 is equiva-
lent to the probability that a chosen (T1, T2) yields Pr[T1 � K = ∆ ⊕ 〈i − 1〉,
trunck(FL1

(T ), . . . ,FLs
(T )) = K], for some i. This can be rewritten to

Pr [T1 � K = ∆⊕ 〈i− 1〉]

· Pr [trunck(FL1
(T ), . . . ,FLs

(T )) = K|T1 � K = ∆⊕ 〈i − 1〉] .

For fixed ∆ 6= K � K, there is exactly one value T1 that satisfies the first
part of the equation; otherwise, there are exactly two values T1 if ∆ = K � K.
Moreover, K is secret; so, the values T1 require that the adversary guesses K
correctly. Given fixed T1, ∆, and K, there is exactly one value T2 that matches
the first n bits of K; T2 := (T1 � L1) ⊕K[k − 1..k − n]. The remaining bits of
K are matched with probability 2sn−k/2(s−1)n, assuming that the keys Li are
independent. Hence, it holds that ǫ3 ≤ 2/2n · 2sn−k/2sn = 2/2n+k.

Property P4. This argument follows from a similar argumentation as Prop-
erty P3. Hence, it holds that ǫ4 ≤ 2/2n+k.
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A Proof Details

The proof of Theorem 1 follows from Lemmas 1, 2, and 3. Let Ẽ denote the
XHX[E,H] construction in the remainder. W.l.o.g., we assume, A does not ask
duplicated queries nor trivial queries to which it already knows the answer, e.g.,
feeds the result of an encryption query to the corresponding decryption oracle
or vice versa. The queries by A are collected in a transcript τ . We define that τ
is composed of two disjoint sets of queries τC and τP and L, τ = τC ∪ τP ∪ {L},
where τC := {(M i, Ci, T i, Hi

1, H
i
2, H

i
3, X

i, Y i, di)}1≤i≤qC denotes the queries
by A to the construction oracle plus internal variables Hi

1, Hi
2, Hi

3 (i.e., the
outputs of H1, H2, and H3, respectively), X i and Y i (where X i ← Hi

1⊕M i and

Y i ← Hi
3 ⊕ Ci, respectively); and τP := {(K̂i, X̂ i, Ŷ i, di)}1≤i≤qP the queries to

the primitive oracle; both sets store also binary variables di that indicate the
direction of the i-th query, where di = 1 represents the fact that the i-th query
is an encryption query, and di = 0 that it is a decryption query. The internal
variables for one call to the XHX are analogously as given in Algorithm 2 and
Figure 2.
We apply a common strategy for handling bad events from both worlds: in the
real world, all secrets (i.e., the hash-function key L) are revealed to the A after

it finished its interaction with the available oracles, but before it has output
its decision bit regarding which world it interacted with. Similarly, in the ideal
world, the oracle samples the hash-function key independently from the choice
of E and π̃ uniformly at random, L և L, and also reveals L to A after the
adversary finished its interaction and before has output its decision bit. The
internal variables in construction queries – Hi

1, H
i
2, H

i
3, X

i, Y i – can then be
computed and added to the transcript also in the ideal world using the oracle
inputs and outputs T i, M i, Ci, Hi

1, H
i
2, and Hi

3.
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Let 1 ≤ i 6= j ≤ q. We define that an attainable transcript τ is bad, i.e., τ ∈
BadT, if one of the following conditions is met:

– bad1: There exist i 6= j s.t. (Hi
2, X

i) = (Hj
2 , X

j).

– bad2: There exist i 6= j s.t. (Hi
2, Y

i) = (Hj
2 , Y

j).

– bad3: There exist i 6= j s.t. (Hi
2, X

i) = (K̂j , X̂j).

– bad4: There exist i 6= j s.t. (Hi
2, Y

i) = (K̂j , Ŷ j).

– bad5: There exist i 6= j s.t. (K̂i, X̂ i) = (K̂j, X̂j).

– bad6: There exist i 6= j s.t. (K̂i, Ŷ i) = (K̂j , Ŷ j).
– bad7: There exist i ∈ {1, . . . , s} and j ∈ {1, . . . , qC} s.t. (Xj , Hj

2) = (Ii,Ki)
and dj = 1.

– bad8: There exist i ∈ {1, . . . , s} and j ∈ {1, . . . , qC} s.t. (Y j , Hj
2) = (Li,Ki)

and dj = 0.
– bad9: There exist i ∈ {1, . . . , s} and j ∈ {1, . . . , qP } s.t. (X̂j , K̂j) = (Ii,Ki).

– bad10: There exist i ∈ {1, . . . , s} and j ∈ {1, . . . , qP } s.t. (Ŷ j , K̂j) = (Li,Ki).
– bad11: There exist i, j ∈ {1, . . . , s} and i 6= j s.t. (Ki, Li) = (Kj , Lj) but

Ii 6= Ij .

The events

– bad1 and bad2 consider collisions between two construction queries,
– bad3 and bad4 consider collisions between a construction and a primitive

query,
– bad5 and bad6 consider collisions between two primitive queries, and
– bad7 through bad10 address the case that the adversary may could find an

input-key tuple in either a primitive or construction query that has been
used to derive some of the subkeys Li.

– bad11 addresses the event that the ideal oracle produces a collision while
sampling the hash-function keys independently uniformly at random.

Note that the events bad5 and bad6 are listed here only for the sake of complete-
ness. We will show briefly that these events can never occur.

A.1 Proof of Lemma 2

Proof. In the following, we upper bound the probabilities of each bad event.

bad1 and bad2. Events bad1 and bad2 represent the cases that two distinct
construction queries would feed the same tuple of key and input to the underlying
primitive E if the construction would be the real Ẽ; bad1 considers the case
when the values Hi

2 = Hj
2 and X i = Xj collide. In the real world, it follows that

Y i = Y j , while this holds only with small probability in the ideal world. The
event bad2 concerns the case when the values Hi

2 = Hj
2 and Y i = Y j collide.

Again, in the real world, it follows then that X i = Xj, whereas this holds only
with small probability in the ideal world. So, both events would allow A to
distinguish both worlds. Let us consider bad1 first, and let us start in the real
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world. Since A asks no duplicate queries, it must hold that two distinct queries
(M i, T i) and (M j , T j) yielded

X i =
(
M i ⊕Hi

1

)
=
(
M j ⊕Hj

1

)
= Xj and Hi

2 = Hj
2 .

We define ∆ := M i⊕M j and consider two subcases: in the subcase that T i = T j,
it automatically holds that Hi

2 = Hj
2 and Hi

1 = Hj
1 . However, this also implies

that M i = M j , i.e., A would have asked a duplicate query, which is prohibited.
So, it must hold that T i 6= T j in the real world.
If T i = T j in the ideal world, it must hold that the plaintexts are disjoint,
M i 6= M j , since we assumed that A does not make duplicate queries. Since
π̃(T i, ·) is a permutation, the resulting plaintexts are also disjoint: M i 6= M j .
From T i = T j follows that Hi

1 = Hj
1 and thus, X i and Xj cannot be equal:

X i = M i ⊕Hi
1 6= M j ⊕Hj

1 = Xj,

which contradicts with our definition of bad1. So, it must hold that T i 6= T j also
in the ideal world. From Property P1 and over L և L, it holds then

Pr[bad1] = Pr
[
∃i 6= j; 1≤ i, j≤qC :

(
X i, Hi

2

)
=
(
Xj, Hj

2

)]

= Pr
[
∃i 6= j; 1≤ i, j≤qC :H1,2

(
T i
)
⊕H1,2

(
T j
)
=
(
∆, 0k

)]
≤

(
qC
2

)
ǫ1.

Using a similar argumentation, it follows also from Property P1 that for T i 6= T j

Pr[bad2] = Pr
[
∃i 6= j; 1≤ i, j≤qC :

(
Y i, Hi

2

)
=
(
Y j , Hj

2

)]

= Pr
[
∃i 6= j; 1≤ i, j≤qC :H3,2

(
T i
)
⊕H3,2

(
T j
)
=
(
∆, 0k

)]
≤

(
qC
2

)
ǫ1.

bad3 and bad4. Events bad3 and bad4 represent the cases that a construction
query to the real construction Ẽ would feed the same key and input (Hi

2, X
i) to

the underlying primitive E in the real construction as a primitive query (K̂j , X̂j).
This is equivalent to guessing the hash-function output for the i-th query. Let
us consider bad3 first. Over L և L and for all (K̂j , X̂j), the probability of bad3
is upper bounded by

Pr[bad3] = Pr
[
∃i, j; 1 ≤ i ≤ qC , 1 ≤ j ≤ qP : (X i, Hi

2) = (X̂j , K̂j)
]

= Pr
[
∃i, j; 1 ≤ i ≤ qC , 1 ≤ j ≤ qP : (Hi

1 = M i ⊕ X̂j) ∧ (Hi
2 = K̂j)

]

= Pr
[
∃i, j; 1 ≤ i ≤ qC , 1 ≤ j ≤ qP : H1,2(T

i) = (M i ⊕ X̂j, K̂j)
]

≤ qC · qP · ǫ2
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due to Property P2. Using a similar argumentation, it holds that

Pr[bad4] = Pr
[
∃i, j; 1 ≤ i ≤ qC , 1 ≤ j ≤ qP : (X i, Hi

2) = (Ŷ j , K̂j)
]

= Pr
[
∃i, j; 1 ≤ i ≤ qC , 1 ≤ j ≤ qP : (Hi

3 = Ci ⊕ Ŷ j) ∧ (Hi
2 = K̂j)

]

= Pr
[
∃i, j; 1 ≤ i ≤ qC , 1 ≤ j ≤ qP : H3,2(T

i) = (Ci ⊕ Ŷ j , K̂j)
]

≤ qC · qP · ǫ2.

bad5 and bad6. Events bad5 and bad6 represent the cases that two distinct
primitive queries feed the same key and the same input to the primitive E.
Clearly, in both worlds, this implies that A either has asked a duplicate primitive
query or has fed the result of an earlier primitive query to the primitive’s inverse
oracle. Both types of queries are forbidden; so, they will not occur.

bad7 and bad8. Let us consider bad7 first, which considers the case that the
j-th construction query in encryption direction matches the inputs to E used
for generating a hash function subkeys Li, for some j ∈ [1..q] and i ∈ [1..s].
bad8 considers the equivalent case in decryption direction. We define ∆ := M j⊕
H1(L, T

j). For this bad event, it must hold that M j ⊕ H1(L, T
j) = Ii and

H2(L, T
j) = Ki. Concerning the tuples Ii,Ki, we cannot exclude in general that

all values K1(K) = . . . = Ks(K) are equal and therefore, Li are outputs of the
same permutation. From Property P3 and the fact that there have been j queries
and the adversary can hit one out of s values, and over L և L, it follows that
the probability for this event can be upper bounded by

Pr[bad7] = Pr
[
∃i, j; 1 ≤ i ≤ s, 1 ≤ j ≤ qC : (Xj , Hj

2)⊕ (Ii,Ki) = (∆, 0k)
]

= Pr
[
∃i, j; 1 ≤ i ≤ s, 1 ≤ j ≤ qC : H1,2(T

j)⊕ (Ii,Ki) = (∆, 0k)
]

≤ qC · s · ǫ3.

Using a similar argument, it follows from Property P4 that

Pr[bad8] = Pr
[
∃i, j; 1 ≤ i ≤ s, 1 ≤ j ≤ qC : (Y j , Hj

2)⊕ (Li,Ki) = (∆, 0k)
]

= Pr
[
∃i, j; 1 ≤ i ≤ s, 1 ≤ j ≤ qC : H3,2(T

j)⊕ (Li,Ki) = (∆, 0k)
]

≤ qC · s · ǫ4.

bad9 and bad10. The event bad9 models the case that a primitive query in
encryption direction matches key and input used for generating Li, for some
i ∈ [1..s]: (X̂j , K̂j) = (Ii,Ki). The event bad10 considers the equivalent case in
decryption direction. From our assumption that Property P5 holds and the fact
that the adversary can hit one out of s values, and over K և K, the probability
for this event can be upper bounded by

Pr[bad9] = Pr
[
∃i, j; 1 ≤ i ≤ s, 1 ≤ j ≤ qP :

(
X̂j, K̂j

)
= (Ii,Ki)

]
≤ qP · s · ǫ75
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We can use a similar argument and Property P5 to upper bound the probability
that the j-th query of A hits Li,Ki by

Pr[bad10] = Pr
[
∃i, j; 1 ≤ i ≤ s, 1 ≤ j ≤ qP :

(
Ŷ j , K̂j

)
= (Li,Ki)

]
≤ qP · s · ǫ5.

bad11. It is possible that a number of key inputs Ki = Kj, for some i, j ∈
{1, . . . , s}, i 6= j, are equal. The event bad11 models the case that the ideal
oracle produces a collision (Ki, Li) = (Kj, Lj), although it holds that Ii 6= Ij ,
which indicates that the hash-function keys cannot be result of computing them
from the block cipher E. In the worst case, all keys Ki, for 1 ≤ i ≤ s, are equal.
So, the probability for this event can be upper bounded by

Pr[bad11] = Pr [∃i, j ∈ {1, . . . , s}, i 6= j : (Ki, Li) = (Kj , Lj) , Ii 6= Ij ] ≤
s2

2n+1
.

Our claim in Lemma 2 follows from summing up the probabilities of all bad
events.

Before proceeding with the proof of good transcripts, we formulate a short fact
that will serve useful later on. In the remainder, we denote the falling factorial
as (n)k := n!

k! .

Fact 1. Let u1, . . . , ur and v1, . . . , vs be positive integers such that it holds

r∑

i=1

ui =

s∑

j=1

vj , (1)

r ≤ s, and (2)

vi ≤ ui, for all 1 ≤ i ≤ r. (3)

Then, it holds for any positive integer N ≥
∑r

i=1 ui that

r∏

i=1

(N)ui
≤

s∏

i=1

(N)vi and thus

r∏

i=1

1

(N)ui

≥

s∏

i=1

1

(N)vi
.

The proof follows from simple arithmetics and is therefore omitted.

A.2 Proof of Lemma 3

Proof. Fix a good transcript τ . In the ideal world, the probability to obtain τ is

Pr[Θideal = τ ] = Pr
∀i

[
π̃(T i,M i) = Ci

]
· Pr
∀j

[
E(K̂j , X̂j) = Y j

]
· Pr
∀g

[Lg]

· Pr [K և K : K] .

In the real world, the probability to obtain a transcript τ is given by

Pr[Θreal = τ ] = Pr
∀i,∀j,∀g

[
ẼL(T

i,M i) = Ci , E(K̂j , X̂j) = Y j , E(Kg, Ig) = Lg

]

· Pr [K և K : K] .
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First, we consider the distribution of keys. In the ideal world, all components of
L = (K,L1, . . . , Ls) are sampled uniformly and independently at random; the
real world employs the block cipher E for generating L1, . . . , Ls. Let us focus on
K, which is sampled uniformly in both worlds:

Pr [K և K : K] =
1

|K|
.

The remaining hash-function key L1, . . . , Ls will be considered in turn. To prove
the remainder of our claim in Lemma 3, we have to show that

Pr
∀i,∀j,∀g

[
ẼL(T

i,M i) = Ci , E(K̂j , X̂j) = Y j , E(Kg, Ig) = Lg

]
(4)

≥ Pr
∀i

[
π̃(T i,M i) = Ci

]
· Pr
∀j

[
E(K̂j, X̂j) = Y j

]
·

s∏

g=1

Pr [Lg և {0, 1}n : Lg] .

Since the ideal cipher E is used in both worlds, the probabilities of outputs for
primitive queries are equal in both worlds.
We reindex the keys used in primitive queries to K̂

1, . . . , K̂ℓ to eliminate du-
plicates. Given those indices, we group all primitive queries into sets K̂j , for
1 ≤ j ≤ ℓ, s.t. all sets are distinct and each set K̂j contains exactly only the
primitive queries with key K̂

j :

K̂j :=
{(

K̂
i, X̂ i, Ŷ i

)
: K̂i = K̂

j
}
.

We denote by k̂j = |K̂j | the number of queries with key K̂
j . Clearly, it holds that

ℓ ≤ qP and
∑ℓ

j=1 k̂
j = qP .

Moreover, we also re-index the tweaks of the construction queries to T
1, . . . , Tr

for the purpose of eliminating duplicates. Given these new indices, we group all
construction queries into sets T j , for 1 ≤ j ≤ r, s.t. all sets are distinct and each
set T j contains exactly only all construction queries with the tweak T

j :

T j :=
{(

T
i,M i, Ci

)
: Ti = T

j
}

We denote by tj = |T j | the number of queries with tweak T
j . It holds that

r ≤ qC and
∑r

j=1 t
j = qC .

First, we consider the probability of an obtained good transcript in the ideal
world. Therein, all components L1, . . . , Ls are sampled independently uniformly
at random from {0, 1}n. So, in the ideal world, it holds that

s∏

g=1

Pr [Lg և {0, 1}n : Lg] =
1

(2n)s
.

Recall that every π̃(Tj , ·) and π̃−1(Tj, ·) is a permutation, and the assumption
that A does not ask duplicate queries or such to which it already knows the
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answer. So, all queries are pairwise distinct. The probability to obtain the outputs
of our transcript for some fixed tweak T

j is given by

1

2n · (2n − 1) · · · · · (2n − tj + 1)
=

1

(2n)tj
.

The same applies for the outputs of the primitive queries in our transcript for
some fixed key K̂

j :

1

(2n)k̂j

.

The outputs of construction and primitive queries are independent from each
other in the ideal world. Over all disjoint key and tweak sets, the probability for
obtaining τ in the ideal world is given by

Pr [Θideal = τ ] =

(
r∏

i=1

1

(2n)tj

)
·




ℓ∏

j=1

1

(2n)k̂j


 · 1

(2n)s
·

1

|K|
. (5)

It remains to upper bound the probability τ in the real world. We observe that
for every pair of queries i and j with T i = T j, it holds that Hi

2 = Hj
2 , i.e.,

both queries always target the same underlying permutation. Moreover, in the
real world, two distinct tweaks T i 6= T j can still collide in their hash-function
outputs Hi

2 = Hj
2 . In this case, the queries with tweaks T i and T j also use the

same permutation. Furthermore, there may be hash-function outputs Hi
2 from

construction queries that are identical to keys K̂j that were used in primitive
queries. In this case, both queries also employ the same permutation and so, the
outputs from primitive and from construction queries are not independent as
in the ideal world. Moreover, the derived keys Li are also constructed from the
same block cipher E; hence, the inputs Ki may also use the same permutation
as primitive and construction queries.
For our purpose, we also reindex the keys in all primitive queries into sets to
K̂
1, . . . , K̂ℓ, and also reindex the tweaks in construction queries to T

1, . . .Tr

to eliminate duplicates. We define key sets Kj , for 1 ≤ j ≤ ℓ, and tweak sets
T j , for 1 ≤ j ≤ r, analogously as we did for the ideal world. Moreover, for
every so-indexed tweak T

i, we compute its corresponding value Hi
2. We also

reindex the hash values Hj
2 to H

1
2, . . . ,H

u
2 for duplicate elimination, and group

the construction queries into sets

Hj
2 :=

{(
T i,M i, Ci

)
: H2(L, T

i) = H
j
2

}
.

We denote by hj
2 = |Hj

2| the number of queries whose tweak maps to H
j
2. Clearly,

it still holds that
∑u

i=1 h
i
2 = qC . We can define an ordering s.t. for all 1 ≤ i ≤ u,

T
i is mapped to H

i
2. Since for all 1 ≤ i ≤ r, all queries of tweak T

j are contained
in exactly one set Hj

2, there exists some j ∈ {1, . . . , u}, s.t. it holds

u∑

j=1

hj
2 =

r∑

i=1

ti = qC , u ≤ r, and hi
2 ≥ ti, for all 1 ≤ i ≤ r.
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Hence, it follows from Fact 1 that

u∏

j=1

1

(2n)hj
2

≥

r∏

i=1

1

(2n)ti
.

In addition, we reindex the key inputs Ki that are used for generating the keys
L1, . . . , Ls to K1, . . . ,Kw to eliminate duplicates, and group all tuples (Ii,Ki)
into sets Kj , for 1 ≤ j ≤ w, s.t. all sets are distinct and each set contains exactly
those key-generating tuples with the key Kj:

Kj :=
{
(Ii,Ki) : Ki = K

j .
}
.

On this base, we unify and reindex the values H
j
2, K̂

j, and K
j to values P

1, . . . ,
P
v (using P for permutation). We group all queries into sets Pj , for 1 ≤ j ≤ v,

s.t. all sets are distinct and each set Pj consists of exactly the union of all
construction queries with the hash value H2 = P

j , all primitive queries with
K̂ = P

j , and all key-generating tuples with K = P
j :

Pj :=
{
Hi

2 : Hi
2 = P

j
}
∪
{
K̂i : K̂i = P

j
}
∪
{
Ki : Ki = P

j
}
.

We denote by pj = |Pj | the number of queries that use the same permutation.
Clearly, it holds that

∑v
j=1 p

j = qP + qC + s. Let Block(k, n) denote the set
of all k-bit key, n-bit block ciphers. In the following, we call a block cipher E
compatible with τ iff

1. For all 1 ≤ i ≤ qC , it holds that Ci = EHi
2

(
M i ⊕Hi

1

)
⊕ Hi

3, where Hi
1 =

H1(L,T
i), Hi

2 = H2(L,T
i), and Hi

3 = H3(L,T
i), and

2. for all 1 ≤ j ≤ qP , it holds that Ŷ j = EK̂j (X̂j),
3. and for all 1 ≤ g ≤ s, it holds that Li = EKi

(Ii).

Let Comp(τ) denote the set of all block ciphers E compatible with τ . Then,

Pr [Θreal = τ ] = Pr [E և Block (k, n) : E ∈ Comp(τ)] · Pr [K|Θreal = τ ] . (6)

We focus on the first factor on the right-hand side. Since we assume that no bad
events have occurred, the fraction of compatible block ciphers is given by

Pr [E և Block (k, n) : E ∈ Comp(τ)] =

v∏

i=1

1

(2n)pi

.

It holds that

v∑

i=1

pi = qP + qC + s =
ℓ∑

j=1

k̂j +
r∑

j=1

tj +
w∑

j=1

kj =
ℓ∑

j=1

k̂j +
u∑

j=1

hj
2 +

w∑

j=1

kj .



26 A. Jha, S. Mishra, E. List, K. Minematsu, and M. Nandi

We can substitute the variables k̂j , hj
2, and kj on the right-hand side by auxiliary

variables zj

v∑

i=1

pi =
ℓ+u+w∑

j=1

zj where zj =





k̂j if j ≤ ℓ,

hj
2 if ℓ < j ≤ ℓ+ u,

kj otherwise.

It holds that v ≤ ℓ+ u+w ≤ ℓ+ r +w. Since each permutation set P i consists
of all queries in τ that use a certain key K̂

j , and/or all queries in τ that use one
hash H

j
2, and/or all tuples (Ii,Ki) that use one value K

j, it further holds that
for all 1 ≤ i ≤ v, there exists some j ∈ {1, . . . , ℓ+ u+ w} s.t.

pi ≥ zj.

So, we can directly apply Fact 1, from which it follows that

v∏

i=1

1

(2n)pi

≥




ℓ∏

j=1

1

(2n)k̂j


 ·




u∏

j=1

1

(2n)hj
2


 ·




w∏

j=1

1

(2n)kj


 (7)

≥




ℓ∏

j=1

1

(2n)k̂j


 ·




r∏

j=1

1

(2n)tj


 ·




w∏

j=1

1

(2n)kj




≥




ℓ∏

j=1

1

(2n)k̂j


 ·




r∏

j=1

1

(2n)tj


 · 1

(2n)s
.

Using the combined knowledge from Equations (4) through (7), we can derive
that the probability for obtaining the construction and primitive outputs in the
transcript is at least as high as the probability in the ideal world:

Pr [Θreal = τ ] ≥ Pr [Θideal = τ ] .

So, we obtain our claim in Lemma 3.
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