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Abstract. Using double-base chains to represent integers, in particular
chains with bases 2 and 3, can be beneficial to the efficiency of scalar mul-
tiplication. However, finding an optimal 2-3 chain as long been thought
to be more expensive than the scalar multiplication itself, complicating
the use of 2-3 chains in practical applications where the scalar is used
only a few time (as in the Diffie-Hellman key exchange).

In the last few years, important progress has been made in obtaining
the shortest possible double-base chain for a varying integer n. In 2008,
Doche and Habsieger used a binary-tree based approach to get a (rel-
atively close) approximation of the minimal chain. In 2015, Capuñay
and Thériault presented the first deterministic polynomial-time algo-
rithm to compute the minimal chain for a scalar, but the complexity of
O((logn)3+ε) is too high for use with a varying scalars. More recently,
Bernstein, Chuengsatiansup, and Lange used a graph-based approach to
obtain an algorithm with running time O((logn)2.5+ε).

In this work, we adapt the algorithm of Capuñay and Thériault to obtain
minimal chains in O((logn)2 log logn) bit operations and O((logn)2) bits
of memory. This allows us to obtain minimal chains for 256-bits integers
in the 0.338 millisecond range, making it useful to reduce scalar multi-
plication costs randomly-selected scalars.

We also show how to extend the result to other types of double-base
and triple-base chains (although the complexity for triple-base chains is
cubic instead of quadratic). In the case of environments with restricted
memory, our algorithm can be adapted to compute the minimal chain in
O((logn)2(log log n)2) bit operations with only O(logn(log log n)2) bits
of memory.

Keywords: Integer representations, double-base chains, scalar multipli-
cation.

1 Introduction

Scalar multiplication is an integral part of group-based cryptosystems, and ever
since the introduction of elliptic curves for cryptographic applications [12, 11],
there has been constant efforts to improve the efficiency of scalar multiplication,
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mainly by improving the group operations or using a representation of the secret
scalar n that reduces the number of these group operations.

In 1998, Dimitrov et al. [8] proposed the use of double-base chains to reduce
the cost of scalar multiplications in certain groups. Several families of elliptic
curves are known to be interesting for double-base chains in base 2-3 as they
have a very favorable ratio between the costs of group doublings and triplings [7,
6, 2, 3]. An obvious problem with the implementation of such systems is the need
to find a chain with low Hamming weight, ideally one with the minimal possible
Hamming weight.

An exhaustive search is clearly out of the question, so alternative approaches
need to be found. Although a greedy algorithm easily produces double-base
chains, they are far from optimal. The first step to obtaining optimal chains
was taken by Doche and Habsieger [9], producing much better chains than the
greedy approach, although the chains produced are still slightly sub-optimal in
general.

In recent years, two approaches have been proposed to find optimal chains in
polynomial time, first by Capuñay and Thériault, with complexity O((log n)3+ε),
and then by Bernstein, Chuengsatiansup, and Lange [4], decreasing the complex-
ity to O((log n)2.5+ε).

This paper aims at reducing the cost of obtaining optimal double base chains,
lowering it to O((log n)2 log log n) bit operations. Reducing to this complexity
should be considered essential to the application of double-base chains in cases
where the scalar changes at every use or after a fixed number of uses, as in the
Diffie-Hellman key exchange.

The paper is organized as follows: a background on double-base chains and
the algorithms to compute them is given in Section 2. In Section 3 we show
how to improve the algorithm of Capuñay and Thériault to obtain quadratic
complexity. We then provide generalizations to other double-base systems in
Section 4 (and triple-base in Appendix A) and in Section 5 we show how to
adapt the algorithm to restricted-memory environments at the cost of an extra
log log n factor in complexity. We give experimental results for the fastest form
of the algorithm in Section 6, showing how effective it can be even at various
integer sizes. We conclude in Section 7.

2 Background

2.1 Double-Base Chains

Definition 1. Given p and q, two distinct prime numbers, a double-base number
system (DBNS), is a representation scheme in which every positive integer n is
represented as the sum or difference of numbers of the form paqb, i.e.

n =

m∑
i=1

sip
aiqbi , with si ∈ {−1, 1}, and ai, bi ≥ 0. (1)

The Hamming weight of a DBNS representation is the number m of terms in
(1).
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The main interest of DBNS comes from the possibility of decreasing the
Hamming weight of the representation of the scalar n. In [8], Dimitrov et al.
showed that for any integer n, it is possible to use a greedy algorithm to obtain

a DBNS expansion of n having at most O
(

logn
log logn

)
terms.

However, this representation is usually not suited for scalar multiplications
as it minimizes the number of group additions but does not worry about the
number of multiplications by p and q required to reach these additions. In effect,
the DBNS representations of n with minimized Hamming weight will typically
be more costly then the corresponding single-base representations. To avoid this
problem, Dimitrov et al. [7] proposed the use of double-base chains.

Definition 2. A double-base chain (DBC) for n (or simply called a p-q chain
for n) is an expansion of the form

n =

m∑
i=1

sip
aiqbi , with si ∈ {−1, 1}, (2)

such that a1 ≥ a2 ≥ · · · ≥ am ≥ 0 and b1 ≥ b2 ≥ · · · ≥ bm ≥ 0.

The monotone form of the sequence of exponents makes it more easily appli-
cable to scalar multiplication by minimizing the number of multiplications by p
and q while still reducing the Hamming weight.

Note that most DBNS representations cannot be written as chains since the
degrees in a DBNS representation can vary independently (for example 59 =
25 + 33), so chains are more restrictive representations.

The simplest case (in terms of group operations) comes from 2-3 chains. There
are several example of algebraic groups where the ratio between the costs of
doublings and tripling are close enough to the theoretical proportion of ln 2/ ln 3
for an ideal interchange between the two bases. Experimental results in [5] show
that the Hamming weight for 2-3-chains is lower than other integer recodings
with the same digit sets, but still linear in log n, coming close to 0.19 log2 n.

A number of technique to obtain double-base chains of low Hamming weight
have been developed in the last few years. In the following subsections, we de-
scribe the algorithm of Capuñay and Thériault (which will be the basis of our
result) and give a brief overview of alternative approaches.

2.2 Algorithm of Capuñay and Thériault

We now describe the algorithm of Capuñay and Thériault, simplifying some of
the notation to the minimal required to follow the current work. The proofs of
the different results can be found in [5].

Definition 3. Given a positive integer n, we denote by ni,j the (unique) integer
in {0, 1, . . . , (2i3j − 1)} such that ni,j ≡ n mod 2i3j, and by ni,j the (unique)
integer in {−1,−2, . . . ,−2i3j} such that ni,j ≡ n mod 2i3j.
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Note that this definition differs slightly from that of [5] (where ni,j is the
(unique) integer in {0,−1, . . . ,−(2i3j − 1)} such that ni,j ≡ n mod 2i3j). We
will discuss this change in Remark 1, however, this new definition clearly implies
that ni,j = ni,j−2i3j , so the discussion can naturally be restricted to the positive
values (ni,j).

Definition 4. We denote by Ci,j a minimal 2-3 chain for ni,j in which all terms
are strict divisors of 2i3j (that is to say, any term in the chain is of the form
±2a3b with at least a < i or b < j), and by Ci,j a minimal 2-3 chain for ni,j in
which all terms are strict divisors of 2i3j. If no such chain is possible, we write
Ci,j = ∅, or Ci,j = ∅.

Note that there may be several choices of optimal chains for Ci,j and/or Ci,j
if more than one chain has the same (minimal) Hamming weight. However, all
of them are equivalent and interchangeable in terms of the desired solution, so
only one needs be taken into account. We also write ∅ ± 2i3j = ∅ since it is not
possible to extend a non-existing chain.

To ensure the first steps of recursive arguments follow the general pattern,
we also write C−1,j = C−1,j = Ci,−1 = Ci,−1 = ∅.

The inductive process of the algorithm of Capuñay and Thériault relies on
the observation that subchains of minimal chains must also be minimal (for the
corresponding ni,j or ni,j . It also uses the recursive relations between the values
ni,j and ni,j . By definition of ni,j and ni,j , it is clear that if i > 0 then

ni,j ∈ {ni−1,j , ni−1,j + 2i−13j} , ni,j ∈ {ni−1,j , ni−1,j − 2i−13j}

and if j > 0 then

ni,j ∈ {ni,j−1, ni,j−1 + 2i3j−1, ni,j−1 + 2 · 2i3j−1}
ni,j ∈ {ni,j−1, ni,j−1 − 2i3j−1, ni,j−1 − 2 · 2i3j−1}

The algorithm looks at the evolution of the values of ni,j and ni,j . However,
under the definition of double-base chains used, terms of the form ±2 · 2i3j−1

are not allowed in a 2-3 chain (unless we write them as ±2i+13j−1), so they
incompatible with our definition of Ci,j and Ci,j .

Given a chain for ni,j (where all terms are decreasing divisors 2i3j , all smaller
than 2i3j in absolute value), we can extract a chain for one of ni−1,j , ni−1,j ,
ni,j−1 or ni,j−1, and this gives us inductive relationships.

Lemma 1. [Lemma 3 of [5]] Ci,j 6= ∅ if and only if one (or more) of the follow-
ing cases occurs:

1. Ci,j = Ci−1,j (only if ni,j = ni−1,j);
2. Ci,j = 2i−13j + Ci−1,j (only if ni,j = 2i−13j + ni−1,j);
3. Ci,j = 2i−13j + Ci−1,j (only if ni,j = 2i−13j + ni−1,j);
4. Ci,j = Ci,j−1 (only if ni,j = ni,j−1);
5. Ci,j = 2i3j−1 + Ci,j−1 (only if ni,j = 2i3j−1 + ni,j−1);
6. Ci,j = 2i3j−1 + Ci,j−1 (only if ni,j = 2i3j−1 + ni,j−1);
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Similar cases occur for negative chains (after interchanging the signs).

Proof. See [5], Lemma 3.

Lemma 1 gives relations between the chains Ci,j in terms of decreasing values
of i or j (or both). However, to construct the chains it is more convenient to
build relations on increasing values of i and j, and hence (in general) increasing
values of ni,j (since optimal chains are more easily obtained for smaller values
of n).

However, increasing the values of the pair (i, j) has a disadvantage: whereas
subchains of an optimal chain are also optimal, the same does not necessarily
hold when extending a subchain. As a result, the extended subchains will be
candidates for the optimal chains Ci,j and Ci,j , leading to the following definition:

Definition 5. A double-base chain C is called a (possible) source for Ci,j (resp.
Ci,j) if C sums up to ni,j (resp. ni,j), and one of the following holds:

– If the largest term is of the form ±2i−13j, then the subchain obtained from
C by removing this term is optimal for ni−1,j or ni−1,j;

– If the largest term is of the form ±2i3j−1, then the subchain obtained from
C by removing this term is optimal for ni,j−1 or ni,j−1;

– If the largest term is neither of the form ±2i−13j or ±2i3j−1, then C is
optimal for either ni−1,j or ni,j−1 (resp. ni−1,j or ni,j−1).

The set of possible sources for Ci,j is denoted Si,j (resp. Si,j for Ci,j).

Although not all sources are optimal chains for ni,j (resp. ni,j), as soon as there
are some sources at least one of them must be optimal, since the subchains of
an optimal chain are optimal and therefore can produce a source of Ci,j (resp.
Ci,j).

Remark 1. Our use of Definition 3 rather than that of [5] has the following
motivation. For ni,j 6= 0, both definitions coincide, so the only difference comes
for ni,j = 0.

– From both definitions, Ci,j = 0 if and only if ni,j = 0.
– From the definition of ni,j in [5], Ci,j = 0 if and only if ni,j = 0 = ni,j .
– Ci,j = 0 and Ci,j = 0 are completely interchangeable in the construction of

larger chains, and we can safely assume that priority is given to the positive
chain.

– From Definition 3, if ni,j = 0, then ni,j = −2i3j so Ci,j = ∅: consecutive
terms in a chain grow (in absolute value) by a factor of at least 2 and the
largest one is ≤ 2i−13j (in absolute value), so the sum of the chain cannot
sum up to −2i3j .

The change in definition will therefore have no impact on the terms of the chain
produced by the algorithm.

With our definition of ni,j and ni,j , the corollary that allows the construction
of optimal chains from [5] becomes:
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Table 1. Possible sources of Ci,j and Ci,j when multiplying by 2.

ni,j Possible Ci,j Possible Ci,j

ni−1,j Ci−1,j , 2i−13j + Ci−1,j −2i−13j + Ci−1,j

ni−1,j + 2i−13j 2i−13j + Ci−1,j Ci−1,j , −2i−13j + Ci−1,j

Table 2. Possible sources of Ci,j and Ci,j when multiplying by 3.

ni,j Possible Ci,j Possible Ci,j

ni,j−1 Ci,j−1 , 2i3j−1 + Ci,j−1 ∅
ni,j−1 + 2i3j−1 2i3j−1 + Ci,j−1 −2i3j−1 + Ci,j−1

ni,j−1 + 2 · 2i3j−1 ∅ Ci,j−1 , −2i3j−1 + Ci,j−1

Corollary 1. [Corollary 1 of [5]] Given chains Ci−1,j, Ci−1,j, Ci,j−1 and Ci,j−1,
then the possible sources for Ci,j and Ci,j can be found in Tables 1 and 2.

Proof. See [5], Corollary 1, adjusting to Definition 3.

In order to simplify the final step of our algorithm, we introduce one more
notation:

Definition 6. For every integer 0 ≤ j ≤ dlog3 ne, we set the (optimal) chains
Cj and Cj as Cj = Ci,j and Cj = 2i3j+Ci,j, where i is the smallest non-negative
integer such that 2i3j > n.

Algorithm 1 compute optimal subchains Ci,j (for ni,j) and Ci,j (for ni,j) for
increasing values of i until n ≤ 2i3j < 2n (after which Ci,j remains fixed) and
Cj is replaced by 2i3j + Ci,j .

Theorem 1. [Therorem 1 of [5]] The set S defined as

S = {Cj | 0 ≤ j ≤ dlog3(n + 1)e} ∪ {Cj | 0 ≤ j ≤ dlog3(n + 1)e}

obtained from Algorithm 1 contains a minimal 2-3 chain for n.

Proof. See [5], Theorem 1.

Theorem 2. [Theorem 2 of [5]] Let n be a positive integer, then Algorithm 1
returns a minimal 2-3 chain in O((log n)4) bit operations (O((log n)3+ε) if fast
arithmetic is used), and requires O((log n)3) bits of memory.

Proof. See [5], Theorem 2.
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Algorithm 1: Algorithm to compute a minimal 2-3 chain.

Input: Integer n > 0.
Output: Minimal 2-3 chain C for n.

1 Cj ← ∅, Cj ← ∅ for every j
2 for i← 0 to dlog2(n+ 1)e do
3 m← dlog3((n+ 1)/2i)e, im ← dlog2((n+ 1)/3m)e
4 if im < i then
5 m← m− 1

6 for j ← 0 to m do
7 ni,j ← n mod 2i3j

8 Pi,j ← ∅, Pi,j ← ∅
9 if i > 0 then

10 ni−1,j ← n mod 2i−13j

11 if ni,j = ni−1,j then

12 Include Ci−1 and 2i−13j + Ci−1 in Pi,j

13 Include −2i−13j + Ci−1 in Pi,j

14 else
15 Include 2i−13j + Ci−1 in Pi,j

16 Include Ci−1 and −2i−13j + Ci−1 in Pi,j

17 if j > 0 then
18 ni,j−1 ← n mod 2i3j−1

19 if ni,j = ni,j−1 then

20 Include Ci and 2i−13j + Ci−1 in Pi,j

21 No change to Pi,j

22 else if ni,j = ni,j−1 + 2i3j−1 then
23 Include 2i3j−1 + Ci in Pi,j

24 Include −2i−13j + Ci in Pi,j

25 else
26 No change to Pi,j

27 Include Ci and −2i−13j + Ci in Pi,j

28 Ci ← shortest chain in Pi,j and update its length
29 if i = j = 0 then
30 C0 ← 0 of length 0

31 Ci ← shortest chain in Pi,j and update its length

32 if i = im then

33 Cm ← 2i3m + Cm.

34 C← shortest chain among the Cj and Cj
35 return C
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2.3 Other Approaches

Over the years, two other approaches have been proposed to compute double-
base chains. The first one, by Doche and Habsieger [9], uses a binary tree to
compute the shortest double-base chain it can find (under the restriction dou-
blings and/or triplings are given priority over group additions, producing slightly
sub-optimal chains). As pointed out in [4], this algorithm can be made polyno-
mial time if it is taken into account that the values of the nodes correspond to
the ni,j and ni,j in Algorithm 1, and hence there are polynomialy many of them.
The tree should therefore keep track of all the values encountered at previous
level (discarding repeated ones) to limit its growth. Although the complexity of
this approach can be controlled, the sub-optimality of the result does not appear
to be avoidable with a binary tree-based approach.

A more recent algorithm by Bernstein, Chuengsatiansup, and Lange [4] uses
a graph-based approach to search for the optimal chain. This algorithm produces
optimal chains just as Algorithm 1, but its complexity is O((log n)2.5+ε), making
it more efficient. Nonetheless, it will still grow asymptotically faster than scalar
multiplication with fast arithmetic techniques (O((log n)2+ε)).

3 Reducing the Complexity

In this section, we describe our improvements to the algorithm of Capuñay and
Thériault to obtain quadratic complexity. For the description and analysis, we
consider the whole set of steps (optimal subchains Ci,j and Ci,j for all valid pairs
(i, j)), referring to horizontal steps those corresponding to doublings (increase in
the index i) and vertical steps those corresponding to triplings (increase in the
index j). This horizontal-vertical look will simplify the generalization to other
basis in the next section.

Even if the algorithm of Capuñay and Thériault does not keep informa-
tion about previous subchains (in fact, it overwrites these subchains), we will
sometime consider that they are all available for the sake of discussion while
developing the new algorithm, and then clarify what minimal information needs
to be kept.

3.1 Reduced Memory by Retracing the Steps

Since our goal is to obtain an algorithm with at most quadratic complexity, a
first problem encountered with Algorithm 1 comes from obtaining O(log n) final
chains, each of O(log n) terms (from the growth of the Hamming weight) of size
O(log n), for a total memory cost of O((log n)3).

Obviously this must be reduced before we can hope to come close to quadratic
time complexity. Keeping the terms of the chains solely in terms of their expo-
nents reduces the memory to O((log n)2 log n), but we can do better.

Rather than keep complete minimal chains at every step (removing or over-
writing the previous incomplete chain), we can keep track of all the movements
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in the two-dimensional array corresponding to the algorithm steps. The infor-
mation required at each step is:

– Whether the chain comes from a horizontal or vertical step (1 bit);
– Whether the previous chain was a positive or negative chain (1 bit);
– Whether the current chain has the same terms or one more term than the

previous chain (1 bit);
– (If the number of terms increased), the sign of the latest term (1 bit).

Note that if the current chain has one more term than the previous chain, then
the sign of the term is clear from the current and previous positions (knowing
whether they are positive or negative chains). We could therefore record all the
information for each step with 3 bits instead of 4.

The information is allocated as a block for each case of the step (for example,
“15” for a chain due to a vertical move from a negative chain, adding a negative
term), so the cost (in time) is the same for 3 or 4 bits of information. We preferred
to use 4 bits to simplify the backtracking process and because of a more natural
fit into the architecture.

This new movements array takes ≈ 4 log2 n log3 n bits (in a rectangular array,
≈ 2 log2 n log3 n if it can be stored in a triangular array corresponding to the
maximal exponents). The associated Hamming weight array would be of size
O((log n)2 log log n) due to the bound on the exponents, however the algorithm
only needs to keep track of the Hamming weights for two of the inner loops
at a time since the optimal chains for a pair (i, j) only depend on the chains
for (i − 1, j) and (i, j − 1), giving us size O((log n) log log n) for the Hamming
weights.

Once we know which chain has the lowest Hamming weight, it can be written
by retracing our steps (backtracking through the new movements array), which
takes time O(log n log log n). That is to say: Step 34 compares O(log n) values
of size ≤ log2 n, and then Step 35 retraces the the selected chain to write it out.

As an added bonus, the computational complexity, over the whole algorithm,
spent on keeping track of the shortest chains (Steps 28, 31, and 33 of Algorithm 1)
also decrease to O((log n)2 log log n).

3.2 Order of the steps

In [5], the double “for” loop (Steps 2 and 6) is done such that all the subchains
for a given i (power of 2) are computed before increasing the value of i. For
all intents and purposes, this ordering has little effect on the algorithm, except
on the number of subchains for a given index. By setting the first loop in i
rather than j, then the number of (positive and negative) subchains to store is
≈ 2 log3 n instead of ≈ 2 log2 n, which gives a small reducing in memory.

For our improvements to work efficiently, we first invert this order, computing
all the subchains for a given j (power of 3) before increasing the value of j. The
reason for this choice will become clear in the next subsections.

In term of notation, the algorithm will then be written in terms of Ci and
Ci instead Cj and Cj , with the equivalent definition:
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Definition 7. For every integer j ≥ 0 such that 2i3j < 4n, we denote by Ci
and Ci the minimal positive and negative subchains for the current ni,j and ni,j.
If 2i3j ≥ 4n, then Ci remains unchanged from previous values of j.

We could bound j such that 2i3j ≤ 2n as a parallel to Definition 6, however
the bound 2i3j < 4n (which leads to the final j satisfying 2n ≤ 2i3j < 4n)
has the advantage that the negative chain Ci−1,j for ni−1,j = n produces a
chain 2i−13j + Ci−1,j for n. As a result, the negative subchains Ci need not be
considered in the final step of the algorithm.

3.3 Efficient Computation of the Possible Sources

To reduce the computational complexity, we first look at how the different cases
for the doubling steps (going from (i−1, j) to (i, j), Steps 10 to 16 of Algorithm 1)
can be distinguished more efficiently.

Identifying the case of horizontal steps (increasing the index i) consists in
determining if ni,j = ni−1,j or ni−1,j+2i−13j . If all the values of ni,j or computed
separately, each cost O((log n)1+ε) for a total cost of O((log n)3+ε) over the whole
algorithm.

Since ni−1,j ≡ n mod 2i−13j and ni,j ≡ n mod 2i3j , then

ni,j − ni−1,j

2i−13j
=

(
n−

(
n mod 2i−13j

))
mod 2i3j

2i−13j

=
(
n div 2i−13j

)
mod 2

= (i− 1)-th bit of (n div 3j). (3)

For a given j, we can then extract all the horizontal steps (sources of minimal
chains coming from doublings) from the binary representation of n div 3j . Since
the algorithm already does a recursion in j (from 0 to m), we compute the binary
expansions of n div 3j as

n div 3j = (n div 3j−1) div 3,

which requires a total of m divisions by 3. Furthermore, division by 3 can be
implemented in linear time since we are dealing with a small, fixed denominator.
We can therefore compute all the binary expansions of the form n div 3j in time
O((log n)2) bit operations (without requiring fast arithmetic techniques).

Also note that the largest value of i to consider for the current j is obtained
directly from the binary representation of n div 3j : it is simply the number of
bits in this binary representation.

Steps 10 to 16, identifying the possible horizontal sources for Ci,j and Ci,j ,
can then be completed in O(log log n) time (O(1) time except for the Hamming
weight counter which is ≤ log2 n). Over the whole algorithm, the cost associated
to Steps 10 to 16 then decreases to O((log n)2 log log n).



Optimal 2-3 Chains for Scalar Multiplication 11

3.4 Using Only the Binary Representations

To identify the cases associated to tripling steps (changes in j, Steps 18 to 27 of
Algorithm 1), we could apply the same approach as in the previous subsection,
working in base 3 instead of base 2, again obtaining quadratic time. However, the
following lemma shows how to obtain the same result directly from the binary
expansions of n div 3j .

Lemma 2. Let ai and bi be the i-th bits of (n div 3j−1) and (n div 3j) respec-
tively:

– If ai + bi ≡ 1 mod 2, then ni,j = ni,j−1 + 2i3j−1;

– If ai + bi ≡ 0 mod 2, then ni,j = ni,j−1 or ni,j−1 + 2 · 2i3j−1:

• If ai + ai+1 + bi+1 ≡ 0 mod 2, then ni,j = ni,j−1;

• If ai + ai+1 + bi+1 ≡ 1 mod 2, then ni,j = ni,j−1 + 2 · 2i3j−1.

Proof. Let m = n div (2i3j−1). By a similar argument as in the previous sec-
tion, (ni,j − ni,j−1)/2i3j−1 is equal to m mod 3, so the binary expansion of
a = n div 3j−1 contains the essential information about the tripling case. Since
n div (2i3j) = m div 3, we can also use the binary expansion of b = n div 3j to
help identify the current tripling case without doing divisions by 3 for position
i. Then ai ≡ m mod 2, bi ≡ (m div 3) mod 2, ai+1 ≡ (m div 2) mod 2, and
bi+1 ≡ (m div 6) mod 2, which naturally leads us to consider m mod 12.

m mod 12 0 1 2 3 4 5 6 7 8 9 10 11
m mod 3 0 1 2 0 1 2 0 1 2 0 1 2

ai 0 1 0 1 0 1 0 1 0 1 0 1
bi 0 0 0 1 1 1 0 0 0 1 1 1

ai+1 0 0 1 1 0 0 1 1 0 0 1 1
bi+1 0 0 0 0 0 0 1 1 1 1 1 1

We observe that ai 6= bi if and only if m ≡ 1 mod 3, which allows us to
identify the first case. To distinguish the other two cases (where ai = bi), we
note that ai+1 = bi+1 if ai = 0 and m ≡ 0 mod 3 or ai = 1 and m ≡ 1 mod 3.
Similarly, ai+1 6= bi+1 if ai = 1 and m ≡ 0 mod 3 or ai = 0 and m ≡ 1 mod 3.
The statement of the lemma then follows directly. ut

An important effect of this lemma is that we can determine all the cases
for doubling (horizontal) steps and tripling (vertical) steps for a given value of
j knowing only the states (Hamming weight of the subchains) of the previous
value of j and the binary expansions of n div 3j−1 and n div 3j . As a result,
the memory that would be required to run the algorithm without retracing the
chains (i.e. finding only the Hamming weight of the chain) is O(log n log log n)
bits (since the Hamming weight are all bounded by log2 n).
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3.5 Algorithm

Combining the improvements in the previous subsections, we obtain Algorithm 2.
To simplify the pseudocode (so all values of i and j are treated uniformly), we
write a−1 for the −1-th bit (NULL), and bits of the NULL value (also NULL),
under the assumption that NULL bits in a conditional statement implies the
algorithm skips the whole statement. The discussion leading to Algorithm 2
leads directly to its complexity:

Theorem 3. Let n be a positive integer, then Algorithm 2 returns a minimal
2-3 chain in O((log n)2 log log n) bit operations, and requires O((log n)2) bits of
memory.

Proof. The complexity is straightforward: the double loop in i and j runs through
O((log n)2) steps. As explained, each step requires O(log log n) bit operations for
Hamming weight updates – all other operations (bit extraction and comparisons
for case selections and updates of the movements array) being O(1).

The correctness of the algorithm is a direct consequence of Theorem 1, the
changes having to do with the order in which the loops are performed (which does
not affect the operations at each step), how the different cases are distinguished
(given by Equation 3 and Lemma 2), and representation of the chains (through
the movements array). ut

Note that the actual implementation benefits from the following ideas (al-
though these do not change the asymptotic complexity):

– Instead of building the sets Pi,j and Pi,j , each new source is compared the
previous best (initially to ∅) and replaces it if it is shorter.

– Rather than looking at chains going to the position (i, j), we look at chains
produced by that position (sources coming from Ci,j and Ci,j):
• This allows us to avoid dealing with special cases when positions with
i = −1 and j = −1 would be required.

• Doubling steps from (i, j) to (i+1, j) are performed first (thus finalizing
the work for position (i + 1, j)), after which tripling steps from (i, j) to
(i, j + 1) (giving the initial sources for position (i, j + 1)).

• Only the bits ai, bi, ai+1 and bi+1 are used at position (i, j), reducing
the number of bit extractions.

– Step 28 is in fact performed on-the-go at the end of Step 4, once the last
Ci for the current j has been obtained. This also simplifies determining the
starting position in the movements array at Step 29, by recording the pair
(i, j) for this minimal Hamming weight.

– While performing Step 4, we check if all the current Hamming weights for
the Ci and Ci associated to j are bigger then the current candidate for the
optimal chain. If this occurs, then the loop in j is terminated as none of the
remaining chains can have lower Hamming weight.

The final change has little impact on the asymptotic cost of the algorithm, but
in practice it usually reduces the running time by 3 to 9% (the savings are more
important for smaller values of n).
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Algorithm 2: Algorithm to compute a minimal 2-3 chain.

Input: Integer n > 0.
Output: Minimal 2-3 chain C for n.

1 Ci ← ∅, Ci ← ∅ for every i, all with length NULL
2 C0 ← 0 with length 0, a← n, b← NULL

[j = 0]
3 while a > 0 do
4 for i← 0 to size(a) do
5 ai−1 ← (i− 1)-th bit of a, ai ← i-th bit of a, ai+1 ← (i+ 1)-th bit of a
6 bi ← i-th bit of b, bi+1 ← (i+ 1)-th bit of b

7 Pi ← ∅, Pi ← ∅ [Pi = Pi,j ,

Pi = Pi,j ]
8 if ai−1 = 1 then

9 Include Ci−1 and 2i−13j + Ci−1 in Pi
[ni,j = ni−1,j ]

10 Include −2i−13j + Ci−1 in Pi

11 else
12 Include 2i−13j + Ci−1 in Pi

[ni,j = ni−1,j + 2i−13j ]

13 Include Ci−1 and −2i−13j + Ci−1 in Pi

14 if ai + bi ≡ 1 mod 2 then
15 Include 2i3j−1 + Ci in Pi

[ni,j = ni,j−1 + 2i3j−1]

16 Include −2i3j−1 + Ci in Pi

17 else
18 if ai + ai+1 + bi+1 ≡ 0 mod 2 then

19 Include Ci and 2i3j−1 + Ci−1 in Pi
[ni,j = ni,j−1]

20 No change to Pi

21 else
22 No change to Pi [ni,j = ni,j−1 + 2 ·2i3j−1]

23 Include Ci and −2i3j−1 + Ci in Pi

24 Ci ← shortest chain in Pi and update its length

25 Ci ← shortest chain in Pi and update its length
26 Update the movements array as in Section 3.1

27 b← a
[j = j + 1]

28 a← a div 3

29 C ← shortest chain in {Ci}
30 C← retrace the steps for chain C using the movements array
31 return C
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Our C++ implementation of Algorithm 2 can be found at the following site:
https://github.com/leivaburto/23chains/blob/master/23.cpp

4 Other Double-Base and Triple-Base Systems

It is relatively easy to adapt Algorithm 2 to other double bases. To do so, we
first observe that Table 1 can be used for the steps in the construction of a 2− q
chain (with q > 3) simply by replacing powers of 3 by powers of q. Similarly,
Table 2 can be used for the steps in the construction of a 3 − q chain (with
q > 3) simply by replacing powers of 2 by powers of q (and changing the order
of indices).

The equivalent to Corollary 1 for base q is the following lemma. Note that
Tables 1 and 2 can be seen as collapsed cases of Table 3 (where some of the cases
overlap if q ≤ 3).

Lemma 3. Given double-base chains Ci−1,j, Ci−1,j, Ci,j−1 and Ci,j−1 in bases
p and q where the index j correspond to base q, then the possible sources for Ci,j
and Ci,j can be found in Table 3.

Table 3. Possible sources of Ci,j and Ci,j when multiplying by q > 3.

ni,j Possible Ci,j Possible Ci,j

ni,j−1 Ci,j−1 , piqj−1 + Ci,j−1 ∅
ni,j−1 + piqj−1 piqj−1 + Ci,j−1 ∅
ni,j−1 + (q − 1) · piqj−1 ∅ Ci,j−1 , −piqj−1 + Ci,j−1

ni,j−1 + (q − 2) · piqj−1 ∅ −piqj−1 + Ci,j−1

other cases ∅ ∅

Proof. Similar to the arguments for Corollary 1. ut

We also observe that our these techniques can be applied to double-base
chains that consider coefficient sets other than ±1 for example {±1,±2, . . . ,±k}
(these chains have been studied in [10] and [4]). To do so, it would be sufficient
to adjust Tables 1, 2, and 3 to include the new possible sources, and increase
the number of layers for each coordinates (i, j) (each layer corresponding to

a distinct nonzero coefficient) to consider chains for n
(`)
i,j ≡ n mod piqj in the

interval [(` − 1)piqj , `piqj [ (with n
(1)
i,j = ni,j) and n

(`)
i,j ≡ n mod piqj in the

interval ] − `piqj ,−(` − 1)piqj ] (with n
(1)
i,j = ni,j). The increased number of

layers is required to account for the increased number of final corrections to n,

i.e. n = n
(`)
i,j − (`− 1)piqj or n = n

(`)
i,j + `piqj .

In the following discussion, we only consider the detailed adaptation for the
case q = 5 with the coefficient set ±1.
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4.1 2-5 Chains

When working in base 2-5, Algorithm 2 can be used almost as-is, replacing base
3 by base 5 and the application of Table 2 in Steps 14 to 23 by an application
of Table 3 with q = 5. This means divisions by 3 in Step 28 are replaced with
divisions by 5 (which still have cost linear in the size of a).

However, using the bits of a and b to extract the vertical cases in Steps 14
to 23 requires a complete re-write of Lemma 2:

Lemma 4. Let ai and bi be the i-th bits of (n div 5j−1) and (n div 5j) respec-
tively:

– If ai + bi ≡ 0 mod 2, then ni,j = ni,j−1k · 2i5j−1 with k ∈ {0, 2, 4}:
• If ai+1 + bi+1 ≡ 1 mod 2, then ni,j = ni,j−1 + 2 · 2i5j−1;
• If ai+1 + bi+1 ≡ 0 mod 2, then ni,j = ni,j−1 or ni,j−1 + 4 · 2i5j−1:
∗ If ai + ai+2 + bi+2 ≡ 1 mod 2, then ni,j = ni,j−1;
∗ If ai + ai+2 + bi+2 ≡ 0 mod 2, then ni,j = ni,j−1 + 4 · 2i5j−1;

– If ai + bi ≡ 1 mod 2, then ni,j = ni,j−1 + 2i5j−1 or ni,j−1 + 3 · 2i5j−1:
• If ai + ai+1 + bi+1 ≡ 1 mod 2, then ni,j = ni,j−1 + 2i5j−1;
• If ai + ai+1 + bi+1 ≡ 0 mod 2, then ni,j−1 = ni,j−1 + 3 · 2i5j−1.

Proof. Similar to the proof of Lemma 2, working modulo 40. ut

Since all changes are O(1) proportional to the work done in Algorithm 2,
the cost of the resulting algorithm will still be quadratic in log n (with the same
log log n term due to keeping track of the Hamming weights).

4.2 3-5 Chains

To work in base 3-5, we use base-3 representations for n and n div 5j , whose trits
(trinary digits) give the cases for the horizontal (tripling) steps in Table 2. To
determine the cases in Table 3 with q = 5 (for the vertical/quintupling steps),
we again re-work Lemma 2:

Lemma 5. Let ai and bi be the i-th trits of (n div 5j−1) and (n div 5j) respec-
tively:

– If ai + bi ≡ 2 mod 3, then ni,j = ni,j−1 + 2 · 3i5j−1;
– If ai + bi ≡ 0 mod 3, then ni,j = ni,j−1 or ni,j−1 + 4 · 3i5j−1:
• If (ai + 1)2 + ai+1 + bi+1 ≡ 1 mod 3, then ni,j = ni,j−1;
• If (ai + 1)2 + ai+1 + bi+1 ≡ 2 mod 3, then ni,j = ni,j−1 + 4 · 3i5j−1;

– If ai + bi ≡ 1 mod 3, then ni,j = ni,j−1 + 3i5j−1 or ni,j−1 + 3 · 3i5j−1:
• If a2i + ai+1 + bi+1 ≡ 1 mod 3, then ni,j = ni,j−1 + 3i5j−1;
• If a2i + ai+1 + bi+1 ≡ 0 mod 3, then ni,j = ni,j−1 + 3 · 3i5j−1;

Proof. Similar to the proof of Lemma 2, working modulo 45. ut

Once again, we obtain an algorithm of O((log n)2 log log n) bit operations
and O((log n)3) bits of memory.
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5 Implementation with Limited Memory

The memory requirements of Algorithm 2 may still be too high for practical
application in certain cases: For n of common cryptographic sizes in embedded
devices, the O((log n)2) bits of memory may already impractical; and even for
high-end computers, pushing beyond the 216 bits range becomes highly problem-
atic. Considering that almost all of the operations performed in the algorithm are
at the bit-level (with the exception of keeping track of the Hamming weights), it
would be reasonable to expect hardware implementations to perform even better
than in software, but only once the memory has been reduced further.

In fact, this problem can be resolved rather easily, at the cost of a slight
increase in complexity. As we stated in Section 3.4, the memory required for
the algorithm to compute the minimal Hamming weight without retracing the
actual chain is O(log n log log n), which is the amount of memory required to run
Steps 4 to 28 for one value of j. Also, given the complete information for a given
j, it would be possible to restart the algorithm at that point in order to finish
the search. Furthermore, to retrace one step of a subchain from a given position
(i, j) it is sufficient to have the running information for the current and previous
value of j (in fact, that information would be enough to retrace all steps which
go back at most one value of j).

These observation lead to a straightforward divide-and-conquer approach in
which the length of the loop in j is divided in 2, and the information for the
middle step is stored in memory. Repeating this inductively (on the second half
of the interval when going forward, on the first half when backtracking), we are
able to retrace the whole chain using the information for O(log log n) values of j
at any time, for a total of O(log n(log log n)2) bits of memory. For a given j, this
process performs the computations at most O(log log n) times, so the complexity
increases by a factor of O(log log n) (to a total of O((log n)2(log log n)2)).

Note that in some cases where the memory requirements are less limited,
we could perform a one-off division of the interval into O(

√
log n) sub-intervals

and retrace the chain in at most twice the time of Algorithm 2, but with
O((log n)1.5 log log n) memory.

6 Experimental Results

The O((log n)2 log log n) complexity of the double-base chain search is certainly
comparable to the best possible complexity for scalar multiplication, which is
asymptotically at least O((log n)2 log log n) assuming FFT multiplication is ap-
plicable on the underlying ring structures. Taking into account that for practical
cryptographic sizes the asymptotic results for fast arithmetic for scalar multi-
plication are overly optimistic, whereas our complexity does not depend on fast
arithmetic, one can reasonably expect the search algorithm to perform very well.
It should also perform much better than alternative approach since its complex-
ity grows much more slowly.

To determine the actual efficiency of the algorithm, we experimented it for
different scalars of varying sizes. Table 4 gives the running time for integers of
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sizes going up to 512 bits. We recall that for double-base chains to be competitive,
the combined cost of obtaining the optimal chain and the scalar multiplication
using that chain should be lower than the cost of a scalar multiplication using a
single base representation (typically a NAF, taking into account the coefficient
sets considered). The experiments were done on a 3.7 GHz Intel Xeon E5.

Since 2-3-chains appear to have Hamming density close to 0.19 instead of
the 0.333 density of the NAF representation (see [5] for experimental results),
using optimal double-base chains reduces the number of group additions by
roughly 43%. For the use of double-base chains to be successful, the search for the
optimal chain should take less than 0.143 log2 n group doublings. A complete cost
comparison would depend on the specific group implementation, and is therefore
beyond the scope of this paper. Instead, we report on direct computational costs.

The timings obtained in our experiments indicate that using double-base
chains could indeed reduce costs for all but the fastest scalar multiplication im-
plementations, and certainly for groups where 2-3 chains would be of interest (the
fastest scalar multiplication implementations being in groups where doublings
are particularly cheap).

Table 4. Average time (microseconds) to compute optimal 2-3-chains for n of k bits.

k 64 128 192 256 320 384 448 512

µsec 29.4 95.8 196.9 338.4 509.3 728.5 962.4 1245.0

To better illustrate the quadratic growth of the complexity, we performed
experiments for integers of 2` bits, with ` going up to 15. The results can be
seen in Table 5.

Table 5. Average time (milliseconds) to compute optimal 2-3-chains for n of k bits.

k 28 29 210 211 212 213 214 215

msec 0.338 1.245 5.134 18.485 74.185 292.204 1167.301 4714.592

7 Conclusion

We presented a O((log n)2 log logn) algorithm to compute optimal 2-3 chains
that is significantly faster than scalar multiplication, so it can be used for on-
the-go computation of the optimal chain as part as the overall scalar multiplica-
tion. This algorithm requires O((log n)2) bits of memory, but the algorithm can
be adapted to compute the optimal chain in time O((log n)2(log log n)2) with
O(log n(log log n)2) bits of memory.

We also extended the result to other double-base systems, especially bases
2-5 and 3-5, both with the same O((log n)2 log log n) complexity. These results
also extend to the search of optimal triple base chains for base 2-3-5 in time
O((log n)3 log log n) and memory O((log n)3.

Side-channel security (especially against SPA attacks) can a concern for the
security of scalar multiplication when using double-base chains. In some groups,
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uniform operations (using atomic blocks) without dummy operations have been
constructed (see for example [1]). The design of such group operations is beyond
the scope of this paper, and in a sense this paper could be seen as a pre-requisite
do such work: in the past, improving the efficiency of obtaining optimal double-
base chains has been a bottleneck to increase the interest in developing better
(SPA-secure) triplings.
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A Triple-base chains

The algorithms to obtain optimal 2-3-chains and 2-5-chains in Sections 3 and 4
can be combined to obtain a polynomial time algorithm to compute optimal
tripple-base (2-3-5) chains for n, which is described in Algorithm 3.

Since we are now working in three dimension, each plane corresponding a
coordinate k (the power of 5 in 2i3j5k) must have access to the subchains for
k − 1, so the array Ci is replaced by a double array Ci,j .

Theorem 4. Let n be a positive integer, then Algorithm 3 returns a minimal
2-3-5 chain in O((log n)3 log log n) bit operations, and requires O((log n)3) bits
of memory.

Proof. Similar to the proof of Theorem 3.

The ideas of Section 5 can also be applied to Algorithm 3, reducing its mem-
ory requirements to O((log n)2(log log n)2) bits, at the expense of increasing its
complexity to O((log n)3(log log n)2).
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Algorithm 3: Algorithm to compute a minimal 2-3-5 chain.

Input: Integer n > 0.
Output: Minimal 2-3-5 chain C for n.

1 Ci,j ← ∅, Ci,j ← ∅ for every i, j, all with length NULL
2 C0,0 ← 0, a5 ← n, c5 ← NULL

[k = 0]
3 while a5 > 0 do
4 a← a5, c← c5, j ← 0, b← NULL
5 while a > 0 do
6 for i← 0 to size(a) do
7 ai−1 ← (i− 1)-th bit of a, ai ← i-th bit of a
8 ai+1 ← (i+ 1)-th bit of a, ai+2 ← (i+ 2)-th bit of a
9 bi ← i-th bit of b, bi+1 ← (i+ 1)-th bit of b

10 ci ← i-th bit of c, ci+1 ← (i+ 1)-th bit of c, ci+2 ← (i+ 2)-th bit
of c

11 Pi,j ← ∅, Pi,j ← ∅ [Pi,j = Pi,j,k,

Pi,j = Pi,j,k]
12 Use Steps 8 to 13 of Algorithm 2 for moves (i− 1, j, k)→ (i, j, k)
13 Use Steps 14 to 23 of Algorithm 2 for moves (i, j − 1, k)→ (i, j, k)
14 if ai + ci ≡ 0 mod 2 then
15 if ai+1 + ci+1 ≡ 0 mod 2 then
16 if ci + ai+2 + ci+2 ≡ 0 mod 2 then

17 Include Ci,j and −2i3j5k−1 + Ci,j in Pi,j
18 else

19 Include Ci,j and 2i3j5k−1 + Ci,j in Pi,j,k

20 else
21 if ci + ai+1 + ci+1 ≡ 0 mod 2 then

22 Include −2i3j5k−1 + Ci,j in Pi,j
23 else

24 Include 2i3j5k−1 + Ci,j in Pi,j

25 Ci,j ← shortest chain in Pi,j and update its length

26 Ci,j ← shortest chain in Pi,j and update its length
27 Update the movements array (3-dimensional version of Section 3.1)

28 b← a, j ← j + 1
29 a← a div 3, c← c div 3

30 c← a5
[k = k + 1]

31 a5 ← a div 5

32 C ← shortest chain in {Ci,j}
33 C← retrace the steps for chain C using the movements array
34 return C


