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Abstract. Side-channel cube attack (SCCA) is executed in a situation
where an adversary can access some information about the internal states
of the cipher. The adversary can obtain a system of linear equations by
a set of chosen plaintexts called cube and recover the secret key using
the system. Error tolerance is a challenging task in SCCA. To recover
the secret key based on likelihoods under an error-prone environment, we
propose SCCA with key enumeration (SCCA-KE). Precise likelihoods are
computed to obtain lists for sub-key candidates and an optimal list for
the complete key candidate is generated by key enumeration. Then, we
propose an evaluation method for SCCA-KE which includes information-
theoretic evaluation and experimental evaluation by rank estimation. We
apply the proposed evaluation method to PRESENT and show some
conditions required to thwart SCCA-KE in realistic assumptions. Using
the evaluation method, the evaluator can consider countermeasures with
a su�cient security margin.

Keywords: Block cipher, Side-channel attack, Side-channel cube at-
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1 Introduction

1.1 Background

Conventionally, security of block ciphers is analyzed under an assumption that
an adversary is given a black-box access to cryptosystems. However, security of
cryptographic devices against side-channel attacks can not be assured by the
analysis. In contrast to side-channel attacks to recover the secret key directly
from leaked values (internal states of the cipher) [15], some attacks which ex-
ploit an algebraic structure of block cipher (algebraic attacks) are proposed
[25][30]. Side-channel cube attack (SCCA) is also an algebraic attack proposed
by Dinur and Shamir [10]. SCCA can overcome protections on the �rst round
function such as random delay [31], since the attack exploits internal states
passing through multiple round functions. Also, SCCA can recover the secret
key under an assumption that the adversary can access a small information of
bits of internal states. In this paper, we study SCCA as a theoretical evaluation.
In the evaluation, it is assumed that the adversary can access only 1-bit infor-
mation of internal states. Even in such condition, the adversary can recover the
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secret key using a set of chosen plaintexts called cube. Obviously there are more
advantageous bits (containing many information on the secret key) than other
ones. As an evaluator, it is important to locate such advantageous bits. Then,
the evaluator can take countermeasures e�ciently.

In SCCA, a measured value is represented by a multivariate polynomial with
variables of secret-key and plaintext bits. From the polynomial, the adversary
attempts to obtain a linear equation by a cube. Using multiple cubes, he can
obtain a system of linear equations. Cubes can be searched by computer experi-
ments (cube search). In an error-free environment, he can recover the secret key
if the number of independent equations is more than or equal to the one of the
variables (secret-key bits).

If the measurements are prone to error, the analysis becomes complicated.
There are two error models which suppose binary erasure channel (BEC model)
[10] and binary symmetric channel (BSC model) [17]. In this paper, we inves-
tigate SCCA under BSC model. BSC model assumes that a measured value is
di�erent from the correct value with a crossover probability ρ. In CHES2013,
Li et al. proposed an attack using maximum likelihood decoding (ML decoding)
[17]. We call the attack previous method.

1.2 Contribution

First, we propose a new algorithm, SCCA with key enumeration [28] (SCCA-
KE), which takes divide-and-conquer strategy (DC strategy) in a similar way to
the previous method. In the previous method, lists for sub-key candidates (sub
lists) are sorted by hamming distance from measured values; however, such sub
lists are not enumerated based on precise likelihoods (the method is not based
on ML decoding). In SCCA-KE, precise likelihoods are computed to construct
optimal sub lists. Then, an optimal list for the secret-key (complete key) candi-
dates is generated from the sub lists by key enumeration [28]. Using the optimal
list, the number of times to test candidates is minimized.

Next, we propose an evaluation method for SCCA-KE. In the beginning,
brute-force search for cubes of relatively small sizes is executed. Based on the
searched cubes, two evaluations are executed, information-theoretic evaluation
and experimental evaluation by rank estimation [29]. The former evaluation is
to obtain a lower bound of guessing entropy which is equal to an expected
time complexity. The latter evaluation is to obtain a success rate of SCCA-KE.
Rank estimation is an evaluation method to estimate a time complexity of key
enumeration. Note that we use a rank estimation algorithm proposed by Glowacz
et al. [13] for its e�ciency and preciseness. We set tadv as the number of secret-
key candidates which the adversary can test (it indicates his computing power).
If a lower bound of guessing entropy is su�ciently larger than tadv, the evaluator
can assure security. Also, tadv is a threshold in the experimental evaluation. If
a rank is lower than tadv, the attack is regarded as successful. We execute the
experiment a su�cient number of times to obtain a reliable success rate.

We apply the proposed evaluation method to PRESENT [6]. In the evalua-
tions, we set tadv = 260 and the number of leaked values is qadv = 215 at most.
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We consider three leakage models, single bit [32], least signi�cant bit (LSB) of
hamming weight (HW) of 8-bit internal state [17] and LSB of HW of 4-bit inter-
nal state. Note that HW is in binary representation and 4 or 8-bit internal state
corresponds to a register size. We obtain a lower bound of guessing entropy and
success rate by changing crossover probability ρ.

As a result of the evaluation, we conclude that intensive protections for the
second and third round are required to thwart SCCA-KE under tadv = 260 and
qadv = 215. If it is di�cult, noise insertion to achieve ρ ≥ 0.4 is required. In
this way, the evaluation method contributes to an e�cient evaluation for SCCA
in various settings, and the evaluator can consider a countermeasure with a
su�cient security margin.
Notations. We use bold fonts for vectors, sans serif ones for functions and
calligraphic ones for sets or lists (list is a set of elements with order).

2 Side-channel cube attack

2.1 Outline of side-channel cube attack

A side-channel leakage is represented by a nonlinear multivariate polynomial
whose variables are plaintext and secret-key bits (we call plaintext and secret-
key variables). The adversary can obtain a linear equation by a set of chosen
plaintexts called cube. If he has a su�cient number of linear equations whose
terms include secret-key variables, he can recover their values with trivial com-
plexity in an error-free environment. Note that it is not trivial if measurements
are prone to error (see Sec. 2.2).

Let f : FM2 × FN2 → F2 be a multivariate polynomial of plaintext variables
v = (v1, v2, ..., vM ) ∈ FM2 and secret-key variables k = (k1, k2, ..., kN ) ∈ FN2 . We
de�ne a cube by an index set of plaintext variables I ⊂ {1, 2, ...,M}. Using a
term

∏
i∈I vi called maxterm, f is divided into two polynomials:

f(v,k) =

(∏
i∈I

vi

)
· qI(v,k) + r(v,k), (1)

where qI is called superpoly of I, and r is a polynomial in which there is no term
divisible by

∏
i∈I vi.

We denote a cube by CI such that plaintext variables indexed by I take all
possible combinations and the other plaintext variables are 0 (constant), e.g.,
C{0,1} = {(0, 0, ..., 0), (1, 0, ..., 0), (0, 1, ..., 0), (1, 1, ..., 0)}. Note that we call |I| as
cube size. Then, we have [9]:

q′I(k) =
⊕
v∈CI

f(v,k), (2)

where q′I(k) = qI(v,k) such that any plaintext variable included in q′I(v,k) is
0, e.g., if qI(v,k) = k1k2 ⊕ v1k3 and 1 6∈ I then q′I(k) = k1k2. In this way, a
value of right-hand side (RHS) of a superpoly q′I is obtained by the summation
of f(v,k). If the following two conditions hold, the adversary can use a superpoly
q′I for key recovery.
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1. q′I is not a constant polynomial: If q′I(k) is constant for a su�cient large
number of randomly chosen k, q′I is regarded as a constant polynomial and
rejected.

2. q′I is a linear polynomial: Linearity test known as BLR test [4] is used. When
the following equation holds for a su�cient large number of randomly chosen

ko and ko
′
, q′I is regarded as a linear function and accepted.

q′I(k
o)⊕ q′I(k

o′)⊕ q′I(0) = q′I(k
o ⊕ ko

′
), (3)

where 0 denotes a secret-key whose values are all 0.

We call the tests to check the above conditions as cube test and q′I(k) is generally
computed for 100 times to obtain reliable cubes [10].

Let xv = f(v,k) be a leaked value. Suppose that the adversary obtains a
system of L linear equations by using L cubes as follows.

a1,1 · k1 ⊕ a1,2 · k2⊕...⊕ a1,n · kn = x1

a2,1 · k1 ⊕ a2,2 · k2⊕...⊕ a1,n · kn = x2

...

aL,1 · k1 ⊕ aL,2 · k2⊕...⊕ aL,n · kn = xL (4)

Note that ai,j ∈ F2 (i ∈ {1, 2, ..., L}, j ∈ {1, 2, ..., n}) is a coe�cient of i-
th linear equation. A RHS value xi is obtained by xi =

⊕
v∈CIi

xv ⊕ q′Ii(0)

(= q′Ii(k) ⊕ q′Ii(0)), where q
′
Ii(0) is a constant. If the number of independent

equations is more than or equal to the one of secret-key variables n, k is uniquely
recovered.

Generally, not all secret-key variables are obtained from a system of linear
equations, since there are remaining variables for which the adversary has no
information. Let sk (= k||rk) and rk be the complete N -bit variables and n′-bit
remaining variables, respectively (N = n+ n′ is the secret-key length).

2.2 Error-tolerant side-channel cube attack

In SCCA, there are many works which assume that measurements are error-
free [1][11][14][32][33]; therefore, error tolerance is not well studied. This is the
drawback of the entire study for SCCA. If measurements are prone to error,
SCCA is not always successful even if the number of independent equations
are enough. BEC model [10] and BSC model [17] were proposed for the study
considering error tolerance.

In BEC model, each measurement outputs a problematic measurement ⊥
instead of 0/1 with probability ε. Then, the adversary assigns a new variable to
each unknown values of ⊥, and the number of variables increases and is expected
to be n +

∑L
i=1 ε · |CIi | (|CIi | = 2|Ii|). If the number of independent equations

is more than or equal to the number of variables, n-bit secret-key variables are
uniquely obtained. In this way, SCCA under BEC model can be error tolerant
by increasing the number of independent equations.
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In BSC model, each measured value yv follows crossover probability ρ =
Pr[xv ⊕ yv = 1] = 1/2 − µ (xv is a correct value). Using piling-up lemma [23],
crossover probability for xi =

⊕
v∈CIi

xv ⊕ q′Ii(0) is obtained as [17]:

pi = Pr[xi ⊕ yi = 1] =
1

2
− 2|CIi |−1µ|CIi |, (5)

where yi =
⊕

v∈CIi
yv ⊕ q′Ii(0) is obtained by summation of measured values

of yv. Note that we call x (resp. y) a vector of correct (resp. measured) RHS
values.

2.3 Previous method for BSC model [17]

In order to recover n-bit secret-key variables from a system of linear equations
of Eq. (4) under BSC model with crossover probability pi (i ∈ {1, 2, ..., L}), the
authors of [17] proposed a method based on ML decoding (previous method).
The key-recovery problem can be reduced to a decoding problem of [L,n] linear
block code following the idea of Siegenthaler's cryptanalysis of stream ciphers
[26].

Let A = (ai,j) (i ∈ {1, 2, ..., L}, j ∈ {1, 2, ..., n}) be L×n matrix (a generator
matrix of [L,n] linear block code), and ai be i-th column vector of A. A correct
RHS value is obtained by xi = k ·ai, and the adversary is given yi. We denote a
system of linear equations by (A,k,x) or (A,k,y). In the previous method, the
adversary selects a key candidate ko based on the hamming distance HD(ko) as:

arg min
ko

HD(ko), HD(ko) =

L∑
i=1

(xoi ⊕ yi), (6)

where xoi = ko ·ai. If a crossover probability pi is constant for any i ∈ {1, 2, ..., L},
this decoding algorithm is ML decoding which has the smallest error probability.
This algorithm is not ML decoding if pi is di�erent for |CIi | (see detail in Sec.
3.1).

Since a general decoding problem is NP-complete [5], time complexity in-
creases exponentially on n. If n is large, it is intractable for the adversary to
execute ML decoding. In order to reduce time complexity, the previous method
takes DC strategy to divide k into η sub keys {k1,k2, ...,kη}. Gathering row
vectors of A whose variables include at least a variable of kj , a matrix Aj is de-
�ned and a vector of correct (resp. measured) RHS is xj (resp. yj). Hereinafter,
(Aj ,kj ,xj) or (Aj ,kj ,yj) is referred to as sub system. The adversary computes
hamming distances in each matrix Aj and secret-key variables of sub key kj .

In order to improve success rate, the method chooses τconst candidates in
ascending order by HD(kj) in each sub system of linear equations. Let Tkj be a
sub list of τconst candidates for kj . Since k is reconstructed from η sub keys, the
adversary has (τconst)

η candidates after the procedures, and we denote a set of
the candidates by Tk(= Tk1

×Tk2
×...×Tkη ). Also, there are 2n

′
candidates for the

remaining variables rk. We denote a list for rk as Trk. The correct key is searched
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from the candidates of Tk×Trk (|Tk×Trk| = (τconst)
η ·2n′), by using some actual

plaintext-ciphertext pairs. Hence, it requires a time complexity (τconst)
η · 2n′ .

In order to reduce time complexity, the authors recommend to use overlap-
ping sub keys where each vector shares 3 or 4 variables with neighboring vectors.
We call the strategy overlapping DC strategy. The authors claim that it is possi-
ble to reduce time complexity since only candidates that agree in the overlapping
secret-key variables are tested in overlapping DC strategy.

3 Side-channel cube attack with key enumeration

We consider SCCA-KE under BSC model. Note that SCCA-KE is applicable
if a conditional probability distribution of leaked values given a key candidate,
i.e., Pr[y|k], is approximated. In this paper, we assume that leaked values are
independent and a crossover probability ρ = Pr[yi ⊕ xi = 1] de�nes the dis-
tribution. As an example to use other models, we show how to obtain a condi-
tional probability (crossover probability) by converting HWmodel with Gaussian
noise to BSC model in Appendix A. Note that asymmetric crossover probability
(Pr[yi = 0|xi = 1] 6= Pr[yi = 1|xi = 0] ) can be handled by SCCA-KE. In prac-
tice, the adversary measures leakages from training devices and approximates
the distribution [27].

3.1 Divide-and-conquer strategy and key enumeration

Let Tsk = {sk1, sk2, ..., skτ} be a list of secret-key candidates which can be
obtained by measurements. The adversary tests secret-key candidates from sk1

to skτ and disregard other candidates not in Tsk, where τ is determined by his
computing power. Likelihood or posterior probability is used to make the list
Tsk. We get the same list if a uniform prior distribution can be assumed [19]. In
this paper, we use log likelihood for the convenience of implementation.

Taking DC strategy, we use key enumeration to obtain Tsk from η sub lists
{Tk1

, Tk2
, ..., Tkη} and a sub list for the remaining variables Trk. Since there is no

information on rk, candidates of Trk are randomly sorted (all candidates have
the same log likelihood). SCCA-KE uses the following optimal list for k.

De�nition 1 (optimal list). Let y be a vector of RHS values of a system of
linear equations obtained by independent measurements. In the list of candidates
Tk = {k1,k2, ...,kτ}, the list Tk is an optimal list of key candidates if the follow-
ing conditions hold.
For any (o, o′) such that ko,ko

′ ∈ Tk and o < o′,

L∑
i=1

log2(Pr[yi|ko]) ≥
L∑
i=1

log2(Pr[yi|ko
′
]), (7)

and for any (o, o′′) such that ko ∈ Tk, ko
′′ 6∈ Tk,

L∑
i=1

log2(Pr[yi|ko]) ≥
L∑
i=1

log2(Pr[yi|ko
′′
]). (8)
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Note that Pr[yi|ko] = Pr[xoi ⊕ yi], where x
o = (xo1, x

o
2, ..., x

o
L) = ko · A. The

optimal list is in descending order by log likelihood and all candidates has higher
log likelihoods than any candidates not in the optimal list. Obviously, the optimal
list can function as ML decoding.

We construct η optimal sub lists {Tk1
, Tk2

, ..., Tkη}. Note that there is no
overlapping variables among sub keys (overlapping DC strategy is not taken).
Then, a log likelihood of ko = ko1||k

o
2||...||k

o
η is obtained by:

η∑
j=1

Lj∑
i=1

log2(Pr[yj,i|k
o
j ]), (9)

where Lj is the number of linear equations of j-th sub system. Note that Trk is
always optimal, since there is no information on rk. Therefore, Tsk = Tk × Trk
is an optimal list if Tk is optimal.

In the previous method [17], Tk is not optimal as follows.

1. If a crossover probability pi is di�erent for |CIi |, a list sorted by hamming
distance (see Eq. (5)) is not optimal. In other word, this method is not based
on ML decoding. In general, the adversary exploits cubes of various sizes.

2. Since there may be a candidate not in Tk such that its likelihood is more
than some elements of Tk, Tk is not optimal. In the previous method, the
adversary chooses τconst key candidates as Tkj for any j ∈ {1, 2, ..., η}. Then,
a likelihood of the last candidate of Tk is not maximized.

3. Since log likelihoods for η sub systems are not independent in the overlap-
ping DC strategy, a total log likelihood is not calculated by simple sum-
mation such as Eq. (9). To calculate it, log likelihoods for overlapping sub-
key candidates should be subtracted after the summation. No existing key-
enumeration algorithm support the calculation.

3.2 Proposed algorithm

We show a proposed algorithm for SCCA-KE in Algorithm 1. Note that we use
a notation (ko, λko) ∈ Uk instead of ko ∈ Tk, since log likelihoods are used in
key enumeration (see Eq. (9)). Algorithm 1 has three steps as follows.

Step-1 A system of linear equations (A,k,y) is divided into η sub systems.
We show a toy example as follows.


1 0 0 0 0 0 1
0 1 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 0 1 0 1 0 0
0 0 0 1 0 1 0

 , (k1, k2, k3, k4, k5, k6), (y1, y2, y3, y4, y5, y6, y7, y8)


⇒
((

1 1
0 1

)
,(k1, k4),(y1, y7)

)
,

((
1 1 0
0 1 1

)
,(k2, k5),(y2, y3, y5)

)
,

((
1 0
1 1

)
,(k3, k6),(y4, y6)

)
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Algorithm 1 Side-channel cube attack with key enumeration (SCCA-KE).

input A system of linear equations (A,k,y).
Divide (A,k,y) into η sub-systems (Aj ,kj ,yj) (j ∈ {1, 2, ..., η}).
for j = 1→ η do

for o = 1→ 2nj do
xoj ← koj ·Aj
λkoj ←

∑Lj
i=1 log2(Pr[x

o
j,i ⊕ yj,i]) . Pr[xoj,i ⊕ yj,i] is obtained by Eq.(5).

end for

Store all (koj , λkoj ) in Ukj in descending order by λkoj .
end for

Store all (rko,−n′) in Urk (o ∈ {1, 2, ..., 2n
′
}).

skψ ← KE(Uk1 ,Uk2 , ...,Ukη ,Urk, τ) . KE is a key enumeration algorithm of [28].
return skψ or �failure� . �failure� indicates skψ is not found in τ candidates.

Step-2 In each sub system, log likelihoods λkoj of all sub-key candidates are

computed. Sub-key candidates and their log likelihoods (koj , λkoj ) are stored

in Ukj in descending order by λkoj . As mentioned in Sec. 2.1, there are n′

remaining secret-key variables rk; therefore, Urk for rk is prepared. Since
there is no information on rk, all sub-key candidates have the same log
likelihood log2(2

−n′) = −n′.
Step-3 Using key enumeration, the correct key skψ is searched. Note that the

adversary determines τ as the number of candidates to enumerate and test.
If the correct key can not be found in τ enumerated candidates, Algorithm
1 fails. Note that the optimal algorithm of [28] is used for KE. If another
algorithm is used, Usk and Uk are not optimal (they become sub optimal).

Contrary to the previous method shown in Sec. 3.1, optimal lists are generated
in SCCA-KE for the following three reasons (each item corresponds to one of
Sec. 3.1).

1. Log likelihoods of candidates are obtained by considering cube sizes. If a
conditional probability distribution for leaked values given a key candidate
is well approximated, a list Uk sorted by log likelihoods is optimal and the
secret key can be recovered based on ML-decoding.

2. Using key enumeration, secret-key candidates are enumerated in Uk in de-
scending order by λko . Therefore, the log likelihood of the last candidate λkτ

is more than any candidate not in Uk.
3. SCCA-KE does not take the overlapping DC strategy. Therefore, the key

enumeration algorithm [28] can be executed to obtain Uk.

3.3 Complexity estimation

The total complexity for SCCA-KE is estimated as:

t = tprep + tke + τ,

m = mprep +mke, (10)
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where tprep and tke (resp. mprep and mke) are time (resp. memory) complexity
for constructing the optimal sub lists (preparation for key enumeration) and
execution of key enumeration. Note that tke does not include the time complexity
for testing τ key candidates.

Taking DC strategy, complexity for constructing the sub lists become:

tprep =

η∑
j=1

Lj · 2nj ,

mprep =

η∑
j=1

2nj , (11)

where nj is the number of variables in a sub system. Note that this computation
is required for the evaluation method shown in Sec. 4.3; therefore, it should be
tractable in practice. If there is a sub system with large nj , it is still hard to
obtain a sub list. On this point, we have an observation as follows (see Appendix
B for its intuitive explanation).

Observation. Suppose that a system of linear equations with n secret-key vari-
ables is divided into η sub systems which do not contain any overlapping vari-
ables. The number of secret-key variables nj is generally small in each sub system
(j ∈ {1, 2, ..., η}).

This is the observation obtained by experiments on PRESENT (see in Sec. 5.1)
and other works [1][14]. If there is an exception, the adversary should consider
techniques shown in Appendix C.

Using the optimal algorithm [28], tke and mke increase in the number of key
candidates to enumerate and test τ . Especially, high memory complexity for key
enumeration becomes a practical limitation [7]. In order to reduce complexity for
key enumeration, e�cient algorithms [7][8][20][21][24] can be used even if they
are sub-optimal algorithms.

Since our goal is to propose an evaluation method for SCCA-KE, we only
consider time complexity to test key candidates τ . Any key-enumeration algo-
rithm can not achieve a time complexity less than τ ; therefore, τ is the lower
bound of time complexity. Also, we do not consider memory complexity, since
there are sub-optimal algorithms with constant memory complexity. By consid-
ering security against SCCA-KE with all key-enumeration algorithms, we only
consider the time complexity τ in the security evaluation against SCCA-KE.

4 Evaluation method for side-channel cube attack with
key enumeration

In this section, we propose an evaluation method for SCCA-KE. The evaluator
(of which the goal is to analyze security of his cryptographic device) consid-
ers the most e�ective attack to take countermeasures with a su�cient security
margin. For any given leaked values which are measured using cubes, SCCA-
KE is the most e�ective (error tolerant) key-recovery method, since it is based
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on the optimal list of De�nition 1. Note that the above statement is true if an
approximation of conditional probability distribution Pr[y|k] is accurate. We
evaluate a security against SCCA-KE under an assumption that the approxima-
tion is accurate. The proposed evaluation method has three steps corresponding
to subsections.

Step-1 (Sec. 4.1) Cubes are searched by a computer experiment. The evaluator
should simulate any leakage which possibly occurs in his device.

Step-2 (Sec. 4.2) The expected time complexity is information-theoretically
estimated. We consider guessing entropy which is equal to an expected time
complexity. Since guessing entropy is computationally hard to obtain, we
compute the lower bound [22], alternatively.

Step-3 (Sec. 4.3) Success rates of attacks are experimentally estimated by rank
estimation. The evaluator uses rank estimation instead of key enumeration,
since it can e�ciently estimate time complexity of the attack. As an e�-
cient and precise algorithm, we use a rank estimation algorithm proposed by
Glowacz et al. [13].

As mentioned in Sec. 3.3, we assume that the time complexity of SCCA-KE is
t = τ (the number of key candidates to test) and ignore the memory complexity.
The evaluator sets a threshold of time complexity tadv which is the number of
candidates that the adversary can enumerate and test. The threshold is used in
Step-2 and 3, and it should be determined in light of situations such as future
computer technology and usages of the cryptographic device.

4.1 Cube search

A cube search algorithm has not been established. There are two existing strate-
gies, random-walk search [10][17] and brute-force search [14]. We recommend the
evaluator to execute brute-force search, since a su�cient number of trials to �nd
all cubes has not been proven in the current random-walk search.

The brute-force search of cubes executes cube tests
(
N
|I|
)
times (see Sec. 2.1).

A cube test executes a reduced-round cipher function 100× 2|I| times to obtain
reliable results. We summarize the numbers of trials in Table 1 when N = 64.

We claim that it is not necessary to search cubes of large sizes if measure-
ments are error-prone such as ρ ≥ 0.1. Fig. 1 shows relations between crossover
probability for RHS pi and cube size |I| for ρ ∈ (0 : 0.5] (see Eq. (5)). When
the crossover probability is ρ ≥ 0.1, the one for RHS becomes pi ≈ 0.5 if a cube
of |I| > 6 is used. In the evaluation of PRESENT shown in Sec. 5, we obtain a
su�cient condition of ρ (closer to 0.5 than 0.1) to thwart SCCA-KE. Hence, we
set a restriction, i.e., |I| ≤ 6, in the computer experiment of Sec. 5.1.

4.2 Information-theoretic evaluation

As a security metric, guessing entropy [22] was introduced to side-channel attack
[16]. We de�ne guessing entropy as follows.
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Table 1. The number of trials for the brute-force cube search.

cube size |I| #trials

3 224.99

4 229.92

5 234.51

6 238.80

7 242.85

8 246.69

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

ρ

p
i

|I| = 1

|I| = 2

|I| = 3

|I| = 4

|I| = 5

|I| = 6

|I| = 7

|I| = 8

Fig. 1. Cross over probabilities for di�erent cube sizes.

De�nition 2 (guessing entropy [22][27]). Suppose that the adversary ob-

tains a list of candidates Tsk = {sk1, sk2, ..., sk2N } given a vector of leaked values
y. Guessing entropy for the adversary is:

G = E
y

E
skψ

[I(Tsk)], (12)

where I(Tsk) is an index o such that sko ∈ Tsk is the correct key skψ.

Guessing entropy is equal to an expected time complexity for key enumeration
(tke is ignored), since I(Tsk) equals to the number of times to test candidates
until the correct key is found given y. From the assumption mentioned in Sec.
3.3, an expected time complexity of SCCA-KE is E[t] = G.

In SCCA-KE, guessing entropy G is obtained as [16]:

G =
∑
y

Pr[y]

2N∑
o=1

o · Pr[sko|y]

= 2n
′∑

y

Pr[y]

2n−1∑
o′=1

o′ · Pr[ko
′
|y] + 2n

′
+ 1

2
. (13)
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It is computationally hard if n is large, since we should compute posterior prob-
abilities of 2n candidates. We use a lower bound of guessing entropy LG [3]
(G ≥ LG). In SCCA-KE, we can reduce time complexity for LG as follows.

Proposition 1 In SCCA-KE, we can compute a lower bound of guessing en-
tropy LG as follows.

LG =
1

1 +N

∑
y

(∑
skψ

Pr[skψ,y]
1
2

)2

=
2n
′

1 +N

η∏
j=1

2−nj
2nj∑
o=1

2nj∑
o′=1
o′ 6=o


Lj∏
i=1

xoj,i 6=xo
′
j,i

2 · p
1
2
j,i · (1− pj,i)

1
2

+ 1

 , (14)

where xoj = koj ·Aj = (xoj,1, x
o
j,2, ..., x

o
j,Lj

) be a vector of correct RHS values for a

sub-key candidate koj and pj,i = Pr[xoj,i ⊕ yj,i = 1].

See Appendix D for the proof. If sub systems of linear equations (Aj ,kj ,xj) are
given, Eq. (14) is computed by

∑η
j=1 Lj · 2nj · (2nj − 1) times of multiplications.

If the observation shown in Sec. 3.3 is correct, the computation is tractable.
The evaluator obtains a lower bound of expected time complexity of SCCA-

KE from Eq. (14). If this is su�ciently larger than tadv, he can assure security
of his device. Therefore, he should consider countermeasures which can increase
LG. Note that guessing entropy can not prove that the success rate is negligible.
Hence, it is important to execute an experimental evaluation shown in Sec. 4.3.

4.3 Experimental evaluation by rank estimation

Rank estimation is an evaluation tool for side-channel attacks enhanced by key
enumeration [29]. The algorithm is to evaluate the rank of a correct key when the
evaluator knows the correct key. We show the algorithm for the experimental
evaluation in Algorithm 2. The algorithm outputs a success rate SR for ran-
domly chosen correct keys and leakages (these two values are not independent).
Algorithm 2 has three steps as follows.

Step-1 In the same manner as Algorithm 1, a system of linear equations is
divided. Also, a vector of crossover probabilities p is divided into η vectors
pj = (pj,1, pj,2, ..., pj,Lj ). The evaluator repeats Step-2 and 3 for sall times

by changing a value of the correct key skψ = kψ||rkψ.
Step-2 The following procedures are repeated for all j ∈ {1, 2, ..., η}. A correct

sub key kψj is chosen at random, and a vector of correct RHS values xψj is

obtained by kψj . A vector of measured RHS values y are chosen at random
according to pj . A log likelihood of the correct sub key λ

k
ψ
j
is derived. For

all candidates of kj , log likelihoods are computed. All results are stored in
a list Ukj and (koj , λkoj ) is sorted in descending order by λkoj .
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Algorithm 2 Experimental evaluation for SCCA-KE by rank estimation.

input Threshold tadv, a matrix A with variables k and probabilities p.
Divide (A,k,y) into η sub-systems (Aj ,kj ,yj) (j ∈ {1, 2, ..., η}).
Divide p into η vectors pj corresponding to (Aj ,kj ,yj) (j ∈ {1, 2, ..., η}).
s← 0 . s: counter variable for success.
for trial = 1→ sall do

for j = 1→ η do
Choose a value of the correct sub key k

ψ
j at random.

x
ψ
j ← k

ψ
j ·Aj

Obtain yj from x
ψ
j at random according to pj .

λ
k
ψ
j
←
∑Lj
i=1 log2(Pr[x

ψ
j,i ⊕ yj,i]) . λkψj : log likelihood of the correct sub key.

for o = 1→ 2|nj | do
xoj ← koj ·Aj
λkoj ←

∑Lj
i=1 log2(Pr[x

o
j,i ⊕ yj,i]) . Pr[xoj,i ⊕ yj,i = 1] = pj,i.

end for

Store all (koj , λkoj ) in Ukj in descending order by λkoj .
end for

x← kψ ·A . RE is a rank estimation algorithm of [13].
τ ← RE(Uk1 ,Uk2 , ...,Ukη , λkψ1 , λkψ2 , ..., λkψη , n

′)

if tadv ≥ τ then

s← s+ 1
end if

end for

return SR = s/sall

Step-3 From Ukj and λ
k
ψ
j
(j ∈ {1, 2, ..., η}), a rank τ of the correct key is

estimated by a rank-estimation algorithm RE. We use a rank estimation
algorithm proposed by Glowacz et al. [13]. See Appendix E for the algorithm.
If a total complexity τ is less than tadv, the attack is regarded as successful
and s increases by 1. Return to Step-1.

Step-4 After sall times of trials, a success rate SR = s/sall is outputted.

The time complexity of Algorithm 2 is estimated as sall · (tprep + tre), where
tprep is obtained by Eq. (11) and tre is a time complexity for rank estimation
(see Eq. (17)).

5 Application to PRESENT

We apply the evaluation method shown in Sec. 4 to PRESENT [6]. We suppose
that PRESENT is implemented on a device encrypting a small amount of data
(e.g., smart card). As a realistic assumption for the device, we set the adversary's
condition as tadv = 260 and qadv = 215 (the number of leaked values at most).
Note that 215 leaked values require encryption processes of at least 256 KB of
data. Using the assumption, we can assure su�cient security of the device. In
Sec. 5.1, we show the results of cube search. In Sec. 5.2, we evaluate the security
of PRESENT against SCCA-KE.
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5.1 Cubes of PRESENT

As mentioned in Sec. 4.1, we execute brute-force cube search by restricting the
cube size, i.e., |I| ≤ 6. We experiment under the following leakage models, where
wi (i ∈ {1, 2, ..., 64}) denotes an output bit of internal rounds of PRESENT.

1. Single-bit leakage [32]: An output bit of an internal round is leaked as wi
(i ∈ {1, 2, ..., 64}).

2. LSB leakage of HW (binary representation) of 8-bit state [17]: A LSB of HW
of 8-bit internal states (output of two S-boxes) of PRESENT is leaked as∑8
j=1 w8·(i−1)+j (i ∈ {1, 2, ..., 8}). PRESENT is assumed to be implemented

on an 8-bit processor.
3. LSB leakage of HW of 4-bit state: A LSB of HW of 4-bit internal states (out-

put of one S-box) of PRESENT is leaked as
∑4
j=1 w4·(i−1)+j (i ∈ {1, 2, ..., 16}).

PRESENT is assumed to be implemented on a 4-bit processor.

Since LSB can be represented by the lowest-degree polynomial among all
HW bits, this leakage model is the most advantageous for the adversary. For all
(r, i) (i-th bit/LSB of r-th round) of all leakage models, we execute brute-force
search.

As a result, we have results shown in Table 2, 3 and 4. We show cubes with
n ≥ 20, since this is the necessary condition for the successful attack (tadv = 260

and secret-key length is 80). Even if the adversary can recover n (n < 20) secret-
key variables with negligible complexity, he should recover 80 − n secret-key
variables without any advantage. Note that �maxnj� and �maxLj� denotes the
maximum values of nj and Lj among all sub systems (j ∈ {1, 2, ..., η}). Both
values determine whether execution of information-theoretic and experimental
evaluations are tractable. Since maxnj = 16 and maxLj = 2220 at most in the
tables, the above execution time is relatively small and this fact supports our
observation shown in Sec. 3.3.

5.2 Security evaluation of PRESENT

We use six conditions which are advantageous for the adversary, and Table 5
shows them. In order to satisfy q ≤ qadv (qadv = 215), some cubes should be
reduced (see underlined number of Table 5). Also, some cubes are used multiple
times if the number of leaked values are smaller than qadv. For simplicity, we use
all cubes for the same number of times, and d denotes the number.

Choosing two conditions from each leakage model, we show the results for
information-theoretic and experimental evaluations in Fig. 2 and 3, respectively.
In the latter, we execute the experiment for 1,000 times (sall = 1, 000 in Algo-
rithm 2) changing the correct key skψ and RHS values y.

From the results of evaluation, we have the following observations.

1. In PRESENT, SCCA is error tolerant when leakages are from early rounds
such as the second and third rounds. This is a general statement for block
cipher. Since an algebraic degree increases round by round, linear superpolies
can not be obtained by cubes of small sizes. Obviously, cubes of large sizes
such as |I| ≥ 5 are not error tolerant (see Table 1).
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Table 2. The results of cube search for single bit leakage.

r i #cubes of each cube size n L maxnj maxLj
1 2 3 4 5 6

3 1 8 48 120 160 0 48 32 384 1 30
3 5 0 0 144 144 0 3456 32 3744 1 288
3 26 0 0 0 2880 0 0 32 2880 1 144
3 33 0 0 0 1920 0 0 32 1920 1 96
3 49 0 0 0 2880 0 0 32 2880 1 144
4 17 0 0 0 231 731 4813 51 5775 16 2209
4 49 0 0 0 240 731 4815 51 5786 16 2220

Table 3. The results of cube search for LSB leakage of 8-bit state.

r i #cubes of each cube size n L maxnj maxLj
1 2 3 4 5 6

2 1 0 48 0 0 144 0 64 192 3 9
2 2 8 24 0 48 96 0 56 176 8 36
3 1 0 0 0 0 0 108 24 108 3 18
3 2 0 0 0 68 80 36 30 184 3 26

Table 4. The results of cube search for LSB leakage of 4-bit state.

r i #cubes of each cube size n L maxnj maxLj
1 2 3 4 5 6

2 1 16 32 16 0 0 0 32 64 1 3
2 2 0 48 0 0 144 0 64 192 3 9
2 3 0 40 0 0 80 0 64 120 2 4
2 4 0 48 0 0 144 0 64 192 3 9
2 5 0 0 288 288 72 0 32 648 1 27
3 1 0 20 0 102 120 72 60 314 4 52
3 2 0 0 0 0 0 108 24 108 3 18
3 3 0 0 0 0 0 72 24 72 3 12
3 4 0 0 0 0 0 108 24 108 3 18
3 5 0 0 0 0 0 432 24 432 3 72
3 9 0 0 0 0 0 288 24 288 3 48
3 13 0 0 0 0 0 432 24 432 3 72

2. The second and third rounds give an advantage to the adversary. Therefore,
SCCA can be thwarted by su�cient protections for the above rounds. Also,
ρ ≥ 0.4 is su�cient to prevent SCCA-KE from Fig. 2 and 3.

5.3 Comparison with the previous method

In Fig. 4, we show a comparison to the previous method by using a leakage model
used in [17] (LSB leakage of HW of 8-bit state and (r, i) = (2, 1), see Table 3).
The experiment is executed under the same condition as Sec. 5.2 (tadv = 260
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Table 5. Cubes used in the evaluation.

Leakage r i #cubes of each cube size n L maxnj maxLj q d

model 1 2 3 4 5 6

Single 3 1 8 48 120 160 720 48 32 384 1 30 214.86 1
bit 4 49 0 0 0 240 731 0 32 971 16 780 214.73 1

LSB of HW 2 2 64 192 0 384 768 0 56 1408 8 288 214.94 8
of 8-bit state 3 2 0 0 0 340 400 180 30 920 3 130 214.86 5
LSB of HW 2 1 1808 3616 1808 0 0 0 32 7232 1 339 214.81 113
of 4-bit state 3 1 0 60 0 306 360 216 60 942 4 156 214.89 3

Fig. 2. Lower bounds of guessing entropy of single-bit leakage (left), LSB leakage of
8-bit state (middle) and LSB leakage of 4-bit state (right).
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Fig. 3. Success rates of single-bit leakage (left), LSB leakage of 8-bit state (middle)
and LSB leakage of 4-bit state (right).
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and qadv = 215), and all cubes are used d = 6 times. Obviously, we can conclude
that SCCA-KE is more error tolerant than the previous method. Since guessing
entropy can not be de�ned in the previous method, we only show LG for SCCA-
KE as a reference.

We execute experiments for the previous method by computing hamming
distances of the correct key and the last candidate of the list of secret-key candi-
dates Tsk (|Tsk| = 260). If the former value is less than the latter one, we regard
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Fig. 4. Success rates of SCCA-KE and the previous method [17] under LSB leakage
of HW of 8-bit state and (r, i) = (2, 1) (left), and lower bounds of guessing entropy of
SCCA-KE in the same condition (right).
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the attack as success. A system of linear equations for 64 secret-key variables is
divided into four sub systems in the same manner as [17].

6 Conclusions and open problems

We propose SCCA-KE which improves error tolerance of the previous method
[17]. Then, we propose an evaluation method with information-theoretic and ex-
perimental evaluations. Using the evaluation method, the evaluator can consider
a countermeasure with a su�cient security margin. In this paper, we evaluate
PRESENT in various situations under BSC model �xing the adversary's condi-
tion. It is also possible to evaluate the security for various adversary.

For further study, we list open problems.

1. Cube search strategy has not been established. Since it is computationally
hard to execute brute-force cube search in larger cube sizes, more e�cient
algorithms should be designed.

2. After the cube search, we should select cubes in order to maximize the success
rate considering the restriction of the number of leaked values and computing
power. In other word, selection of cubes should be optimized.
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A Conversion from HW model with Gaussian noise to
BSC model

We convert a HW leakage model with Gaussian noise [2] to BSC model. The
model is de�ned by h = HW(w) +Nξ(0, δ

2), where w ∈ Fm2 is a value of register
and Nξ(0, δ

2) is a Gaussian distribution for additive noise ξ (mean 0 and standard
deviation δ).

We assume that LSB of a binary value of HW of bhc leaks. The measured
value is di�erent from the correct one when bNξ(0, δ2)c is odd, since th value de-
pends on whether bhc is even or odd. Therefore, a crossover probability becomes



20 H. Kosuge, H. Tanaka

symmetric and it is obtained as:

ρ = 2

∞∑
i=0

∫ 2·i+2

2·i+1

Nξ(0, δ
2)dξ

=

∞∑
i=0

(
erf

(
2 · i+ 2

δ ·
√
2

)
− erf

(
2 · i+ 1

δ ·
√
2

))
, (15)

where �erf� is the error function.

B Intuitive explanation for the observation

If the number of variables in a linear equation is large, the linear equation shares
variables with many other equations and nj becomes large. Therefore, we show
the reason that the number of secret-key variables in each linear equation is
small. In early rounds such as �rst and second rounds, the number of secret-key
variables are small in all superpolies since di�usion of key variables is not enough.
In other rounds, the number of secret-key variables in each superpoly increases.
However, superpolies with many secret-key variables tend to be non-linear, since
the output value has passed through many AND operations (such as in Sboxes).
Therefore, the number of secret-key variables in each linear equation is small in
any round and nj tends to be small.

C Approaches for sub systems with large secret-key
variables

If there is an exception for the observation shown in Sec. 3.3, complexity to make
the sub lists (see Eq. (10)) is intractable. To solve the problem, we can take the
following approaches.

1. By disregarding some linear equations, it is possible to divide a sub system
into multiple sub systems. We show a toy example as follows.


0 0 1
0 0 0

A1

0 0 0
A2 1 0 0

 , (k1, k2, k3, k4), (y1, y2, y3, y4, y5)



→



0 0
0 0

A1

0 0
A2 0 0

 , (k1, k2, k3, k4), (y1, y2, y4, y5)


⇒ (A1, (k1, k2), (y1, y2)) , (A2, (k3, k4), (y3, y4))

2. If a matrix Aj is sparse, approximation algorithms for decoding linear codes
such as sum-product algorithm [18] can be a solution. This approach has
already been taken in other side-channel attacks [12][30]. Application of such
algorithms to SCCA is an open problem.
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3. The overlapping DC strategy can be a solution if an e�cient key-enumeration
algorithm (and a rank-estimation one for the evaluation) to handle overlap-
ping variables will be designed.

D Proof for Proposition 1

A lower bound of guessing entropy can be computed in each sub system.

LG =
1

1 +N

∑
y

(∑
skψ

Pr[skψ,y]
1
2

)2

=
1

1 +N

∑
y

∑
kψ

η∏
j=1

Pr[yj |k
ψ
j ]

1
2 · Pr[kψj ]

1
2

2

·

(∑
rkψ

Pr[rkψ]
1
2

)2

=
2n
′
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y
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2
−nj

2
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j
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j ]
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2


2

=
2n
′

1 +N

η∏
j=1

2−nj
∑
yj

∑
k
ψ
j

Pr[yj |k
ψ
j ]

1
2


2

=
2n
′

1 +N

η∏
j=1

LGj

Note that we assume that uniform prior distribution holds (Pr[kj ] = 2−nj ,

Pr[rk] = 2−n
′
). Then, we can simplify LGj by expanding the square part as

follows.

LGj = 2−nj
∑
yj

2nj∑
o=1

2nj∑
o′=1

Pr[yj |k
o
j ]

1
2 · Pr[yj |k

o′

j ]
1
2

= 2−nj
2nj∑
o=1

2nj∑
o′=1

∑
yj

Lj∏
i=1

Pr[yj,i ⊕ xoj,i]
1
2 · Pr[yj,i ⊕ xo

′

j,i]
1
2

= 2−nj
2nj∑
o=1

2nj∑
o′=1

Lj∏
i=1

∑
yj,i

Pr[yj,i ⊕ xoj,i]
1
2 · Pr[yj,i ⊕ xo

′

j,i]
1
2

= 2−nj
2nj∑
o=1

2nj∑
o′=1

Lj∏
i=1

(
Pr[0⊕ xoj,i]

1
2 · Pr[0⊕ xo

′

j,i]
1
2 + Pr[1⊕ xoj,i]

1
2 · Pr[1⊕ xo

′

j,i]
1
2

)

= 2−nj
2nj∑
o=1

2nj∑
o′=1
o′ 6=o


Lj∏
i=1

xoj,i 6=xo
′
j,i

2 · p
1
2
j,i · (1− pj,i)

1
2

+ 1 (16)
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Algorithm 3 Rank estimation algorithm of [13].

input Sub-key lists Uk1 ,Uk2 , ...,Ukη , log likelihoods of the correct sub keys
λ
k
ψ
1
, λ

k
ψ
2
, ..., λ

k
ψ
η
and the number of remaing variables n′.

bψ ← 0
for j = 1→ η do

bψ ← bψ + bλ
k
ψ
j
/lbinc

for o = 1→ 2nj do
Calculate a bin index b← bλkoj /lbinc.
Hj(b)← Hj(b) + 1

end for

end for

H1:1 ← H1.
for j = 2→ η do

for b = (j − 1)→ j · nbin − (j − 1) do
for b′ = 1→ nbin do

H1:j(b+ b′)← H1:j(b+ b′) + H1:j−1(b) · Hj(b′)
end for

end for

end for

return τ ←
∑η·nbin−(η−1)

b=bψ
H1:η(b) + n′

In the last arrangement, we only consider products of probabilities such that
xoj,i 6= xo

′

j,i, since a product of probabilities is always 1 if xoj,i = xo
′

j,i. Also, there
are 2nj pairs such that o = o′; therefore, 2nj · 2−nj = 1 is added. ut

E Rank estimation algorithm of [13]

Algorithm 3 shows the rank estimation algorithm. We obtain η lists Ukj =
{(koj , λkoj )|λkoj = log2(Pr[yj |k

o
j ])}. From the lists, histograms Hj (the size and

width of bins are nbin and lbin) are constructed (j ∈ {1, 2, ..., η}), and Hj(b)
denotes the number of candidates in the b-th bin. Convoluting histograms from
H1 to Hj , we can construct H1:j (the number of bins is j × nbin − (j − 1)). The
rank-estimation algorithm outputs an estimated rank by using the last histogram
H1:η and the index of bin in which the correct key may be included. Let bψ(≥ 0)

be such index, and it is obtained by bψ =
∑η
j=1bλkψj /lbinc, where kψj is the

correct sub key. The algorithm executes tre times additions in the convolution
(tre is a time complexity of Algorithm 3):

tre =

m∑
j=2

j·nbin−(j−1)∑
b=j−1

nbin. (17)

There is an estimation error caused by the convolution of histograms; however,

the rank can be lower bounded by
∑η×nbin−(η−1)
b=bψ+dη/2e H1:η(b) and upper bounded by∑η×nbin−(η−1)

b=bψ−dη/2e H1:η(b).


