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Abstract. In this work, we investigate the problem of statistical data
analysis while preserving user privacy in the distributed and semi-honest
setting. Particularly, we study properties of Private Stream Aggregation
(PSA) schemes, first introduced by Shi et al. in 2011. A PSA scheme is
a secure multiparty protocol for the aggregation of time-series data in a
distributed network with a minimal communication cost. We show that in
the non-adaptive query model, secure PSA schemes can be built upon any
key-homomorphic weak pseudo-random function (PRF) and we provide
a tighter security reduction. In contrast to the aforementioned work,
this means that our security definition can be achieved in the standard
model. In addition, we give two computationally efficient instantiations
of this theoretic result. The security of the first instantiation comes from
a key-homomorphic weak PRF based on the Decisional Diffie-Hellman
problem and the security of the second one comes from a weak PRF
based on the Decisional Learning with Errors problem. Moreover, due
to the use of discrete Gaussian noise, the second construction inherently
maintains a mechanism that preserves pε, δq-differential privacy in the
final data-aggregate. A consequent feature of the constructed protocol is
the use of the same noise for security and for differential privacy. As a
result, we obtain an efficient prospective post-quantum PSA scheme for
differentially private data analysis in the distributed model.

Keywords: Aggregator Obliviousness, Post-Quantum Cryptography, Differen-
tial Privacy

1 Introduction

In recent years, differential privacy has become one of the most important
paradigms for privacy-preserving statistical analyses. Generally, the notion of
differential privacy is considered in the centralised setting where we assume the
existence of a trusted curator (see [4], [8], [10], [17]) who collects data in the
clear, aggregates and perturbs it properly (e.g. by adding Laplace-distributed
‹ The research was supported by the DFG Research Training Group GRK 1817{1
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noise) and publishes it. In this way, the output statistics are not significantly
influenced by the presence (resp. absence) of a particular record in the database
and simultaneously high accuracy of the analysis is maintained. In this work,
we study how to preserve differential privacy when we cannot rely on a trusted
curator. In this distributed setting, the users have to send their own data to an
untrusted aggregator. Preserving differential privacy and achieving high accu-
racy in the distributed setting is of course harder than in the centralised setting,
since the users have to execute a perturbation mechanism on their own. To
this end, a Private Stream Aggregation (PSA) scheme can be deployed. A PSA
scheme is a cryptographic protocol enabling each user of the network to securely
send encrypted time-series data to an untrusted aggregator requiring each user
to send exactly one message per time-step. The aggregator is then able to de-
crypt the aggregate of all data in each time-step, but cannot retrieve any further
information about the individual data. Using such a protocol, the task of per-
turbation can be split among the users, such that the differential privacy of the
final aggregate is preserved and high accuracy is guaranteed. In this framework,
the results of this work are as follows: first we show that a secure PSA scheme
can be built upon any key-homomorphic weak pseudo-random function. From
this result, we construct a PSA scheme based on the Decisional Diffie-Hellman
(DDH) assumption. Moreover, we construct a PSA scheme based on the Deci-
sional Learning with Errors (DLWE) assumption that is prospectively secure in
the post-quantum world and automatically provides differential privacy to users.

Related work. The concept of PSA was introduced by Shi et al. [25], where
a PSA scheme for sum-queries was provided and shown to be secure under the
DDH assumption. However, this instantiation has some limitations. First, the
security only holds in the random oracle model. Second, its decryption algorithm
requires the solution of the discrete logarithm in a given range, which can be
very time-consuming, if the number of users and the plaintext space are large.
In contrast, our schemes are secure in the standard model and can efficiently
decrypt the aggregate, even if the users’ data consist of large numbers. In [13],
a PSA scheme was provided that is secure in the random oracle model based on
the Decisional Composite Residuosity (DCR) assumption. As a result, a factor
which is cubic in the number of users can be removed in the security reduction.
However, this scheme involves a semi-trusted party for setting some public pa-
rameters. In our work, we provide instantiations of our generic PSA construction
which rely on the DDH assumption and on the DLWE assumption. While in our
generic security reduction we cannot avoid a linear factor in the number of users,
our construction does not involve any trusted party and has security guarantees
in the standard model. In a subsequent work [3], a generalisation of the scheme
from [13] is obtained based on smooth projective hash functions [7]. This al-
lows the construction of secure protocols based on various hardness assumptions
(such as the k-LIN assumption). However, the dependencies on a semi-trusted
party (for most of the instantiations) and on a random oracle remain.
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2 Preliminaries

2.1 Model

We consider a distributed network of users with sensitive data stored in a
database. In a distributed network, the users perform computations on their
own and do not trust other users or other parties outside the network. More
specifically, we assume the existence of an aggregator with the aim to analyse
the data in the database. The users are asked to participate in some statistical
analyses but do not trust the data aggregator (or analyst), who is assumed to be
honest but curious and therefore corrupted. In this so-called semi-honest model,
the users do not provide their own sensitive data in the clear, since they want
to preserve the privacy of their data. On the other hand, the untrusted analyst
wants to compute some (pre-defined) statistics over these data sets and more-
over will use any auxiliary obtained information in order to deduce some more
information about the individual users’ data. Despite that, and opposed to the
malicious model, where the corrupted parties may execute any behaviour, the
analyst will honestly follow the rules of the network.
Moreover, the users perform computations independently and communicate solely
and independently with the untrusted analyst. We also assume that the analyst
may corrupt users of the network in order to compromise the privacy of the
other participants. Uncorrupted users honestly follow the rules of the network
and want to release useful information about their data (with respect to partic-
ular statistical database queries by the analyst), while preserving the privacy of
their data. The remaining users are assumed to be corrupted and following the
rules of the network but aiming at violating the privacy of uncorrupted users.
For that purpose, these users form a coalition with the analyst and send aux-
iliary information to the analyst, e.g. their own data in the clear. Therefore,
the members of the coalition are allowed to communicate among each other and
with the analyst at any time.
We consider all parties to have only limited computational ressources, i.e. we
consider only algorithms with a running time that is polynomial in some com-
plexity parameter.
The untrusted data analyst wants to analyse the users’ data by means of time-
series queries and aims at obtaining answers as accurate as possible. More specif-
ically, assume that the users have a series of data items belonging to a data uni-
verse D. For a sequence of time-steps t P T , where T is a discrete time period,
the analyst sends queries which are answered by the users in a distributed man-
ner. Each query is modelled as a function f : Dn Ñ O for a finite or countably
infinite set of possible outputs (i.e. answers to the query) O. We consider only
sum-queries in this work.
For computing the answers to the aggregator’s queries, a special cryptographic
protocol, the Private Stream Aggregation (PSA) scheme, is executed by all users.
In contrast to common secure multi-party techniques (see [12] and [15]), this pro-
tocol requires each user to send only one message per time-series query to the
analyst.
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2.2 Cryptographic hardness assumptions and pseudo-random
functions

In the following, we describe some cryptographic hardness assumptions that will
be the basis for two weak pseudo-random functions that we will use for the
construction of secure PSA schemes.

The Decisional Diffie-Hellman Assumption. The Decisional Diffie-Hellman
(DDH) assumption underlies one of our constructions. It is related to the discrete
logarithm (dlog) assumption: it says that no probabilistic polynomial time (ppt)
algorithm is able to find x P Zq given gx for a generator g of a finite cyclic group
of order q. Under the DDH assumption, a ppt algorithm cannot distinguish gxy
from a random element in the group. The DDH assumption implies the dlog
assumption, since by solving the discrete logarithm one can easily distinguish gz
from gxy.

The Learning with Errors Assumption. As an instance of the Learning with
Errors (LWE) problem, we are given a uniformly distributed matrix A P Zλˆκq

and a noisy codeword y “ Ax` e P Zλq with an error term e P Zλq sampled ac-
cording to a proper known probability distribution χλ and an unknown uniform
x P Zκq . The task is to find the correct vector x. Without the error term, the task
would simply be to find the solution to a system of linear equations. Thus, the
error term is crucial for the hardness of this problem. In the decisional version of
this problem (DLWE problem), we are given pA,yq and have to decide whether
y “ Ax` e or y is a uniformly distributed vector in Zλq .
Regev [23] established the average-case-hardness of the search problem by the
construction of an efficient quantum algorithm for worst-case lattice problems
using an efficient solver for LWE, if the errors follow a discrete Gaussian dis-
tribution Dpνq, where X „ Dpνq iff PrrX “ xs “ p1{cνq ¨ expp´πx2{νq with
cν “

ř

x expp´πx2{νq.

Theorem 1 (Worst-to-Average Case [23]) Let κ be a security parameter
and let q “ qpκq be a modulus, let α “ αpκq P p0, 1q be such that αq ą 2

?
κ. If

there exists a ppt algorithm solving the LWE problem with errors distributed ac-
cording to Dppαqq2{p2πqq with more than negligible probability, then there exists
an efficient quantum algorithm that approximates the decisional shortest vec-
tor problem (GapSVP) and the shortest independent vectors problem (SIVP) to
within Õpκ{αq in the worst case.

Opposed to this quantum reduction, Peikert [22] provided a classical reduc-
tion. However, Regev’s result suffices for our purposes. Micciancio and Mol [18]
provided a sample preserving search-to-decision reduction that works for any
error distribution χ, showing the equivalence in the average case.

Theorem 2 (Search-to-Decision [18]) Let κ be a security parameter, q “
qpκq “ polypκq a prime modulus and let χ be any distribution on Zq. Assume
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there exists a ppt distinguisher that solves the DLWE problem with more than
negligible success-probability, then there exists a ppt adversary that solves the
LWE problem with more than negligible success-probability (both with error dis-
tribution χ).

Pseudo-Random Functions. A PRF family is a collection of efficiently com-
putable functions that cannot be distinguished from random functions on ar-
bitrarily distributed input by any ppt algorithm with black-box access to the
function and with more than negligible probability. Constructing a PRF is pos-
sible e.g. by assuming the existence of a random oracle, i.e. a random black-box
function that obtains an arbitrarily distributed input and outputs something
uniformly random (but always the same for the same input). If the range of the
random oracle is large enough, each input will have a unique (random) output
with overwhelming probability. Then the output of the random oracle serves as
input to a weak PRF, i.e. a function that takes uniformly distributed values as
input and outputs pseudo-random values.

Definition 1 ((Weak) PRF [21]) Let κ be a security parameter. Let A,B,C
be sets with sizes parameterised by κ. A family of functions F “ tFa |Fa : B Ñ
CuaPA is called a (respectively weak) pseudo-random function (PRF) family, if
for all ppt algorithms DOp¨q

PRF with oracle access to Op¨q P tFap¨q, randp¨qu, on any
polynomial number of arbitrarily chosen (respectively uniform and given) inputs,
we have |PrrDFap¨q

PRFpκq “ 1s ´ PrrDrandp¨q
PRF pκq “ 1s| ď negpκq, where a Ð UpAq

and rand P tf | f : B Ñ Cu is a random mapping from B to C.

2.3 Private Stream Aggregation

In this section, we define Private Stream Aggregation (PSA) and provide two
security definitions. The notion of PSA was introduced by Shi et al. [25].

The definition of Private Stream Aggregation. A PSA scheme is a pro-
tocol for safe distributed time-series data transfer which enables the receiver
(here: the untrusted analyst) to learn nothing else than the sums

řn
i“1 xi,j for

j “ 1, 2, . . ., where xi,j is the value of the ith participant in time-step j and n
is the number of participants (or users). Such a scheme needs a key exchange
protocol for all n users together with the analyst as a precomputation (e.g. using
multi-party techniques), and requires each user to send exactly one message in
each time-step j “ 1, 2, . . ..

Definition 2 (Private Stream Aggregation [25]) Let κ be a security pa-
rameter, D a set and n “ polypκq, λ “ polypκq. A Private Stream Aggregation
(PSA) scheme Σ “ pSetup,PSAEnc,PSADecq is defined by three ppt algorithms:

Setup: ppp, T, s0, s1, . . . , snq Ð Setupp1κq with public parameters pp,
T “ tt1, . . . , tλu and secret keys si for all i “ 1, . . . , n.
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PSAEnc: For tj P T and all i “ 1, . . . , n: ci,j Ð PSAEncsi
ptj , xi,jq for xi,j P D.

PSADec: Compute
řn
i“1 x

1
i,j “ PSADecs0ptj , c1,j , . . . , cn,jq for tj P T and ci-

phers c1,j , . . . , cn,j. For all tj P T and x1,j , . . . , xn,j P D the following holds:

PSADecs0ptj ,PSAEncs1ptj , x1,jq, . . . ,PSAEncsnptj , xn,jqq “
n
ÿ

i“1
xi,j .

The system parameters pp are public and constant for all tj with the implicit
understanding that they are used in Σ. Every user encrypts her values xi,j with
her own secret key si and sends the ciphertext to the untrusted analyst. If the
analyst receives the ciphertexts of all users for some tj , it can compute the
aggregate of the users’ data using the decryption key s0.

Security of Private Stream Aggregation. Our model allows an attacker
to corrupt users. It can obtain auxiliary information about the values of users
or their secret keys. Even then a secure PSA scheme should release no more
information than the aggregates of the uncorrupted users’ values. The difference
between the following two security definitions is whether the attacker can corrupt
users adaptively or not.

Definition 3 (Adaptive (resp. non-adaptive) Aggregator Obliviousness)
Let κ be a security parameter. Let T be a ppt adversary for a PSA scheme

Σ “ pSetup,PSAEnc,PSADecq and let D be a set. We define a security game
between a challenger and the adversary T .

Setup. The challenger runs the Setup algorithm on input security parameter
κ and returns public parameters pp, public encryption parameters T with
|T | “ λ “ polypκq and secret keys s0, s1, . . . , sn. It sends κ, pp, T, s0 to T .

Queries. The challenger flips a random bit b ÐR t0, 1u. T is allowed to
query pi, tj , xi,jq with i P t1, . . . , nu, tj P T, xi,j P D and the challenger re-
turns ci,j Ð PSAEncsi

ptj , xi,jq. Moreover, T is allowed to make compromise
queries i P t1, . . . , nu and the challenger returns si.

Challenge. T chooses U Ď t1, . . . , nu such that no compromise query for
i P U was made and sends U to the challenger. T chooses tj˚ P T such
that no encryption query with tj˚ was made. (If there is no such tj˚ then the
challenger simply aborts.) T queries two different tuples pxr0si,j˚qiPU , px

r1s
i,j˚qiPU

with
ř

iPU x
r0s
i,j˚ “

ř

iPU x
r1s
i,j˚ . For all i P U the challenger returns ci,j˚ Ð

PSAEncsi
ptj˚ , x

rbs
i,j˚q.

Queries. T is allowed to make the same type of queries as before restricted to
encryption queries with tj ‰ tj˚ and compromise queries for i R U .

Guess. T outputs a guess about b.

The adversary’s probability to win the game (i.e. to guess b correctly) is 1{2 `
νpκq. A PSA scheme is adaptively aggregator oblivious or achieves adaptive
Aggregator Obliviousness (AO1) if there is no ppt adversary T with more than
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negligible advantage νpκq ą negpκq in winning the above game. A PSA scheme is
non-adaptively aggregator oblivious or achieves non-adaptive Aggregator
Obliviousness (AO2), if there is no ppt adversary T with advantage νpκq ą
negpκq in winning a modified game, where the set U is already specified by T
in the beginning of the first Queries phase, compromise queries are made for all
i R U and encryption queries can only be made for i P U . A PSA scheme is
secure if it achieves either AO1 or AO2.

Encryption queries are made only for i P U , since knowing the secret key for
all i R U the adversary can encrypt a value autonomously. If encryption queries
in time-step tj˚ were allowed, then no deterministic scheme would be secure. The
adversary T can determine the original data of all i R U , since it knows psiqiRU .
Then T can compute the sum

ř

iPU xi,j “ PSADecs0ptj , c1,j , . . . , cn,jq´
ř

iRU xi,j
of the uncorrupted users’ values. If there is a user’s cipher which T does not
receive, then it cannot compute the sum for the corresponding tj . AO2 differs
from AO1 in that the first one requires the adversary to specify the set U of
uncorrupted users before making any query, i.e. it does not allow the adversary
to determine U adaptively. The notion of AO1 was introduced in [25].

Feasibility of AO1. In the random oracle model, we can achieve the stronger
notion AO1 for some constructions. For example, in [25] the following PSA
scheme for sum-queries was proposed. It achieves AO1 based on the DDH as-
sumption.

Example 1 ([25]) Setup: The public parameters are a prime p, some gener-
ator g P Z˚p and a hash function H : T Ñ Z˚p modelled as a random oracle.
The secret keys are s0, . . . , sn Ð UpZpq with

řn
i“0 si ” 0 mod p´ 1.

PSAEnc: For tj P T and all i “ 1, . . . , n, encrypt xi,j P Zp by ci,j Ð gxi,j ¨

Hptjq
si .

PSADec: For tj P T and ciphers c1,j , . . . , cn,j, compute the discrete logarithm
of Vj Ð Hptjq

s0 ¨
śn
i“1 ci,j. If the ci,j are encryptions of the xi,j, then

Vj “ g
řn

i“1 xi,j and computing the discrete logarithm of Vj to the base g
yields the desired output.

Note that the computation of the discrete logarithm may be inefficient, if
the range to search in is super-polynomially large in the security parameter. In
Section 4.1, we provide our DDH-based example of a PSA scheme that achieves
AO1 in the random oracle model and AO2 in the standard model and has an
efficient decryption algorithm even if the plaintext space is super-polynomially
large.

2.4 Differential Privacy

We consider a database as an element D P Dn with data universe D and num-
ber of users n. We will always assume that a privacy-preserving mechanism for
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analysing D is applied in the distributed setting. Differential privacy is a well-
established notion for privacy-preserving statistical analyses. We recall that a
randomised mechanism preserves differential privacy, if its application on two
adjacent databases (databases differing in one entry only) leads to close distri-
butions of the outputs.

Definition 4 (Differential Privacy [10]) Let R be a set and let n P N. A
randomised mechanism A : Dn Ñ R preserves pε, δq-differential privacy (short:
DP), if for all adjacent databases D0, D1 P Dn and all measurable R Ď R:

PrrApD0q P Rs ď eε ¨ PrrApD1q P Rs ` δ.

The probability space is defined over the randomness of A.

Thus, the presence or absence of a single user does not affect the probability
of any outcome by too much. The aim of the analyst is to obtain information from
the database. Therefore it processes queries to the database which are answered
while preserving DP. In the literature, there are well-established mechanisms
for preserving DP (see [10] and [17]).1 In order to privately evaluate a query,
these mechanisms draw error terms according to some distribution depending
on the query’s global sensitivity. For any D P Dn, the global sensitivity Spfq
of a query f : Dn Ñ R is defined as the maximum change (in terms of the
L1-norm) of fpDq, which can be produced by a change of one entry (i.e. the ab-
sence of one user) in D. In particular, we will consider sum-queries fD : Dn Ñ Z
or fD : Dn Ñ r´m1,m1s for some integer m1 defined as fDpDq :“

řn
i“1 di, for

D “ pd1, . . . , dnq P Dn and D Ď Z. If the entries in D are bounded by m, then
SpfDq ď m. For measuring how well the output of a mechanism A estimates the
real data with respect to a particular query f (mapping into a metric space), we
use the notion of pα, βq-accuracy, defined as Prr|ApDq ´ fpDq| ď αs ě 1´ β.

The introduction of differential privacy in 2006 was due to the incapability of
cryptography to handle data secrecy and analysability at the same time. It is
a mathematically well-founded notion for privacy-preserving data analysis. Be-
fore that, notions of syntactic anonymity for privacy-preserving data publish-
ing, like k-anonymity [24], were considered by researchers, where the published
anonymised data can be used for data analysis tasks. This model asks that ev-
ery published record is indistinguishable from k´1 other records. Its extensions
like l-diversity [16] or t-closeness [14] gain more privacy (at the cost of loss in
data management effectiveness) by introducing equivalence classes for data and
attributes (to also prevent attribute disclosure) and thus reducing the represen-
tation granularity. However, this model is vulnarable to certain attacks, that ex-
tract belief probabilities from the published data. Moreover, applying this model
on high-dimensional data leads to a degradation of data quality. As noticed in
[6], although these issues are not unsolvable, they led to a stronger research focus
1 These mechanisms work in the centralised setting, where a trusted curator sees the

full database in the clear and perturbs it properly.
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towards differential privacy. Indeed, also differential privacy suffers from some
(practical) limitations, like the difficulty to determine a privacy-budget and to
compute the exact global sensitivity of the performed data analysis in advance.
This leads to excessive perturbation of the correct analysis. Opposed to syntac-
tic anonymity, in differential privacy the true and the perturbed analyses are
probabilistically correlated, which leads to high uncertainty. Moreover the appli-
cation of differential privacy makes the assumption of independent data owners,
which is not necessary in syntactic anonymity. Therefore the influence of a single
individual on the other database participants may be underestimated.
Hence, we see that both approaches and their extensions have advantages and
disadvantages while being applied in different tasks and leading to interesting
and relevant research challenges.

3 Feasibility of AO2

In this section, we show that a PSA scheme achieving AO2 can be built upon a
key-homomorphic weak PRF.

Theorem 3 (Weak PRF gives secure PSA scheme) Let κ be a security pa-
rameter, and m,n P N with logpmq “ polypκq, n “ polypκq. Let pG, ¨q, pS, ˚q be
finite groups and G1 Ď G. For some finite set M , let F “ tFs |Fs : M Ñ G1usPS
be a (possibly randomised) weak PRF family and let ϕ : t´mn, . . . ,mnu Ñ G
be a mapping. Then the following PSA scheme Σ “ pSetup,PSAEnc,PSADecq
achieves AO2:

Setup: ppp, T, s0, s1, . . . , snq Ð Setupp1κq, where pp are parameters of G,G1, S,
M,F , ϕ. The keys are si Ð UpSq for all i P rns with s0 “ p˚n

i“1 siq
´1

and T Ă M such that all tj P T are chosen uniformly at random from M ,
j “ 1, . . . , λ “ polypκq.

PSAEnc: Compute ci,j “ Fsiptjq ¨ϕpxi,jq in G for xi,j P pD “ t´m, . . . ,mu and
public parameter tj P T .

PSADec: Compute Vj “ ϕ´1pSjq (if possible) with Sj “ Fs0ptjq ¨ c1,j ¨ . . . ¨ cn,j.

Moreover, if F contains only deterministic functions that are homomorphic over
S, if ϕ is homomorphic and injective over t´mn, . . . ,mnu and if the ci,j are
encryptions of the xi,j, then Vj “

řn
i“1 xi,j, i.e. then PSADec correctly decrypts

řn
i“1 xi,j.

The reason for not including the correctness property in the main statement
is that in Section 4.2, we will provide an example of a secure PSA scheme based
on the DLWE problem that does not have a fully correct decryption algorithm,
but a noisy one. This noise is necessary for establishing the security of the proto-
col and will be also used for preserving the differential privacy of the decryption
output.
Hence, we need a key-homomorphic weak PRF and a mapping which homo-
morphically aggregates all users’ data. Since every data value is at most m, the
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scheme correctly retrieves the aggregate, which is at most m ¨ n. Importantly,
the product of all pseudo-random values Fs0ptjq,Fs1ptjq, . . . ,Fsn

ptjq is the neu-
tral element in the group G for all tj P T . Note that the secret keys can be
pre-generated using a secure multi-party protocol and hence, no trusted party
is required. Since the values in T are uniformly distributed in M , it is enough
to require that F is a weak PRF family. Thus, the statement of Theorem 3 does
not require a random oracle.

3.1 Security proof

Let game 1 be the AO2 game from Definition 3 instantiated for the PSA scheme
of Theorem 3. We need to show that the advantage ν1pκq of a ppt adversary T1
in winning this game is negligible in the security parameter κ. We define the fol-
lowing intermediate game 2 for a ppt adversary T2 and then show that winning
game 1 is at least as hard as winning game 2.

Setup. The challenger runs the Setup algorithm on input security parameter κ
and returns public parameters pp, time-steps T and secret keys s0, s1, . . . , sn
with s0 “ p˚n

i“1 siq
´1. It sends κ, pp, T, s0 to T2. The challenger flips a

random bit b ÐR t0, 1u. T2 chooses U “ ti1, . . . , iuu Ď rns and sends it to
the challenger which returns psiqiPrnszU .

Queries. T2 is allowed to query pi, tj , xi,jq with i P U, tj P T, xi,j P pD and the
challenger returns the following: if b “ 0, it sends Fsiptjq ¨ ϕpxi,jq to T2; if
b “ 1, it chooses

h1,j , . . . , hu´1,j Ð UpG1q, hu,j :“
u
ź

i1“1
Fsi

i1
ptjq ¨

˜

u´1
ź

i1“1
hi1,j

¸´1

and sends hi,j ¨ ϕpxi,jq to T2.
Challenge. T2 chooses tj˚ P T such that no encryption query at tj˚ was made

and queries a tuple pxi,j˚qiPU . If b “ 0, the challenger sends
pFsi

ptj˚q ¨ ϕpxi,j˚qqiPU to T2; if b “ 1, it chooses

h1,j˚ , . . . , hu´1,j˚ Ð UpG1q, hu,j˚ :“
u
ź

i1“1
Fsi

i1
ptj˚q ¨

˜

u´1
ź

i1“1
hi1,j˚

¸´1

and sends phi,j˚ ¨ ϕpxi,j˚qqiPU to T2.
Queries. T2 is allowed to make the same type of queries as before with the

restriction that no encryption query at tj˚ can be made.
Guess. T2 outputs a guess about b.

The adversary wins the game, if it correctly guesses b.

Lemma 4 For a security parameter κ, let T1 be an adversary in game 1 with
advantage ν1pκq ą negpκq. Then there exists an adversary T2 in game 2 with
advantage ν2pκq ą negpκq.
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Proof. Given a successful adversary T1 in game 1 we construct a successful
adversary T2 in game 2 as follows:

Setup. Receive κ, pp, T, s0 from the game 2-challenger and send it to T1. Flip
a random bit b1 ÐR t0, 1u. Receive U “ ti1, . . . , iuu Ď rns from T1 and send
it to the challenger. Forward the obtained response psiqiPrnszU to T1.

Queries. Forward T1’s queries pi, tj , xi,jq with i P U, tj P T, xi,j P pD to the
challenger and forward the obtained response ci,j to T1.

Challenge. T1 chooses tj˚ P T such that no encryption query at tj˚ was
made and queries two different tuples pxr0si,j˚qiPU , px

r1s
i,j˚qiPU with

ř

iPU x
r0s
i,j˚ “

ř

iPU x
r1s
i,j˚ . Query pxrb

1
s

i,j˚qiPU to the challenger. Receive back pci,j˚qiPU and
forward it to T1.

Queries. T1 can make the same type of queries as before with the restriction
that no encryption query at tj˚ can be made.

Guess. T1 gives a guess about b1. If it is correct, then output 0; if not, output
1.

If T1 has output the correct guess about b1, then T2 can say with high confidence
that the challenge ciphertexts were generated using a weak PRF and therefore
outputs 0. On the other hand, if T1’s guess was not correct, then T2 can say with
high confidence that the challenge ciphertexts were generated using random
values and it outputs 1.

Case 1. Let pci,j˚qiPU “ pFsi
ptj˚q ¨ ϕpx

rb1s
i,j˚qqiPU . Then also the queries were

answered using pseudo-random values and thus, T2 perfectly simulates game 1
for T1 and the distribution of the ciphertexts is the same as in game 1:

PrrT2 outputs 0s “ 1
2 pPrrT1 outputs 0 | b1 “ 0s ` PrrT1 outputs 1 | b1 “ 1sq

“ PrrT1 wins game 1s

“
1
2 ` ν1pκq.

Case 2. Let pci,j˚qiPU “ phi,j˚ ¨ ϕpx
rb1s
i,j˚qqiPU . Then also the queries were an-

swered using random values. The ciphertexts are random with
ś

iPU ci,j˚ “
ś

iPU Fsi
ptj˚q ¨ ϕpx

rb1s
i,j˚q such that decryption yields the same sum as in case 1.

Because of the perfect security of the one-time pad, the probability that T1 wins
game 1 is 1{2 and

PrrT2 outputs 1s “ 1
2 pPrrT1 outputs 1 | b1 “ 0s ` PrrT1 outputs 0 | b1 “ 1sq

“ PrrT1 loses game 1s

“
1
2 .

Thus, the advantage of T2 in winning game 2 is ν2pκq “
1
2ν1pκq ą negpκq. [\
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For a ppt adversary T3, we define a new intermediate game 3 out of game 2
by just cancelling the plaintext dependence in each step of game 2, i.e. in the
encryption queries and in the challenge, instead of pi, tj , xi,jq the adversary T3
now just queries pi, tjq and the challenger in game 3 sends Fsiptjq, if b “ 0 and
hi,j Ð UpG1q, if b “ 1 to the adversary T3. The rest remains the same as in
game 2.
It follows immediately that if there exists a successful adversary in game 2, then
there is also a successful adversary in game 3.

Lemma 5 For a security parameter κ, let T2 be an adversary in game 2 with
advantage ν2pκq ą negpκq. Then there exists an adversary T3 in game 3 with
advantage ν3pκq ą negpκq.

Remark 1 For comparison to the proof of AO1 in [25], we emphasise that in
the reduction from AO1 to an intermediate problem (Proof of Theorem 1 in their
work), an adversary B has to compute the ciphertexts ci,j “ gxi,jHptjq

si for all
users i P rns and for all (!) time-steps tj, since B does not know in advance
for which i P rns it will have to use the PRF Hptjq

si and for which i P rns it
will have to use random values. Thus, B has to program the random oracle H in
order to know for all tj the corresponding random number zj with Hptjq “ gzj

(where g is a generator) for simulating the original AO1 game. In contrast, in
our reduction for AO2, it is not necessary to program such an oracle, since the
simulating adversary T2 knows in advance the set of uncorrupted users and, for
all (!) tj, it can already decide for which i P rns it will use the PRF (which in
our case is tsi

j instead of Hptjqsi ) and for which i P rns it will use a random
value.

In the next step, the problem of distinguishing the weak PRF family F “ tFs :
M Ñ G1usPS from a random function family has to be reduced to the problem
of winning game 3. We use a hybrid argument.

Lemma 6 For a security parameter κ, let T3 be an adversary in game 3 with
advantage ν3pκq. Then ν3pκq ď negpκq, if F is a weak PRF family.

Proof. We define the following sequence of hybrid games, game 3l with l “
1, . . . , u´ 1, for a ppt adversary T3.

Setup. As in game 2 and game 3.
Queries. T3 is allowed to query multiple pi, tjq with i P U, tj P T and the

challenger returns the following: if i R ti1, . . . , il`bu, it sends Fsi
ptjq to T3; if

i P ti1, . . . , il`bu, it chooses

h1,j , . . . , hl´p1´bq,j Ð UpG1q, hl`b,j :“
l`b
ź

i1“1
Fsi

i1
ptjq ¨

¨

˝

l´p1´bq
ź

i1“1
hi1,j

˛

‚

´1

and sends the hi,j to T3.
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Challenge. T3 chooses tj˚ P T such that no encryption query at tj˚ was made.
The challenger chooses

h1,j˚ , . . . , hl´p1´bq,j˚ Ð UpG1q, hl`b,j˚ :“
l`b
ź

i1“1
Fsi

i1
ptj˚q ¨

¨

˝

l´p1´bq
ź

i1“1
hi1,j˚

˛

‚

´1

and sends the following sequence to T3:

ph1,j˚ , . . . , hl`b,j˚ ,Fsil`b`1
ptj˚q, . . . ,Fsiu

ptj˚qq.

Queries. T3 can make the same type of queries as before with the restriction
that no encryption query at tj˚ can be made.

Guess. T3 outputs a guess about b.

The adversary wins the game, if it correctly guesses b.

It is immediate that game 31 with b “ 0 corresponds to the case b “ 0 in
game 3 and game 3u´1 with b “ 1 corresponds to the case b “ 1 in game 3.
Moreover the ciphertexts in game 3l with b “ 1 have the same distribution as
the ciphertexts in game 3l`1 with b “ 0. Therefore

PrrT3 wins game 3l`1 | b “ 0s “ PrrT3 loses game 3l | b “ 1s.

Using an adversary T3 in game 3l we construct an efficient ppt distinguisher
DPRF which has access to an oracle Op¨q ÐR tFs1p¨q, randp¨qu, where s1 Ð UpSq,
Fs1 : M Ñ G1 is a weak PRF and rand : M Ñ G1 is a random function. DPRF
gets κ as input and proceeds as follows.

1. Choose s0 Ð UpSq, generate pp and T with tj Ð UpMq for all tj P T .
Compute Fs0ptjq for all tj P T .

2. Make oracle queries for tj and receive Optjq for all tj P T .
3. Send κ, pp, T, s0 to T3.
4. Receive U “ ti1, . . . , iuu Ď rns from T3. For all i P rnsztil, il`1u choose
si Ð UpSq. Send psiqiPrnszU to T3.

5. Queries. If T3 queries pi, tjq with i P U, tj P T , then return the following:
if i R ti1, . . . , il`1u, send Fsiptjq to T3; if i “ il`1, send Optjq to T3; if
i P ti1, . . . , ilu, choose h1,j , . . . , hl´1,j Ð UpG1q and

hl,j :“

¨

˝Fs0ptjq ¨Optjq ¨
l´1
ź

i1“1
hi1,j ¨

ź

iPrnszti1,...,il`1u

Fsiptjq

˛

‚

´1

and send the hi,j to T3.
6. Challenge. T3 chooses tj˚ P T such that no encryption query at tj˚ was

made. Choose h1,j˚ , . . . , hl´1,j˚ Ð UpG1q and

hl,j˚ :“

¨

˝Fs0ptj˚q ¨Optj˚q ¨
l´1
ź

i1“1
hi1,j˚ ¨

ź

iPrnszti1,...,il`1u

Fsiptj˚q

˛

‚

´1
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and send the sequence ph1,j˚ , . . . , hl,j˚ ,Optj˚q,Fsil`2
ptj˚q, . . . ,Fsiu

ptj˚qq to
T3.

7. Queries. T3 can make the same type of queries as before with the restriction
that no encryption query at tj˚ can be made.

8. Guess. T3 outputs a guess about whether the l ` 1th element is random or
pseudo-random. Output the same guess.

If T3 has output the correct guess about whether the l ` 1th element is random
or pseudo-random, then DPRF can distinguish between Fs1p¨q and randp¨q. Now
we prove this result formally and show that game 3l is perfectly simulated by
T3.

Case 1. Let Op¨q “ Fs1p¨q. Define sil`1 :“ s1. Since S is a group, there exists an
element sil with sil “ ps0 ˚˚iPrnsztilu siq

´1 and for all tj P T :
¨

˝Fs0ptjq ¨ Fs1ptjq ¨
ź

iPrnszti1,...,il`1u

Fsi
ptjq

˛

‚

´1

“

l
ź

i1“1
Fsi

i1
ptjq.

Then for all tj P T , the value hl,j is equal to
¨

˝Fs0ptjq ¨
l´1
ź

i1“1
hi1,j ¨ Fs1ptjq ¨

ź

iPrnszti1,...,il`1u

Fsiptjq

˛

‚

´1

“

l
ź

i1“1
Fsi

i1
ptjq¨

˜

l´1
ź

i1“1
hi1,j

¸´1

.

The distribution of the ciphertexts corresponds to the case in game 3l with
b “ 0.

Case 2. Let Op¨q “ randp¨q. Define the random elements hl`1,j :“ randptjq for
all tj P T . Since S,M are groups, there exists an element s1 P S with s1 “
ps0 ˚ ˚iPrnsztil,il`1u siq

´1. Let sil Ð UpSq and sil`1 :“ s1 ˚ s´1
il

. Then for all
tj P T :

¨

˝Fs0ptjq ¨
ź

iPrnszti1,...,il`1u

Fsi
ptjq

˛

‚

´1

“

l`1
ź

i1“1
Fsi

i1
ptjq

and the value hl,j is equal to
¨

˝Fs0ptjq ¨ hl`1,j ¨
l´1
ź

i1“1
hi1,j ¨

ź

iPrnszti1,...,il`1u

Fsiptjq

˛

‚

´1

and equivalently

hl`1,j “
l`1
ź

i1“1
Fsi

i1
ptjq ¨

˜

l
ź

i1“1
hi1,j

¸´1

.

The distribution of the ciphertexts corresponds to the case in game 3l with
b “ 1.
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Without loss of generality, let

PrrT3 wins game 3l | b “ 0s ě PrrT3 loses game 3l | b “ 1s.

In total we obtain

PrrT3 wins game 3l | b “ 0s ´ PrrT3 loses game 3l | b “ 1s

“PrrDFs1 p¨q

PRF pκq “ 1s ´ PrrDrandp¨q
PRF pκq “ 1s

ď PrrDFs1 p¨q

PRF pκq “ 1s ´ PrrDrandp¨q
PRF pκq “ 1s.

This expression is negligible by the pseudo-randomness of Fs1p¨q on uniformly
chosen input. Therefore, the advantage of T3 in winning game 3l is negligible.
Finally, by a hybrid argument we have:

PrrT3 wins game 3s

“
1
2 pPrrT3 wins game 3 | b “ 0s ` PrrT3 wins game 3 | b “ 1sq

“
1
2 pPrrT3 wins game 31 | b “ 0s ` PrrT3 wins game 3u´1 | b “ 1sq

“
1
2 `

1
2 pPrrT3 wins game 31 | b “ 0s ´ PrrT3 loses game 3u´1 | b “ 1sq

“
1
2 `

1
2

u´1
ÿ

l“1
PrrT3 wins game 3l | b “ 0s ´ PrrT3 loses game 3l | b “ 1s

“
1
2 ` pu´ 1q ¨ negpκq.

[\

We can now complete the proof of Theorem 3.

Proof (Proof of Theorem 3). By Lemma 4 - 6:
ν1pκq “ 2 ¨ ν2pκq “ 2 ¨ ν3pκq “ 2 ¨ pu´ 1q ¨ negpκq ă 2 ¨ n ¨ negpκq “ negpκq. [\

4 The Constructions

In this section, we provide two different PSA schemes that use a key-homomorphic
weak PRF. The first construction is based on the DDH assumption and is a mod-
ification of the scheme from [25]. We will compare the practical performances of
these schemes. The second construction is based on the DLWE assumption and
incorporates a differentially private mechanism with discrete Gaussian noise.

4.1 A DDH-based PSA scheme

We provide an instantiation of a secure PSA scheme consisting of efficient al-
gorithms. It is constructed from a DDH-based key-homomorphic weak PRF.
Hence, its security is based on the DDH assumption making it comparable to
the scheme from [25].
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Example 2 Let q ą m ¨ n and p “ 2 ¨ q ` 1 be large primes. Let furthermore
G “ Z˚p2 , S “ Zpq,M “ G1 “ QRp2 and g P Z˚p2 with ordpgq “ pq. Then g

generates the group M “ G1 “ QRp2 of quadratic residues modulo p2. In this
group, we make the assumption that the DDH problem is hard.2 Then we define

– Let pp “ pg, pq. Choose keys s1, . . . , sn Ð UpZpqq and
s0 ” ´

řn
i“1 si mod pq. Let T Ă M with |T | “ λ, i.e. tj is a power of

g for every tj P T , j “ 1, . . . , λ.
– Fsiptjq ” tsi

j mod p2. This is a weak PRF under the DDH assumption in
QRp2 (which can be shown using similar arguments as in [20]).

– ϕpxij q ” 1` p ¨ xi,j mod p2, where ´m ď xi,j ď m. (It is immediate that ϕ
is homomorphic and injective over t´mn, . . . ,mnu.)

For decryption and aggregation, compute Vj P t1´ p ¨mn, . . . , 1` p ¨mnu with

Vj ” Fs0ptjq ¨
n
ź

i“1
Fsi
ptjq ¨ ϕpxi,jq ”

n
ź

i“1
p1` p ¨ xi,jq

” 1` p ¨
n
ÿ

i“1
xi,j ` p

2 ¨
ÿ

i,i1Prns,i1‰i

xi,jxi1,j ` . . .` p
n ¨

n
ź

i“1
xi,j

” 1` p ¨
n
ÿ

i“1
xi,j mod p2

and decrypt
řn
i“1 xi,j “

1
p pVj ´ 1q over the integers.

Remark 2 In the random oracle model, the construction shown in Example 2
achieves the stronger notion of AO1. For details, see the proof in Section A of the
appendix in [25]. The same proof can be applied to our instantiation by simply
replacing the map ϕ involved and using a strong version of the PRF F.

Differential Privacy. In connection with a differentially private mechanism,
a PSA scheme assures that the analyst is only able to learn a noisy aggregate
of users’ data (as close as possible to the real answer) and nothing else. More
specifically, for preserving differential privacy, it would be sufficient to add a
single copy of (properly distributed) noise Y to the aggregated statistics. Since
we deal with a distributed setting, the noise cannot be added, once the aggregate
has been computed. Hence, the users themselves have to generate and add noise
to their original data in such a way that the sum of the errors has the same
distribution as Y . For this purpose, we see two different approaches. In the first
one, with small probability, a user adds noise sufficient to preserve the privacy
2 This is reasonable because the simple Legendre attack, i.e. decide whether w “ gxy or
w “ gz given a generator g and gx, gy, w by computing and comparing the Legendre
symbols of gx, gy, w over p2, does not work here, since in this group there is always
some h with g ” h2 mod p2. Thus, the Legendre symbol of gv over p2 is 1 for all v
and this attack does not provide any way to distinguish gxy from gz.
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Table 1: Time measurements of the schemes for different parameters
(a) Encryption

Length of p 1024-bit 2048-bit 4096-bit
[25] 1.1 ms 7.5 ms 57.0 ms
This work 3.9 ms 29.4 ms 225.0 ms

(b) Decryption (2048 bit, n “ 1000)
m 101 102 103

[25], brute-force 0.24 s 2.67 s 28.97 s
This work 0.08 s 0.08 s 0.09 s

of the entire statistics. This probability is calibrated in such a way only one of
the n users is actually expected to add noise at all. Shi et al. [25] investigate
this method using the geometric mechanism by Ghosh et al. [11]. In the second
approach, each user generates noise of small variance, such that the sum of
all noisy terms suffices to preserve differential privacy of the aggregate.3 To
achieve this goal, we need a discrete probability distribution which is closed
under convolution and is known to provide differential privacy. The binomial
mechanism by Dwork et al. [9] and the discrete Gaussian mechanism introduced
in the next subsection serve these purposes.4 Note that due to the use of a
computationally secure protocol, we achieve differential privacy also only against
ppt adversaries. For this case, the notion of computational differential privacy
was introuced in [19]. We can prove a composition theorem showing that the
use of a differentially private mechanism within a secure PSA scheme preserves
computational differential privacy. This is left for a follow-up work.

Comparison of DDH-based schemes. Whereas the PRF in Example 1 is
similar to the one used in Example 2 (the underlying group G is Z˚p rather
than Z˚p2), the aggregational function is defined by ϕpxi,jq “ gxi,j mod p, which
requires to solve the discrete logarithm modulo p for decrypting. In contrast,
our efficient construction only requires a subtraction and a division over the
integers. Note that for a given p, the running time of the decryption in our
scheme does not depend on m, so it provides a small running time, even if m is
super-polynomially large.
We compare the practical running times for encryption and decryption of the
scheme from [25] with the algorithms of our scheme in Table 1a and Table 1b,
respectively. Here, let m denote the size of the plaintext space. Encryption is
compared at different security levels with m “ 1. For comparing the decryption
time, we fix the security level and the number of users and let m be variable.
All algorithms are executed on an Intel Core i5, 64-bit CPU at 2.67 GHz. We
compare the schemes at the same security level, assuming that the DDH problem
modulo p is as hard as modulo p2, i.e. we use the same value for p in both schemes.

3 One can assume that corrupted users will not add any noise to their data in order to
help the analyst to compromise the privacy of the remaining users. For simplicity,
we ignore this issue here.

4 Due to the use of a cryptographic protocol, the plaintexts have to be discrete. This
is the reason why we use discrete distributions for generating noise.
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For different bit-lengths of p, we observe that the encryption of our scheme is
roughly 4 times slower than the encryption of the scheme from [25]. The running
time of our decryption algorithm is widely dominated by the aggregation phase.
Therefore it is clear, that it linearly depends on n. The same holds for the brute-
force decryption of the scheme in [25], since the range for the discrete logarithm
also linearly grows with n. Using a 2048-bit prime and fixing n “ 1000, the
running time of the decryption in our scheme is less than 0.1 seconds for varying
values of m. In contrast, the time for brute-force decryption in [25] grows roughly
linearly in m.

4.2 A DLWE-based PSA scheme

We construct a secure PSA scheme from a weak PRF construction based on The-
orem 2 that automatically preserves DP. We analyse the privacy and accuracy
guarantees of this scheme and also the trade-off between security and accuracy.

Example 3 We can build an instantiation of Theorem 3 (without correct de-
cryption) based on the DLWE problem as follows. Set S “ M “ Zκq , G “ Zq,
choose si Ð UpZκq q for all i “ 1, . . . , n and s0 “ ´

řn
i“1 si, set Fsiptjq “

xtj , siy`ei,j, such that ei,j Ð Dpν{nq with parameter ν{n “ 2κ{π (by Theorems
1 and 2, this is a so-called randomised weak pseudo-random function as described
in [1] and in [2]), and let ϕ be the identity function. Therefore xtj , siy`ei,j`di,j “
ci,j Ð PSAEncsi

ptj , di,jq for data value di,j P Zq, i “ 1, . . . , n. The decryption
function is defined by

PSADecs0ptj , c1,j , . . . , cn,jq “ xtj , s0y `
n
ÿ

i“1
ci,j “xtj , s0y `

n
ÿ

i“1
Fsi
ptjq ` di,j

“

n
ÿ

i“1
di,j `

n
ÿ

i“1
ei,j .

Thus, the decryption is not perfectly correct anymore, but yields a noisy aggre-
gate. The associated DLWE problem is hard and the above scheme is secure.

Remark 3 The original result by Regev [23] states that the LWE problem is
hard in the set T “ R{Z when the noise is distributed according to the continuous
Gaussian distribution modulo 1. Although the continuous Gaussian distribution
is reproducible as well, it does not seem to fit well for a DLWE-based PSA
scheme. For data processing reasons, the values would have to be discretised.
Therefore the resulting noise would follow a distribution which is not reproducible
in general. However, in [5] it was shown that the sum of n discrete Gaussians
each with parameter ν is statistically close to a discrete Gaussian with parame-
ter nν, if ν ą nηε1pLq2 for some smoothing parameter ηε1pLq of the underlying
lattice L.
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Differential Privacy. We show that for the final aggregate
řn
i“1 di,j ` ei,j in

Example 3, pε, δq-DP is preserved. First, assume due to Remark 3 that
řn
i“1 ei,j

is distributed according to Dpνq if the ei,j are i.i.d. according to Dpν{nq.

Theorem 7 (Discrete Gaussian Mechanism) Let 0 ă ε, δ ă 1. For all
databases D P Dn, the randomised mechanism ApDq :“ fpDq ` Y preserves
pε, δq-DP with respect to any query f with sensitivity Spfq, if Y is distributed
according Dpνq with ν “ 4πSpfq2 logp2{δq{ε2.

Proof. Let D0, D1 P Dn be adjacent databases with |fpD0q ´ fpD1q| ď Spfq.
The largest ratio between PrrApD0q “ Rs and PrrApD1q “ Rs is reached when
k :“ R´ fpD1q ´ Spfq “ R´ fpD0q ě 0, where R is any possible output of A.
Then for all possible outputs R of A:

PrrApD0q “ Rs

PrrApD1q “ Rs
“

PrrY “ ks

PrrY “ k ` Spfqs
“

expp´πk2{νq

expp´πpk ` Spfqq2{νq
“ expppπ{νqppk ` Spfqq2 ´ k2qq “ expppπ{νqp2kSpfq ` Spfq2qq
ď exppεq

if k ď pενq{p2πSpfqq ´ Spfq{2 “: B. We bound the complementary probability:

PrrY ą Bs ď

?
ν

cν
¨

ż 8

B

1
?
ν
¨ expp´πx2{νqdx ď 1

cν
¨

?
ν

B
?

2π
¨ expp´πB2{νq

ď 2 expp´ε2ν{p4πSpfq2qq (1)

which is ď δ, if ν ě 4πSpfq2 logp2{δq{ε2. This implies that ν ą 2πSpfq2{ε2 and
since ε ă 1 and cν ą 1, Inequality (1) follows. [\

We compute the pα, βq-accuracy of the discrete Gaussian mechanism as

β “ Prr|Y | ą αs ď 2
?
ν

αcν
?

2π
¨ expp´πα2{νq ď

?
ν

cν
¨ expp´πα2{νq

for α ě
a

2{π and therefore α ď
a

ν logp
?
ν{pcνβqq{π “ ÕpSpfq{εq. This bound

is similar to standard solutions (e.g. [10], [9]), especially to the binomial mecha-
nism, that would be a standard solution for pε, δq-DP in the distributed setting.
Hence, we have two bounds on ν: one for security and one for pε, δq-DP. Assume
all users generate their noise according to the required security level as in Ex-
ample 3. We can compute the level of pε, δq-DP that is thus preserved. Therefore
we set the two bounds on ν to be equal and solve for ε:

2nκ{π “ 4πSpfq2 logp2{δq{ε2 ô ε “ εpκq “ Spfqπ
a

2 logp2{δq{pnκq.

Thus, in addition to a privacy/accuracy trade-off there is also a security/accuracy
trade-off depending on κ and n, since α “ ÕpSpfq{εq “ Õp

?
nκq.
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5 Conclusion

We investigated cryptographic methods for privacy-preserving data analysis in
the distributed setting and showed, that a secure PSA scheme for time-series data
can be built upon any key-homomorphic weak PRF. Opposed to previous work,
our proof works in the standard model and our security reduction is tighter. We
provided two instantiations of this result. The first PSA scheme is based on the
DDH assumption and has an efficient decryption algorithm even for a super-
polynomially large data universe, as opposed to previous work. The other PSA
scheme is based on the DLWE assumption with an inherent differentially pri-
vate mechanism, leading to the first lattice-based secure PSA scheme. An open
challenge is to prove that the composition of a PSA scheme with a differentially
private mechanism provides computational differential privacy. Another inter-
esting challenge is the following: due to Remark 3, in our DLWE-based scheme,
we need ν ą nηε1pLq2 for reproducibility of the error distribution which is in
turn necessary for differential privacy. Thus, ν depends on n. It is desirable to
construct a lattice-based PSA scheme, where the application of a differentially
private mechanism is independent of the number of users.
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