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Abstract. We present an oblivious machine, a concrete notion for a
multiparty random access machine (RAM) computation and a toolchain
to allow the efficient execution of general programs written in a subset of
C that allows RAM-model computation over the integers. The machine
only leaks the list of possible instructions and the running time. Our
work is based on the oblivious array for secret-sharing-based multiparty
computation by Keller and Scholl (Asiacrypt ‘14). This means that we
only incur a polylogarithmic overhead over the execution on a CPU.
We describe an implementation of our construction using the Clang com-
piler from the LLVM project and the SPDZ protocol by Damgard et al.
(Crypto ‘12). The latter provides active security against a dishonest ma-
jority and works in the preprocessing model. The online phase clock rate
of the resulting machine is 41 Hz for a memory size of 1024 64-bit inte-
gers and 2.2 Hz for a memory of 2?° integers. Both timings have been
taken for two parties in a local network. Similar work by other authors
has only been in the semi-honest setting.

To further showcase our toolchain, we implemented and benchmarked
private regular expression matching. Matching a string of length 1024
against a regular expression with 69270 transitions as a finite state ma-
chine takes seven hours online time, of which more than six hours are
devoted to loading the reusable program.

Keywords: Multiparty computation, random-access machine, oblivious
RAM, compilers, regular expression matching

1 Introduction

Multiparty computation (MPC) refers to a technique that allows a set of parties
to compute on data held by them privately without revealing anything to each
other, bar the desired result. The feasibility has been established for some time in
two lines of work, Yao’s garbled circuits [22] and secret-sharing-based multiparty
computation [1,4,/11]. The former allow two parties to compute binary circuits,
and the latter enables any number of parties to compute arithmetic circuits
over finite fields or rings. In this paper, we focus on secret-sharing-based MPC.
There are various schemes differing in the degree of adversarial power such as
the number of corrupted parties or the kind of corruption. However, all of them
implement the so-called arithmetic black box.
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While circuits are complete in the sense that they allow any computation,
they generally incur an overhead over random access machine (RAM) programs.
This overhead is related to the fact that, to access an array by a data-dependent
index, a circuit needs to access the whole array. In addition, accessing only parts
of such an array would reveal possibly sensitive data. A first step to remedy this
was taken by Ostrovsky and Shoup [26], who proposed the oblivious random
access machine (ORAM) as a mean to hide the access pattern of a memory-
restricted client on a server with larger memory. They briefly mention the possi-
bility of using their scheme in the context of secure two-party computation with
one party holding the encrypted server memory. Damgard et al. [7] on the other
hand suggested to secret share the server memory. However, due to the lack of
efficient ORAM schemes, no concrete schemes or implementations emerged.

Only following the proposal of tree-based ORAM by Shi et al. [28], practical
instantiations of oblivious data structures for multiparty computation have been
proposed, both for Yao’s garbled circuits [12}/23,/34] and secret-sharing based
MPC [17]. The former only provide security against a semi-honest adversary,
while the latter does so against a malicious adversary. These works essentially
provide an implementation of an oblivious array with efficient access, that is, one
access to a secret index only incurs polylogarithmic cost (in the size of the array).
Based on the oblivious array, the latter work goes on to implement an oblivious
priority queue, which is then used for Dijkstra’s algorithm, as well as the Gale-
Shapley algorithm for stable matching. In the case of Dijkstra’s algorithm, it
turns out that the algorithm has to be reformulated to be implemented as a
circuit with access to oblivious data structures.

On the theoretical side, Gentry et al. [10] proposed garbled RAM, which
combines Yao’s garbled circuit and ORAM. They present two solutions, one
based on identity-based encryption, and the other based on revocable pseudo-
random functions. Both approaches do not seem to be as practical because they
involve the mentioned cryptographic operations being executed in a garbled cir-
cuit. In comparison, the works presented in the previous paragraph use relatively
lightweight operations.

1.1  Our Contribution

In this work, we present a practical instantiation of an oblivious machine in the
arithmetic black-box model, that is, an actively secure MPC protocol that allows
efficient, oblivious computation in the RAM model. By oblivious computation
we mean that the sequence of instructions executed is not revealed to the ad-
versary, only the running time is. This enables the compilation of a subset of
ANSI C (including conditional expressions, loops, arrays, and structs) and thus
the execution of many algorithms in C with only polylogarithmic overhead. To
the best of our knowledge, we are the first to implement this. We also present a
theoretical model of an oblivious machine.

While previous works [12}[23] have introduced the concept of secure RAM-
model computation, their notions remain rather abstract. Furthermore, Liu et
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al. [23] call general secure RAM-model computation “relatively inefficient” be-
cause one has to execute the universal next-instruction circuit, which must in-
terpret every possible instruction. By contrast, the motivation of this work is to
put a price tag on such general secure RAM-model computation.

Our construction essentially uses the oblivious array by Keller and Scholl [17]
for storing data and code, and for every step, it executes all possible instructions
in a way that minimizes data accesses. While this incurs some overhead, we
believe that it is more efficient than using a one instruction set machine because
such a machine will inevitably increase the length of programs and thus the
length of memory accesses, which we have found to be the most expensive part
in our implementation. Instead, we execute all possible instructions in every
computation step and then obliviously select the desired result. Since the number
of possible instructions is relatively low, the most efficient oblivious selection
simply computes the inner product with a vector that contains 1 in one entry
and 0 otherwise.

As an application of our concept, we highlight the case of regular expression
matching. Regular expressions can be implemented as finite state machines and
thus in the RAM model. Kerschbaum [18] presented two MPC protocols for
regular expression matching, a secure one and one with leakage. They have
complexity in O(nml) and O(knm? + In) for m states, n symbols, string length
[ and some security parameter k. The security of our solution lies in between
because it only leaks the total running time, which is less than every repetition
of a previous state being leaked by Kerschbaum’s algorithm. With a complexity
in O(nmlog® nm + In(log® nm + log* 1)), our approach beats the previous work
on regular expressions that are complex enough, that is, if km > log® nm and
Em? > l(log3 nm + log® 1). Using the same approach using a regular CPU has
complexity in O(nm + In) for loading and executing the program. Launchbury
et al. [20] also mention an implementation of regular expression matching with
multiparty computation. From their description, we estimate that their protocol
is similar to the secure one by Kerschbaum.

With MPC, potentially corrupted parties are involved in any computation.
While the oblivious machine obscures the instruction currently executed as well
as the data accessed, it is inherent that the adversary learns the amount of
computation. In our case, this is the number of instructions being executed.
A straightforward way to obscure this to some extent is to define a maximal
number of instructions and then execute exactly this many steps. However, this
can only increase the computation time. We believe that there still is a use
case for oblivious computation leaking the total time, for example, if the same
program is not executed enough times to mount a timing attack.

Since our oblivious machine does not reveal information about the code other
than the set of possible instructions, and code can also be input in secret, it also
suits private function evaluation (PFE). Informally, private function evaluation
allows two parties to compute a function known to one party on data known
by another party without revealing either input to the other party. Previous
work on PFE focuses on circuits, such as the solution by Mohassel et al. [25].
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Their solution only incurs a constant overhead for circuits. While our solution
for RAM-model computation comes with polylogarithmic overhead, it is the first
such proposal to the best of our knowledge.

1.2 Related Work

Keller and Scholl [17], while providing much of the foundation of our work, do not
consider general oblivious computation but stick to oblivious data structures and
specific applications thereof. As an example, they propose a secure computation
of Dijkstra’s algorithm involving a manual rewrite of the algorithm. In contrast,
our scheme allows to execute any algorithm written in C.

Similarly, SCVM [23] and ObliVM |[24] are two-party computation implemen-
tations that use ORAM for oblivious arrays, but they do not fully support the
RAM model. For example, when branching on secret variables, both branches
are executed. This makes these approaches infeasible to use with programs using
GOTO statements such as the ones output by the regular expression compiler
described in Section [} Furthermore, both SCM and ObliVM do not hide the
program being executed.

Wang et al. [34] briefly mention the idea of implementing a universal RAM
instruction as a circuit. However, they do not present a more detailed account
or experimental figures. In an independent preprint [33], Wang et al. propose
a compiler of bytecode for a particular processor (MIPS) to garbled circuits.
While their independent work shares some characteristics with ours, there are
differences in various aspects: First, they analyze a program to find out at which
time in the execution a memory access might be necessary. While this reduces
the number of expensive ORAM computations, this is limited to relatively small
programs because it requires the computation of every possible execution path of
the program. Furthermore, this inhibits private function evaluation. In compar-
ison, our approach works for every program because it allows memory accesses
in every step.

Secondly, Wang et al.’s garbled circuit implementation only provides semi-
honest security compared to malicious security in our case. The latter also ex-
plains the offline phase that is about 100 times more expensive than the online
phase using the recent improvement [16] to the offline phase of SPDZ.

Songhori et al. [29] propose TinyGarble, a framework for garbled circuit
computation. While they claim to provide the first scalable emulation of a gen-
eral purpose processor, they explicitly do not support ORAM, which incurs a
linear overhead in contrast to the polylogarithmic overhead of our construc-
tion. Furthermore, the examples they present (sum, Hamming distance, com-
parison, multiplication, matrix multiplication, AES, and SHA3) do not require
branching. Similarly, there are several works presenting compilers from high-
level languages to two- or multiparty computation [13}|14,19,|35,136], none of
which consider proper branching on secret values. While the authors of Obliv-
C [35] consider ORAM, they present examples (edit distance computation and
millionaire’s problem) that do not require ORAM.
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Our oblivious machine is related to the concept of an oblivious Turing ma-
chine, which is a Turing machine where the movement of the head only depends
on the time. Pippenger and Fischer [27] showed that any Turing machine can be
converted into an oblivious one incurring only logarithmic overhead. However,
the best known result for converting a RAM program with running time 7" to a
Turing machine results in a running time in O(7?) [5]. Hence, this transforma-
tion is not suitable to achieve polylogarithmic overhead for RAM programs.

In the area of homomorphic encryption, Gentry et al. [9] have proposed to
use ORAM to enable private queries to an encrypted database. They do not
target general computation however.

Ben-Sasson et al. [2] proposed TinyRAM, a system for succinct verifiable non-
interactive arguments to prove the correct execution of C programs. The setting
of verifiable computation differs considerably from multiparty computation. In
the former, a server can compute a RAM program using a regular CPU and
then has to prove to prove this correctness of the computation. In the setting of
MPC, we are concerned with the computation of the RAM program itself.

2 From Oblivious Arrays to Oblivious Computation

In this section, we summarize Appendix [B]

Keller and Scholl [17] present an implementation of oblivious arrays for any
MPC scheme that provides an arithmetic black box while the security properties
of the underlying scheme remain intact. An oblivious array in the context of MPC
is an array that can be accessed by a secret index without revealing it. Oblivious
RAM allows to implement an oblivious array with polylogarithmic access cost.

Even with the result above, all known basic MPC schemes are data-oblivious
but leak which operation is executed. This can be avoided by executing a set of
operations in every step of the computation and obliviously selecting the actual
result. Storing this private selectors (or instructions) in an oblivious array and
having a secret program counter point at the current one, we get the oblivious
equivalent of a random access machine because the secret program counter can
be changed obliviously as well. We call this the oblivious machine. It allows
branching (e.g., “if” statements) on secret data without revealing it except the
leakage through the total computation time.

Furthermore, the properties of the oblivious machine allow to implement
private function evaluation, where the code is only known to one party. This is
possible because it is straightforward to initialize the oblivious array holding the
instructions with secret inputs from one party.

Complexity. The amount of communication and computation depends on the
cost of accessing the oblivious array. Keller and Scholl [17] report an implemen-
tation based on Path ORAM [30] with access complexity in O(log® N) for arrays
of length N. Using this, the complexity of initializing the data and the code
arrays has cost in O(n log® n), where n denotes the maximal size of the data and
code array. Similarly, the cost of running the machine is in O(T log® n) where T
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denotes the running time of the program if the number of possible instructions
is constant.

We have also implemented Circuit ORAM [32], but we found it to be slower
in our context than Path ORAM, despite the improved asymptotic complexity.
We assume that this is due to the higher number of rounds of multiplications

in Circuit ORAM, which translate to communication rounds in secret sharing-
based MPC.

3 Our Implementation

In this section, we will describe the details of our implementation. We begin by
considering the differences between regular CPUs and our implementation.

Unlike in a regular CPU, there is no reason to have data registers because
the memory has to be accessed in every step to maintain obliviousness. In other
words, if the memory would not be accessed in a particular step, the adversary
would learn some information about the current program counter by ruling out
all positions in the program that do not involve a memory access. Over time, the
adversary could learn the exact position in the program, which in turn would rule
out branching on secret variables. Wang et al. [33] use static analysis to evaluate
at which execution no possible branch accesses the memory to avoid accessing
in every step. However, this approach prevents private function evaluation, and
the cost analysis grows exponentially in the number of branches in the worst
case.

Lacking registers, all values are referred to by their addresses in the data
array. The only register is the program counter referring the current instruc-
tion. Similarly, there is only one integer data type because having several types
does not make sense in an oblivious execution. Because all possible instructions
are executed at every step, any operation for a smaller integer type implies an
operation for the larger type. Therefore, it is cheaper to execute the operation
for the larger integer type only. This does not rule out the provision of floating
point types. Since floating point operations are much more expensive than inte-
ger operations, and since they would have to be executed at every step, we did
not implement floating point operations.

We found it more practical to implement a Harvard-like architecture, where
the memory for instructions is separated from the data storage, instead of the
common Von Neumann architecture, where the two are mixed. First, there is
an efficiency gain in ORAM by storing uniform tuples under every address (and
the structure of the stored information differs between the program and data
memory), and second, the overhead of ORAM implies that two smaller oblivious
arrays are cheaper to access than one combined array.

Our implementation only supports static memory allocation and no recursion
due to the lack of stack pointer. However, there is no inherent reason for this
limitation. The stack pointer could be implemented as another register. In such
a scenario however, one has to define how to handle memory overflows. Making
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it public incurs the risk of leaking data while keeping it secret could lead to
wasting time for a long computation on corrupted data.

Given the cost of ORAM accesses, the goal is to minimize the number thereof
while still supporting all desired instructions. Three ORAM accesses, two reading
and one writing, suffice for the kind of instructions that classical processors
support. Every such instruction can be described as a four-tuple consisting of an
identification of the instruction and three parameters, which can be an address
or constant depending on the instruction. Not all parameters need to have a
semantic meaning for an instruction.

Instruction Description

mov x y O Copy the data at address y to address x.

load x 0 z Copy the data at the address stored at address z to address
X.

store 0 y z Copy the data at address z to the address stored at address
y.

store_const x y O Store the constant y at address x.

eq_const x y z Compare the number at address z to the constant y and
store 1 at address x in case of equality and O otherwise.

add_const x y z Add the number stored at address z and the constant y,

and store the result at address x.

ult_pos_const x y z | Test if the unsigned number at address z is less than the
positive constant y and store 1 at address x if yes and 0
otherwise.

ule_pos_const x y z | Test if the unsigned number at address z is less or equal
than the positive constant y and store 1 at address x if yes
and 0 otherwise.

jmp x 0 0 Jump to the instruction at address x.
jmp_ind 0 0 z Jump to the instruction at the address stored at x.
br x y z Jump to the instruction at address x if the number at

address z is 1 and to the instruction at address y if the
number is 0. Undefined behavior in any other case.

Fig. 1. Instructions used in Figures 4] and

Figure [I] lists all instructions used in the example in Figure [I7]in the sup-
plementary material. The example represents a matching algorithm for the reg-
ular expression “ab*[cd]” as explained in Section [dl Before, after, and between
ORAM accesses, all computation is purely in the form of circuits, obliviously se-
lected as described in the Appendix [B] The circuits not only compute arithmetic
operations, they also compute the addresses to be read from the data array and
the next program counter of the next instruction.

For example, in add_const, one circuit makes sure that z is read from the
memory, one circuit computes the addition with y, one circuit outputs x as the
writing address, and the final circuit increments the program counter by one.
Similarly, most circuits for load simply redirect addresses and the value read
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from memory. In addition to that, the last circuit of br set the program counter
to y + x - (2 — y) where x, y, and z denote the values at addresses x, y, and z.

It is easy to see that all instructions fall in one of the three categories repre-
sented by the above descriptions. Binary operations can be implemented similar
to add_const by loading the operands and storing the result, indirect memory
are similar to load, and conditional and unconditional jumps can be specified
similarly to br.

3.1 Compilation

To compile C code, we use Clang from the LLVM project [31]. The LLVM project
provides a modular compiler toolchain. Clang parses C code and can compile it
to the LLVM internal representation. This representation consists of CPU-like
instructions for an abstract CPU with infinitely many registers.

We use a Python script to compile this internal representation for our ma-
chine. This allows to compile simple C programs without having to write an
LLVM specification of our machine. While the latter might be more elegant,
our method seemed more time-efficient considering that our machine shares few
characteristics with real CPUs that allow optimizations, e.g., registers.

Since our machine does not support registers, the compiler has to allocate
memory space for every register. For simplicity, every register is put in a separate
space in memory. One could use static analysis to reduce the amount of space
used.

We have implemented and tested the following features of C:

— Integer addition, subtraction, multiplication, comparison, and shifting
— Pointers

— Arrays (also multi-dimensional)

— Structs

— for and while loops

— switch statements

— goto statements

— Functions (without recursion)

On the other hand, we have left out the following features:

— Floating-point operations
— Recursive function calls
— Dynamic memory allocation

While the omitted features clearly are important for a complete support of
C, we argue that the main restrictions of circuit-based computation (branching
and array accesses) are entirely overcome by our implementation. Furthermore,
note that the missing features are only restricted in our implementation and not
by our theoretical model presented in Appendix

We will now present a few examples of the compilation process. The first
example is a “for” loop populating an array. Figure[2|shows the C code. Compiled
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to LLVM intermediate representation (Figure , the code is divided in five basic
blocks: the code before the loop, the loop condition check, the loop body, the
loop increment, and the code after the loop. Shown in Figure[d] the code for our
machine contains less instructions than the LLVM code because the compiler
gets rid of unnecessary instructions, such as jumping to the next instruction in
the code and loading from memory to register. For the latter case, note that our
machine does not support registers. The loop variable i is stored in position 8
in the memory, initialized to 0 and compared to the constant 5 in instruction 2.
The result of this comparison goes to position 9 in memory, which is used by the
branching instruction in instruction 3. Furthermore, memory position 10 holds
the address of the array element accessed in the loop body. The array starts
at position 3; hence, instruction 4 adds 3 to the loop variable to determine the
address of the array element. The loop variable is then stored in the address by
instruction 5. For incrementing, instruction 6 adds 1 to the loop variable and
stores the result in position 11, which is then copied to position 8 by instruction
7. The execution then jumps back to the condition check in instruction 2.

int main() {
unsigned long al[5];
for (unsigned long i = 0; i < 5; i++)
ali]l = 1i;

T W N~

Fig. 2. A “for” loop populating an array in C.

Another example can be found in Appendix [C}

4 Efficient Private Regular Expression Matching with
Minimal Leakage

Consider the problem of two parties wanting to decide whether a string known by
one party matches a regular expression known by the other. A regular expression
can be modeled by a finite state machine, which in turn can be implemented in
C using mainly switch and goto statements. Bumbulis and Cowan [3| provide an
implementation of such a compilation. Therefore, the oblivious machine solves
the problem by the party holding the regular expression inputting an appropriate
program securely. In Appendix[C] we show an example of the resulting C, LLVM,
and machine code.

4.1 Complexity

Using Path ORAM for the oblivious arrays, loading the code and the input
string takes time in O(nlog®n) with n denoting the maximum of the code size
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1 |define i32 @main() #0 {

2 |entry:

3 hretval = alloca i32, align 4

4 %a = alloca [5 x i64], align 16

5 %i = alloca i64, align 8

6 store i32 0, i32* Yretval

7 store 164 0, i64%* %i, align 8

8 br label Y%for.cond

9

10 | for.cond:

11 %0 = load i64x* %i, align 8

12 hecmp = icmp ult i64 %0, 5

13 br i1 Y%cmp, label %for.body, label %for.end

14

15 | for.body:

16 %1 = load i64x* %i, align 8

17 %2 = load i64x* %i, align 8

18 harrayidx = getelementptr inbounds [5 x i64]x ja, 132«
0, i64 %2

19 store 164 %1, i64x jarrayidx, align 8

20 br label Y%for.inc

21

22 | for.inc:

23 %3 = load i64x* %i, align 8

24 %inc = add i64 %3, 1

25 store 164 Y%inc, i64x* i, align 8

26 br label Y%for.cond

27

28 | for.end:

29 %4 = load i32* Yretval

30 ret i32 %4

31 |}

Fig. 3. A “for” loop populating an array in the LLVM intermediate representation.
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1 [# main()

2 # entry:

3 store_const 2 0 O # O
4 store_const 8 0 0 # 1
5 # for.cond:

6 ult_pos_const 9 5 8 # 2
7 br 4 9 9 # 3

8 # for.body:

9 add_const 10 3 8 # 4
10 store 0 8 10 # 5

11 # for.inc:

12 add_const 11 1 8 # 6
13 mov 8 11 O # 7

14 jmp 2 0 0 # 8

15 # for.end:

16 mov O 2 0 # 9

17 jmp 11 0 0 # 10

Fig. 4. A “for” loop populating an array in our machine code.

and input size. For the regular expression, this means quasi-linear time in the size
of the finite state machine. The main execution then takes time in O(T(log® n.+
log® ng)) for T, n., and ng denoting the running time of the machine, the code
size, and the size of the input string, respectively. The running time is dominated
the by the comparisons made by the C code. This depends both on the input
data and the ordering of the comparison within a switch statement. For example,
if it makes a difference whether the next character is ‘a’, ‘b’, or anything else,
one can first check for ‘a’ or first check for ‘b’. The order of the checks influences
the number of checks computed if the next character is ‘a’ or ‘b’. However, T'
can be upper bounded by O(ngn,,) where n,, denotes the maximum number of
comparisons in a single switch statement, which in turn is less than the number
of symbols. From a certain size of switch statements, it is more efficient to use
branch tables instead of consecutive comparisons. For example, if every character
of the alphabet is treated differently, one would have to conduct 26 comparisons
in order to jump to the right position in the code. A branch table is a list of jump
instructions where the first one jumps to the code for ‘a’, the second one jumps
to the code for ‘b’ etc. To use this table, the preceding code simply computes a
jump address by adding the correct base address to the number representing the
character and then jumps to the result. Of course the code still needs to conduct
two comparisons to check whether the next character is within the bounds of
the branch table. In this case, the loading complexity of the particular switch
statement is in O(ng) for ns being the number of symbols and the execution
complexity is constant. We did not follow this avenue in our implementation,
but point out that it would be possible using the jmp_ind instruction.
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4.2 Security

The oblivious machine leaks the running time T, which is linear in the number of
the comparison performed and the size of the input string. The latter is public by
the fact that the usage of the oblivious machine reveals the input sizeE| However,
the former depends on the regular expression, its precise compilation, and the
input string. The party holding the regular expression could modify the switch
statements such that they have constant size. This could for example be achieved
using the approach with branch tables explained above.

5 Experiments

In order to benchmark our construction, we have implemented it based on the
so-called SPDZ scheme by Damgard et al. [8], which provides active security
against an adversary corrupting all but one party. It works in the preprocessing
model, that is, there is a data-independent offline phase in which correlated
randomness is generated. In the case of SPDZ, the online phase requires secret
sharings of random multiplicative triples (a,b,ab) in a finite field with some
authentication to compute the product of actual inputs. Our implementation is
publicly available [15].

The original SPDZ protocol used somewhat homomorphic encryption to gen-
erate these multiplication triples, but Keller et al. [16] recently found that it is
more efficient to use oblivious transfer for the offline phase instead. Therefore,
we use their timings in our figures.

In our implementation, we use 64-bit integers as subset of I, for a 128-bit
prime p. The gap is necessary to accommodate for the statistically secure bit
decomposition protocol with security parameter 40. Note that this refers to a
2740 comparison advantage in the security proof, not the possibility of breaking
the protocol with 240 complexity.

All experiments were conducted on two off-the-shelf machines with Intel
Core i7 processors connected by a 1 GBit/s local network.

Figure [5| shows the online phase clock rate for a minimal program that is
executed with varying sizes of the data memory. The offline phase is about in
magnitude of a 100 times slower. However, it is highly parallelizable, that is,
it can distributed among several machines, which does not hold for the online
phase. Furthermore, this cost is due to providing active security, which similar
works do not offer. Note that the “bump” at memory size 1000 stems from the
fact that for smaller sizes it is more efficient to use linear scanning instead of the
more intricate Path ORAM.

Per clock cycle, the complexity ranges from 11 KBytes sent in 40 rounds for
memory size 2 to 7.6 MBytes in 2739 rounds for memory size 224.

! While there exist works on size-hiding secure computation [21], we do not think that
those approaches are compatible with ours. In particular, they seem to be “one-shot”
while ORAM requires continuous computation.



The Oblivious Machine 13

I —e— Online phase

[ —m— Offline phase
102
5 0F
= r
9 [
S .
R
O r
107 E
1072 ¢

Bl vl il il vl ol vl 1l

10° 10t 102 10*  10*  10°  10% 107 10%

Data memory size

Fig. 5. Clock rate of the machine.

5.1 Comparison to Non-Oblivious Computation

It is clear that our approach is slower than plain multiparty computation for pro-
grams that can be efficiently computed as circuits. In order to compare the per-
formance of the oblivious machine with programs implemented using oblivious
arrays directly, we have benchmarked Dijkstra’s algorithm using our toolchain.
The results in Figure [6] suggest that using the oblivious machine instead of the
implementation by Keller and Scholl is about 100 times slower. However, the
comparison is not entirely fair because the previous implementation leaks the al-
gorithm being computed whereas the oblivious machine does not. Furthermore,
they have to rewrite the algorithm because its structure with nested variable
length loops does not lend itself to oblivious computation. In other words, the
price to pay to hide the computation or to avoid manual rewriting is a factor of
100 in this case. We consider this to be representative for algorithms that require
the use of oblivious arrays for an efficient implementation. Again, the “bump”
in the figure is explained by the change in the implementation of the oblivious
array.

5.2 Comparison with Wang et al.’s Secure MIPS Computation

We have compiled and run the set intersection example by Wang et al. [33]. Ta-
ble [1| shows that our running times are comparable to the unoptimized times by
Wang et al. Their optimization involves static analysis of the program, and thus
inhibits private function evaluation. Furthermore, note that their implementa-
tion uses semi-honest garbled circuits while ours provides active security.
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Fig. 6. Dijkstra’s algorithm on cycle graphs.

Input size per party 64 inputs 256 inputs 1024 inputs

Wang et al. baseline 58.35 s 324.09 s 3068.19 s
Wang et al. optimized 2.77 s 12.96 s 108.45 s
This work 6.43 s 44.12 s 1346.82 s

Table 1. Set intersection.

5.3 Regular Expression Matching

We have implemented our protocol for regular expression matching for a string of
length 1024 and randomly generated regular expressions of varying complexity.
Figure [7] shows our results. We found that the total number of transitions is
the most appropriate measure for the complexity of a finite state machine. This
coincides with the number of comparisons in the machine code. At more than
ten thousand transitions, loading the code becomes the dominant part of the
computation. However, if several strings are to be matched to the same regular
expression, this is a one-off cost. Table [2| shows the smaller expressions we used
for our experiments. We used randomly generated expressions, which explains
the irregular increase in the size of the corresponding finite state machines.
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Fig. 7. Regular expression matching timings.

6 Conclusion and Future Directions

We have presented a theoretical model for multiparty RAM computation, a
concrete protocol, and an implementation as well as an application in the form
of private regular expression matching. As future direction we suggest research
into quantifying the leakage by the running time of a RAM program. This would
allow to navigate the trade-off between the fastest execution of a program with
leakage and the overhead by adding padding operations to programs in order to
hide the number of comparisons in our regular expression matching scheme for
example.

Our experiments have shown that the oblivious machine runs at a few Hertz
for larger data memory size, which is about a billion times slower than a regular
CPU. Obviously, one cannot hope to achieve a similar speed, but recent ORAM
schemes optimized for circuit implementation should allow to improve at least
one or two orders of magnitude. Another issue is the round complexity of secret-
sharing-based MPC schemes, which is linear in the circuit rounds. Analyzing our
implementation, we come to the conclusion that this is the bottleneck. Two-party
computation based on Yao’s garbled circuits does not suffer from this because
it has constant rounds. However, implementations using garbled circuits do not
necessarily beat the ones secret sharing [6]. It remains to be seen which approach
is more efficient.
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FSM Size | Regular Expression

10 [ZrqupR]

32 [aYoNPCI70] [Lxdo] [3jH17]

70 (([x2YUux] | [FEb6o]) ([ssUWGaGuD]
?)7) [n0] [LwhCA] [YOrp6xc]WkaNjg5
M

98 [P] ([z0xwIv48]+) ([IEm] ["isgQn4B
1%)

161 (M1 | (XP[t]*)) [s1UW8XiVe] [iTS2Y
86E] [ykSh9uE] [fAu] 9TOg (Umks (do(
[~t] | [PEv3e5])+)e62e[1I1]*)

Table 2. Regular expressions used in our experiments.
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A Preliminaries

In this section, we will present previous results that are related to our work.
We start with multiparty computation. MPC schemes allow a set of parties to
compute public circuits on private data. All secret-sharing-based MPC proto-
cols provide the arithmetic black box shown in Figure [8| for some field F. Since
most schemes use linear secret sharing where the sharing commutes with linear
operations, the addition operation can often be done without communication.
On the other hand, multiplication cannot be computed without communication.

Note that the arithmetic black box does not specify the security properties
achieved by a particular protocol, for example, whether it allows active or pas-
sive corruption, how many parties can be corrupted etc. This goes beyond the
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scope of the theoretical part of this paper because the security depends on the
protocol. The only property specified by Fapp is the possibility for the adver-
sary to abort the protocol. This is required for protocols that allow a malicious,
dishonest majority such as the SPDZ protocol [8]. However, our protocols can
be instantiated with any MPC scheme implementing Fapp, and the resulting
protocol will inherit the security properties of the underlying scheme. Further-
more, because Fapp only outputs handles like [a] to intermediate information,
it is often straight-forward to prove the security of protocols using it.

Initialize: On input (Init,F) from all parties, store the field F.

Public Input: On input (Publiclnput,a) from all parties, store a and return a
handle [a] to all parties.

Private Input: On input (Privatelnput,i,a) from Party P; and (Privatelnput,?)
from all other parties, store a and return a handle [a] to all parties.

Addition: On input (Add, [a], [b]) from all parties, compute ¢ = a + b in F, store
it, and return a handle [¢] to the parties.

Multiplication: On input (Multiply, [a], [b]) from all parties, compute ¢ = a - b in
F, store it, and return a handle [c] to the parties.

Public Output: On input (PublicOutput, [a]) from all parties, reveal a to all par-
ties.

Private Output: On input (PrivateOutput,i,[a]) from all parties, reveal a to
Party P;.

Abort: On input Abort from the adversary, abort.

Fig.8. FaBB

Initialize Array: On input (initArray,n) from all parties, allocate an array x of
size n, initialize its entries to zero, and return a handle [z] to all parties.

Read Array: On input (readArray, [z], [a]) from all parties, read the a-th entry of
x, store it, and return a handle [b] to it.

Write Array: On input (writeArray, [z], [a], [v], [f]) from all parties, write v to the
a-th entry of z if f =1.

Fig. 9. Fappoa extension

Keller and Scholl [17] proposed to use tree-based ORAM in the context of
Fapp to get oblivious arrays with polylogarithmic overhead. Their result can
be used to extend Fapp to Fappoa as detailed in Figure @ The proposed
construction keeps both the client and the server memory of an ORAM scheme
in the arithmetic black box, executes client computations using Fapp addition
and multiplication, and uses the public output of F4pp to reveal the address
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for server memory accesses (and hence the Fapp handle). Their result can be
stated as Pappoa in Figure [I0]

Fapp instructions: Use Fapp as instructed.

Initialize Array: Allocate sufficient storage according the ORAM scheme and run
the ORAM initialization using Fapp.

Read Array: Read the address stored in = at a using Fagp as outlined above
and return the resulting handle as [b].

Write Array: Read the address stored in = at a as above, and use the ORAM
protocol to store IfElse(f,v,b) = f - (v —b) + b at address a in .

Fig. 10. Papoa

Theorem 1. Pappoa realizes Fappoa in the Fapp-hybrid model.

Proof (Sketch). We simulate the ORAM operations using an emulation of Fapp
similarly to the protocol as follows: We use the ORAM simulator to generate the
server memory addresses being revealed and abort F4pp in case of deviation by
corrupted parties. The ORAM simulator guarantees the sequence of addresses
accessed in the server memory are independent of the access pattern. Further-
more, the probability of the ORAM delivering incorrect data is negligible. Hence,
the simulation is indistinguishable from the protocol.

B The Oblivious Machine

In this section, we will present our theoretical oblivious machine, prove that it
implements RAM-model computation, and prove that it can be implemented
using the arithmetic black box with oblivious arrays. Figure [[1] shows the de-
sired functionality of the oblivious machine. n. and n; denote the number of
parameters and supported instructions, and ng and n, denote the size of the
data and the code, respectively.

For simplicity, we only allow either public code or private code. One could
think of mixing those, but this would require some intricate linking. Similarly,
we decided to separate instruction and data storage to simplify the description.
This results in a Harvard-like architecture, where the memory for instructions
is separated from the data storage. It is straight-forward to use a Von Neumann
architecture, where everything is stored in the same memory. However, due to
the polylogarithmic access complexity of the underlying ORAM, two smaller
oblivious arrays are slightly faster than one combined. Furthermore, code and
data have different formats in our implementation, which is easier to accommo-
date for in two different oblivious arrays. Finally, we do not see a use case for
code that can be altered by the machine.



The Oblivious Machine 21

Initialize: On input (Init,F, ng) from all parties, store the parameters and allocate
the data array of size ng.

Instructions: On input (Instructions, @, lo, .. ., I,;) from all parties, store the list
of instructions and the instruction pattern Q.

Public Code: On input (PublicCode, (co, paramy), ..., (cn.—1,param, _,)) from
all parties, store the code array.

Private Code: On input (PrivateCode, 3, (co, paramg), ..., (cn.—1,param, _;))
from Party P; and (privateCode,i,nc,np) from all other parties, check
that |param;| = n, for all j, and store the code array. (co,param,),...,

(¢ne—1,param,, _,) denote instructions with parameters.
Public Data: On input (PublicData, a, d) from all parties, store d at address a in
the data array.
Private Data: On input (PrivateData,a,d) from Party P; and (PrivateData,?)
from all other parties, store d at address a.
Run: On input (Run, pc) from all parties, execute the following:
1: while pc # 1 do
2: Send (Tick) to the environment.
3: Load (cpe, param,,.) from the code.
4: pc < Ic, (param,, )
5: Send (Done) to the environment.
Reveal: On input (Reveal, i, a) from all parties, reveal the item at address a in the
data array to Party P;.
Abort: At any time, the environment can request aborting.
Bounds Check: For every access to the data or instruction array, if the index
is within the bound, output (WithinBounds) to the environment. Otherwise,
output (OutOfBounds) to all parties and the environment and abort.

Fig. 11. ]:machine

We now present an abstraction that allows to minimize the number of mem-
ory accesses per execution step. Essentially, we require all possible instructions
to have the same pattern with respect to memory accesses. This allows to execute
all instructions in parallel, as required by design, while accessing the memory
independently of the number of possible instructions. We formalize the access
pattern as an instruction pattern, which also includes the size of the state that is
carried across a memory access. An instruction is with a certain instruction pat-
tern is defined by the circuits that are computed before, between, and after the
memory accesses. The first circuit uses the runtime arguments param as input
state, while the last circuit outputs the program counter of the next instruction
to be executed. The circuits also are given the value r; read from memory if the
instruction pattern mandates reading, and all but the last circuit also output a
memory address a;, a write flag f; a value w; to be written if the write flag is
true and the instruction pattern mandates it. Finally, there is also a persistent
state between the circuits.
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Definition 1 (Instruction pattern). An instruction pattern is a list {(n1,t1),...,(np,tr)}
where there is a state size n; € N and access type t; € {Read, Write} for all
ie[L].

Definition 2 (Instruction). An instruction with instruction pattern {(n1,t1),...,(np,tr)}
and parameter size ng is a list {c1,...,cp+1} of arithmetic circuits over F such

that ¢; has n;—1 + 2 inputs and n; + 3 outputs. Let ny11 = 1. The execution of

an instruction is described in Algorithm [1

Algorithm 1 Instruction
Input: Parameters param, program counter pc
Output: Address of next instruction

statey < param

ro + L
forie(1,...,L) do
Execute ¢; with input (r;—1, pc, state;—1) and output (a;, ws, fi, state;). >

|statei| = n; and |statei+1| = Nj41
if ¢; = Read then
r; < the content of the data array at address a;
else
T < 1
if f; =1 then
Write w; to address a;
return stater, ;1 > |stater4+1| =1

As an example, we will now explain our implementation in Table [3using the
instruction Xx, + X;. The first circuit ¢y gets as input the program counter pc
and the instruction parameters (i, j, k) as the state, and it outputs the address
1 to be read. The content of this address is then input to ¢; as rg in the state.
c1 outputs the address j to be read and the state. The content of address j is
stored as 71 in the state. The circuit ¢y then requests 1 to be stored at address
ro (write flag 1). Finally, c3 simply advances the program counter by one. The
first two memory accesses only require reading the memory for every instruction
(if at all), and the last one writing. Hence, t; = Read, to = Read, and t3 = Write.

Theorem 2 (RAM model multiparty computation). The oblivious ma-
chine allows the implementation of any RAM program in the model of Cook
and Reckhow with the restriction that inputs are stored at the beginning of the
execution and outputs are revealed at the end.

Proof. Letn, =3 and L = 3. Table@shows the circuits to implement the first six
instructions of Cook and Reckhow. Storing a constant, addition, and subtraction
are done by using the relevant parameters (i, j, and k) as addresses and the
constant, and indirect loading and storing by partially using previously loaded
integers (r1 and possibly rg) as addresses. The TRA instruction mainly uses the



The Oblivious Machine 23

fact that the output of ¢y is used as address of the next instruction. Finally,
reading inputs and revealing outputs can be done using Privatelnput/Publiclnput
and PrivateOutput/PublicOutput, respectively.

Xi +— X+ X
Xi(—Xj—Xk
Xi%XXj

XXi <—Xj
TRA i if X; >0

(J‘7 J‘7 J‘7 (Z7-]7 k))
(j’ J—7 J‘? (’L"j7 k))
(j7 L7 L7 (i7j7 k))
(-77 J—7 J—7 (i7j7 k))
(4, L, L, (i,4,k))
(j7 L7 L7 (i7j7 k))

XZ'<—XJ'—X]¢
Xi%XXj
XXi <—Xj
TRA i if X; >0

(

( (4,4, k,70))
(k, L, L, (4,4,k,m0))
(ro, L, L (z ],k r0))
(J )
(J_,J_,J_,(z j,k r0))

c2(r1, a, (4,4, k, ro))

Xi(*Xj*Xk
Xi<—XXj
Xx,i (—Xj
TRA iif X; >0

Xi%Xijk
Xi<_XXj
XXi (—Xj
TRA i if X; >0

(1,C, 1, (i, 3, ky7r0,71))
(i,70 + 71,1, (4,7, k,70,71))
(t,r0 —r1,1, (4,4, k,70,71))
(i,71,1, (4,7, k,70,71))
(ro,r1,1, (4,7, k,70,71))
(L,L1,0,(¢,5,k, 0, 71))
cs(L,a, (3,7, k,ro,71))
(a+1)

(a+1)

(a+1)

(a+1)

(a+1)

(IfElse(ro > 0,4,a + 1)

(4, j, k): runtime arguments, ro,r1: values read from memory, pc: program counter

Table 3. Implementation of the random access machine by Cook and Reckhow

Private function evaluation. Recall that private function evaluation (PFE)
allows two parties, one knowing a function and the other knowing some data,
to compute the function on the data without revealing either. F,qchine With
private code input clearly facilitates this for functions formulated as a RAM-
model computation. One party inputs the function using PrivateCode, and the
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other party inputs the data using PrivateData. The only leakage is the number of
instructions computed. A malicious party can input a program that leaks some
information through this number. However, we argue that this leakage is small
compared to the amount of private data for practical scenarious because it only
makes sense to use RAM model computation for larger data sets. Furthermore, if
the parties reveal data at the end of the computation, a malicious party can input
a program that leaks even more data there. This is cleary inherent to private
function evaluation. However, the underlying MPC scheme guarantees that no
information leaks during the computation. Therefore, the leakage is limited by
the size of the output.

B.1 Implementation Using Fappoa

We now propose protocol Piachine in Figure as an implementation of the
oblivious machine using MPC with oblivious arrays. At the core of our protocol
lies the execution of all possible instruction in line 8| The oblivious selection can
be done by multiplying the vector of results by a vector that contains 1 in one
entry and 0 in the remaining entries. It is obvious that the protocol reveals the
running time of the program. Note that the branching on ¢; on line [0] does not
reveal information because t; is part of the instruction pattern, which is shared
by all instructions.

Theorem 3. Piachine implements Fachine i the Fappoa-hybrid model.

Proof (Sketch). The power of the corrupted parties in the protocol is very lim-
ited because it only consists of calls to Fappoa, which only reacts if all parties
input the same information. Furthermore, F4ppo4 only reveals private data to
any party in three situations. First, it does so so in the Reveal procedure, which
corresponds to the same procedure of Fp,qchine. Second, the protocol reveals the
result of comparison in line [I} Thirdly, it reveals if there is an access outside
of array bounds. For these reasons, the simulator S,,qchine in Figure is rela-
tively simple. The first revelation can be simulated because S,,qchine learns the
outputs of Fiachine to corrupted parties. For the second revelation, it receives
(Tick) whenever F,achine €xecutes the loop body and (Done) after completion.
Similarly, it receives all results of bounds checks. In the rest of the protocol, the
adversary only learns handles, which S,,qchine can generate like Fappoa would.
Hence, the view of the environment is indistinguishable.

Modeling the main loop with (Tick) and (Done) messages accounts for the fact
that a program can run indefinitely. Otherwise, we would need to check whether
a program halts on a given input, which is impossible for general programs due
to the halting problem.

Complexity. The amount of communication and computation depends on the
cost of accessing the oblivious array. Keller and Scholl [17] report an implemen-
tation based on Path ORAM [30] with access complexity in O(log* N) for arrays
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Initialize: Initialize Fappoa for F and initialize an oblivious array [D)] of size ng
for the data.

Public Code: Initialize an oblivious array [C] of size n. - (1 + np) and fill it with
(co, paramy), ..., (Cn,—1,param,, ;).

Private Code: Initialize an oblivious array [C] of size n. - (1 + n,) and fill it
with ([co], [param]), ..., ([cn.—1], [param,,__;]) input to the arithmetic black
box Fapp by Party P;.

Public Data: Send (WriteArray(|D], Fappoa(Publiclnput, a),
Faspoa(Publiclnput,d), Fappoa(Publiclnput, 1)) to Fappoa-

Private Data: Send (WriteArray([D], [a], [d], FaBso A (Publiclnput, 1)) to
FABBOA.

Run: The parties execute the following:

1: while PublicOutput([pc] # L) do
2 Load ([cpe], [param,,.]) from the oblivious code array.
3 [7‘71] — 1
4: [state_1] < [param]
5 for i =0,...,L do
6 for j =0,...,n; do
7: Execute ¢; of instruction I; on ([r;—1], [pc], [state;—1]) in Fapp to get
([a], w]], [£7], [state]]).

Obliviously —select the result ([a;?°], [w;*], [f;7°], [state;”*]) as

([ai], [wil, [fi], [stateq]). ‘ v g i

®

9: if t; = Read then

10: [ri] < Fapoa(ReadArray, [a;])

11: else

12: [’f‘l] «— L

13: Send (WriteArray, [D], [a:], [wi], [fi]) to FaBpoa.

14: pc < stater,.

Reveal: Instruct Fappoa to open the a-th entry of the oblivious data array to
Party P;.

Bounds Check: Check every data and instruction access against the size of the
respective array and reveal the result. Abort if the check fails.

Fig- 12. ,Pmachine

of length N. Using this, the complexity of initializing the data and the code array
has cost in O(n,. log?® n.) and O(ng log® ng), respectively. The cost of running the
machine is in O(T(log® n. + L(log® ng 4+ ns)) where T denotes the running time
of the program and L denotes the number of memory accesses by instructions. In
the following section, we will argue that L = 3 suffices to implement a machine
that allows the compilation of arbitrary C code. Furthermore, we will show that
ny = 10 different instructions suffice to implement a small program matching
a regular expression. All in all, our implementation features about 30 possible
instructions.
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Generally: Emulate a copy of Fagpoa by generating handles and aborting
Fmachine if the adversary demands so from Fappoa.

Run: Whenever Fqchine sends (Tick), simulate the protocol for another step re-
vealing 0 in line |1} If Firachine sends (Done), reveal 1.

Reveal: If a corrupted party is due to receive data in the protocol, this is also the
case in Fachine. Simply forward it.

Bounds Check: Emulating Fappoa, vreveal the result according to
(WithinBounds) or (OutOfBounds) received from Fpachine-

Fig. 13. Smachine

We have also implemented Circuit ORAM [32], but we found it to be slower
in our context than Path ORAM, despite the improved asymptotic complexity.
We assume that this is due to the higher number of rounds of multiplications
in Circuit ORAM, which translate to communication rounds in secret sharing-
based MPC.

C Regular Expression Example

For the regular expression ab* [de], Figures|[14|to[17]show its implementation as
C code, LLVM intermediate representation, and instruction code for the oblivi-
ous machine.
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long match(char*x YYCURSOR) {

char*x YYMARKER;

while (1)

{

yy2:

yy4:
yys5:

yy7:

}

char yych;

yych = *xYYCURSOR;
switch (yych) {

case 'a': goto yy2;
default: goto yyb5;
}

++YYCURSOR;

yych = *YYCURSOR;
switch (yych) {

case 'b': goto yy2;
case 'c':

case 'd': goto yy7;
default: goto yy4;
}

++YYCURSOR;

{ return 0; }

++YYCURSOR ;
{ return 1; }

Fig. 14. The regular expression “abx[de]” compiled to C
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define i64 @match(i64x* JYYCURSOR) #0 {
entry:
hretval = alloca i64, align 8
%YYCURSOR.addr = alloca i64%*, align 8
%#YYMARKER = alloca i64*, align 8
%yych = alloca i64, align 8
store i64* JYYCURSOR, i64x* JYYCURSOR.addr, align 8
br label %while.body

while.body:
; preds = Yentry
%0 = load i64*x JYYCURSOR.addr, align 8
%1 = load i64%* %0, align 8
store 164 Y1, i64x Yyych, align 8
%2 = load i64x* Y%yych, align 8
br label Y%LeafBlock

LeafBlock:
; preds = Y%while.body
%SwitchLeaf = icmp eq i64 %2, 97
br il %SwitchLeaf, label Y%sw.bb, label %NewDefault

sw.bb:
; preds = %LeafBlock
br label Y%yy2

NewDefault:
; preds = Y%LeafBlock
br label Y%sw.default

sw.default:
; preds = %NewDefault
br label %yyb

Fig. 15. The regular expression “ab*[de]” compiled to LLVM code (part one)
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yy2:
; preds = Y%sw.bbl, Ysw.bb
%3 = load i64** JYYCURSOR.addr, align 8
%incdec.ptr = getelementptr inbounds i64x* %3, i32 1
store 1i64* Yincdec.ptr, i64** ) YYCURSOR.addr, align 8
%4 = load i64** JYYCURSOR.addr, align 8
%5 = load i64* %4, align 8
store 164 Y5, i64x Yyych, align 8
%6 = load i64* Y%yych, align 8
br label Y%NodeBlock

NodeBlock:
; preds = %yy2
%Pivot = icmp ult i64 %6, 99
br i1 %Pivot, label %LeafBlock2, label %LeafBlock4d

LeafBlock4:
; preds = Y%NodeBlock
%.off = add i64 %6, -99
%SwitchLeafb = icmp ule i64 7% .off, 1
br i1 %SwitchLeaf5, label Y%sw.bb2, label %NewDefaultl

LeafBlock2:
; preds = Y%NodeBlock
%SwitchLeaf3 = icmp eq 164 %6, 98
br il %SwitchLeaf3, label Y%sw.bbl, label %NewDefaultl

sw.bbl:
; preds = %LeafBlock2
br label %yy2

sw.bb2:
; preds = YLeafBlock4
br label %yy7

Fig. 16. The regular expression “ab#*[de]” compiled to LLVM code (part two)
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# match ()

# entry:
mov 1028 1026 0 # O

# while.body:
load 1031 0 1028 # 1
mov 1030 1031 O # 2

# LeafBlock:
eq_const 1032 97 1030 # 3
br 5 16 1032 # 4

# yy2:
add_const 1033 1 1028 # 5
mov 1028 1033 0 # 6
load 1034 0 1028 # 7
mov 1030 1034 0 # 8

# NodeBlock:
ult_pos_const 1035 99 1030 # 9
br 14 11 1035 # 10

# LeafBlock4:
add_const 1036 -99 1030 # 11
ule_pos_const 1037 1 1036 # 12
br 20 16 1037 # 13

# LeafBlock2:
eq_const 1038 98 1030 # 14
br 5 16 1038 # 15

# yy5:
add_const 1039 1 1028 # 16
mov 1028 1039 0 # 17
store_const 1027 0 O # 18
jmp 23 0 O # 19

# yy7:
add_const 1040 1 1028 # 20
mov 1028 1040 0 # 21
store_const 1027 1 0 # 22

# return:
mov 1024 1027 O # 23
jmp_ind O O 1025 # 24

Fig. 17. The regular expression “ab*[de]” compiled for the oblivious machine
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