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Division

Definition: Let a and b be integers. We say that a divides b, or a|b if ∃d
s.t. b = ad. If b 6= 0 then |a| ≤ |b|.

Division Theorem: For any integer a and any positive integer n, there are
unique integers q and r such that 0 ≤ r < n and a = qn + r.

The value r = amodn is called the remainder or the residue of the division.

Theorem: If m|a and m|b then m|αa + βb for any integers α, β.
Proof: a = rm; b = sm for some r, s. Therefore, αa + βb = αrm + βsm =
m(αr + βs), i.e., m divides this number. QED
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Division (cont.)

If n|(a − b), i.e., a and b have the same residues modulo n: (a mod n) =
(b mod n), we write a ≡ b (mod n) and say that a is congruent to b
modulo n.
The integers can be divided into n equivalence classes according to their residue
modulo n:

[a]n = {a + kn : k ∈ ZZ}

Zn = {[a]n : 0 ≤ a ≤ n− 1}

or briefly
Zn = {0, 1, . . . , n− 1}
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Greatest Common Divisor

Let a and b be integers.

1. gcd(a, b) (the greatest common divisor of a and b) is

gcd(a, b)
∆
= max(d : d|a and d|b)

(for a 6= 0 or b 6= 0).

Note: This definition satisfies gcd(0, 1) = 1.

2. lcm(a, b) (the least common multiplier of a and b) is

lcm(a, b)
∆
= min(d > 0 : a|d and b|d)

(for a 6= 0 and b 6= 0).

3. a and b are coprimes (or relatively prime) iff gcd(a, b) = 1.
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Greatest Common Divisor (cont.)

Theorem: Let a, b be integers, not both zero, and let d be the smallest positive
element of S = {ax + by : x, y ∈ IN}. Then, gcd(a, b) = d.
Proof: S contains a positive integer because |a| ∈ S.
By definition, there exist x, y such that d = ax + by. d ≤ |a|, thus there exist
q, r such that

a = qd + r, 0 ≤ r < d.

Thus,

r = a− qd = a− q(ax + by) = a(1− qx) + b(−qy) ∈ S.

r < d implies r = 0, thus d|a.
By the same arguments we get d|b.
d|a and d|b, thus d ≤ gcd(a, b).
On the other hand gcd(a, b)|a and gcd(a, b)|b, and thus gcd(a, b) divides any
linear combination of a, b, i.e., gcd(a, b) divides all elements in S, including d,
and thus gcd(a, b) ≤ d. We conclude that d = gcd(a, b). QED
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Greatest Common Divisor (cont.)

Corollary: For any a, b, and d, if d|a and d|b then d| gcd(a, b).
Proof: gcd(a, b) is a linear combination of a and b.

Lemma: For m 6= 0

gcd(ma,mb) = |m| gcd(a, b).

Proof: If m 6= 0 (WLG m > 0) then gcd(ma,mb) is the smallest positive
element in the set {amx+bmy}, which ism times the smallest positive element
in the set {ax + by}.
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Greatest Common Divisor (cont.)

Corollary: a and b are coprimes iff

∃x, y such that xa + yb = 1.

Proof:
(⇐) Let d = gcd(a, b), and xa + yb = 1. d|a and d|b and therefore, d|1, and
thus d = 1.
(⇒) a and b are coprimes, i.e., gcd(a, b) = 1. Using the previous theorem, 1 is
the smallest positive integer in S = {ax+ by : x, y ∈ IN}, i.e., ∃x, y such that
ax + by = 1. QED
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The Fundamental Theorem of Arithmetic

The fundamental theorem of arithmetic: If c|ab and gcd(b, c) = 1 then
c|a.
Proof: We know that c|ab. Clearly, c|ac.
Thus,

c| gcd(ab, ac) = a · gcd(b, c) = a · 1 = a.

QED
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Prime Numbers and Unique Factorization

Definition: An integer p ≥ 2 is called prime if it is divisible only by 1 and
itself.

Theorem: Unique Factorization: Every positive number can be repre-
sented as a product of primes in a unique way, up to a permutation of the order
of primes.
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Prime Numbers and Unique Factorization (cont.)

Proof: Every number can be represented as a product of primes, since if one
element is not a prime, it can be further factored into smaller primes.
Assume that some number can be represented in two distinct ways as products
of primes:

p1p2p3 · · · ps = q1q2q3 · · · qr

where all the factors are prime, and no pi is equal to some qj (otherwise discard
both from the product).
Then,

p1|q1q2q3 · · · qr.

But gcd(p1, q1) = 1 and thus

p1|q2q3 · · · qr.

Similarly we continue till
p1|qr.

Contradiction. QED
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Euclid’s Algorithm

Let a and b be two positive integers, a > b > 0. Then the following algorithm
computes gcd(a, b):

r−1 = a
r0 = b
for i from 1 until ri = 0
∃qi, ri : ri−2 = qiri−1 + ri and 0 ≤ ri < ri−1

k=i-1

Example: a = 53 and b = 39.

53= 1 · 39 + 14
39= 2 · 14 + 11
14= 1 · 11 + 3
11= 3 · 3 + 2
3= 1 · 2 + 1
2= 2 · 1 + 0

Thus, gcd(53, 39) = 1.
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Extended Form of Euclid’s Algorithm

Example (cont.): a = 53 and b = 39.

53= 1 · 39 + 14 ⇒ 14= 53− 39
39= 2 · 14 + 11 ⇒ 11= 39− 2 · 14 = −2 · 53 + 3 · 39
14= 1 · 11 + 3 ⇒ 3= 14− 1 · 11 = 3 · 53− 4 · 39
11= 3 · 3 + 2 ⇒ 2= 11− 3 · 3 = −11 · 53 + 15 · 39
3= 1 · 2 + 1 ⇒ 1= 3− 1 · 2 = 14 · 53− 19 · 39
2= 2 · 1 + 0

Therefore, 14 · 53− 19 · 39 = 1.
We will use this algorithm later as a modular inversion algorithm, in this case
we get that (−19) · 39 ≡ 34 · 39 ≡ 1 (mod 53).
Note that every ri is written as a linear combination of ri−1 and ri−2, and
ultimately, ri is written as a linear combination of a and b.
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Proof of Euclid’s Algorithm

Claim: The algorithm stops after at most O(log a) steps.
Proof: It suffices to show that in each step ri < ri−2/2:
For i = 1: r1 < b < a and thus in a = q1b + r1, q1 ≥ 1. Therefore,
a ≥ 1b + r1 > r1 + r1, and thus a/2 > r1.
For i > 1: ri < ri−1 < ri−2 and thus ri−2 = qiri−1 + ri, qi ≥ 1. Therefore,
ri−2 ≥ 1ri−1 + ri > ri + ri, and thus ri−2/2 > ri.
After at most 2 log a steps, ri reduces to zero. QED
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Proof of Euclid’s Algorithm (cont.)

Claim: rk = gcd(a, b).
Proof:
rk| gcd(a, b): rk|rk−1 because of the stop condition. rk|rk and rk|rk−1 and
therefore rk divides any linear combination of rk−1 and rk, including rk−2. Since
rk|rk−1 and rk|rk−2, it follows that rk|rk−3. Continuing this way, it follows that
rk|a and that rk|b, thus rk| gcd(a, b).
gcd(a, b)|rk: rk is a linear combination of a and b; gcd(a, b)|a and gcd(a, b)|b,
therefore, gcd(a, b)|rk.
We conclude that rk = gcd(a, b). QED
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Groups

A group (S,⊕) is a set S with a binary operation ⊕ defined on S for which
the following properties hold:

1. Closure: a⊕ b ∈ S For all a, b ∈ S.

2. Identity: There is an element e ∈ S such that e ⊕ a = a ⊕ e = a for
all a ∈ S.

3. Associativity: (a⊕ b)⊕ c = a⊕ (b⊕ c) for all a, b, c ∈ S.

4. Inverses: For each a ∈ S there exists an unique element b ∈ S such
that a⊕ b = b⊕ a = e.

If a group (S,⊕) satisfies the commutative law a⊕b = b⊕a for all a, b ∈ S
then it is called an Abelian group.
Definition: The order of a group, denoted by |S|, is the number of elements
in S. If a group satisfies |S| <∞ then it is called a finite group.
Lemma: (Zn,+n) is a finite Abelian additive group modulo n.
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Groups (cont.)

Basic Properties:
Let:

ak =

k⊕

i=1

a = a⊕ a⊕ . . .⊕ a︸ ︷︷ ︸
k

.

a0 = e

1. The identity element e in the group is unique.

2. Every element a has a single inverse, denoted by a−1. We define a−k =
⊕k

i=1 a
−1.

3. am ⊕ an = am+n.

4. (am)n = anm.
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Groups (cont.)

Definition: The order of a in a group S is the least t > 0 such that at = e,
and it is denoted by order(a, S).
For example, in the group (Z3,+3), the order of 2 is 3 since 2 + 2 ≡ 4 ≡ 1,
2 + 2 + 2 ≡ 6 ≡ 0 (and 0 is the identity in Z3).
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Subgroups

Definition: If (S,⊕) is a group, S ′ ⊆ S, and (S ′,⊕) is also a group, then
(S ′,⊕) is called a subgroup of (S,⊕).
Theorem: If (S,⊕) is a finite group and S ′ is any subset of S such that
a⊕ b ∈ S ′ for all a, b ∈ S ′, then (S ′,⊕) is a subgroup of (S,⊕).
Example: ({0, 2, 4, 6},+8) is a subgroup of (Z8,+8), since it is closed under
the operation +8.
Lagrange’s theorem: If (S,⊕) is a finite group and (S ′,⊕) is a subgroup
of (S,⊕) then |S ′| is a divisor of |S|.
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Subgroups (cont.)

Let a be an element of a group S, denote by (〈a〉,⊕) the set:

〈a〉 = {ak : order(a, S) ≥ k ≥ 1}

Theorem: 〈a〉 contains order(a, S) distinct elements.
Proof: Assume by contradiction that there exists 1 ≤ i < j ≤ order(a, S),
such that ai = aj. Therefore, e = aj−i in contradiction to fact that order(a, S) >
j − i > 0. QED
Lemma: 〈a〉 is a subgroup of S with respect to ⊕.
We say that a generates the subgroup 〈a〉 or that a is a generator of 〈a〉.
Clearly, the order of 〈a〉 equals the order of a in the group. 〈a〉 is also called a
cyclic group.
Example: {0, 2, 4, 6} ⊂ Z8 can be generated by 2 or 6.
Note that a cyclic group is always Abelian.
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Subgroups (cont.)

Corollary: The order of an element divides the order of group.
Corollary: Any group of prime order must be cyclic.
Corollary: Let S be a finite group, and a ∈ S, then a|S| = e.
Theorem: Let a be an element in a group S, such that as = e, then
order(a, S)|s.
Proof: Using the division theorem, s = q · order(a, S) + r, where 0 ≤ r <
order(a, S). Therefore,

e = as = aq·order(a,S)+r = (aorder(a,S))q ⊕ ar = ar.

Due to the minimality of order(a, S), we conclude that r = 0. QED
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Fields

Definition: A Field (S,⊕,⊙) is a set S with two binary operations ⊕ and
⊙ defined on S and with two special elements denoted by 0, 1 for which the
following properties hold:

1. (S,⊕) is an Abelian group (0 is the identity with regards to ⊕).

2. (S \ {0},⊙) is an Abelian group (1 is the identity with regards to ⊙).

3. Distributivity: a⊙ (b⊕ c) = (a⊙ b)⊕ (a⊙ c).

Corollary: ∀a ∈ S, a⊙ 0 = 0.
Proof: a⊙ 0 = a⊙ (0⊕ 0) = a⊙ 0⊕ a⊙ 0, thus, a⊙ 0 = 0.
Examples: (Q,+, ·), (Zp,+p, ·p) where p is a prime.
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Inverses

Lemma: Let p be a prime. Then,

ab ≡ 0 (mod p)

iff
a ≡ 0 (mod p) or b ≡ 0 (mod p).

Proof:
(⇐) From p|a or p|b it follows that p|ab.
(⇒) p|ab. If p|a we are done. Otherwise, p 6 |a.
Since p a prime it follows that gcd(a, p) = 1. Therefore, p|b (by the fundamental
theorem of arithmetic). QED
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Inverses (cont.)

Definition: Let a be a number. If there exists b such that ab ≡ 1 (mod m),

then we call b the inverse of a modulo m, and write b
∆
= a−1 (mod m).

Theorem: If gcd(a,m) = 1 then there exists some b such that ab ≡ 1
(mod m).
Proof: There exist x, y such that

xa + ym = 1.

Thus,
xa ≡ 1 (mod m).

QED
Conclusion: a has an inverse modulo m iff gcd(a,m) = 1. The inverse can
be computed by Euclid’s algorithm.
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Z∗n

Definition: Z∗n is the set of all the invertible integers modulo n:

Z∗n = {i ∈ Zn| gcd(i, n) = 1}.

Theorem: For any positive n, Z∗n is an Abelian multiplicative group under
multiplication modulo n.
Proof: Exercise.
Z∗n is also called an Euler group.
Example: For a prime p, Z∗p = {1, 2, . . . , p− 1}.
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Z∗n (cont.)

Examples:

Z2 = {0, 1} Z∗2 = {1}
Z3 = {0, 1, 2} Z∗3 = {1, 2}
Z4 = {0, 1, 2, 3} Z∗4 = {1, 3}
Z5 = {0, 1, 2, 3, 4} Z∗5 = {1, 2, 3, 4}

Z1 = {0} Z∗1 = {0} !!!!!
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Euler’s Function

Definition: Euler’s function ϕ(n) represents the number of elements in Z∗n:

ϕ(n)
∆
= |Z∗n| = |{i ∈ Zn| gcd(i, n) = 1}|

ϕ(n) is the number of numbers in {0, . . . , n− 1} that are coprime to n.

Note that by this definition ϕ(1)
∆
= 1 (since Z∗1 = {0}, which is because

gcd(0, 1) = 1).
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Euler’s Function (cont.)

Theorem: Let n = pe11 p
e2
2 · · · p

el
l be the unique factorization of n to distinct

primes. Then,

ϕ(n) =
∏

(pei−1i (pi − 1)) = n
∏

(1−
1

pi
).

Proof: Exercise.
Note: If the factorization of n is not known, ϕ(n) is not known as well.
Conclusions: For prime numbers p 6= q, and any integers a and b

1. ϕ(p) = p− 1.

2. ϕ(pe) = (p− 1)pe−1 = pe − pe−1.

3. ϕ(pq) = (p− 1)(q − 1).

4. If gcd(a, b) = 1 then ϕ(ab) = ϕ(a)ϕ(b).
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Euler’s Function (cont.)

Theorem: ∑

d|n

ϕ(d) = n.

Proof: In this proof, we count the numbers 1, . . . , n in a different order. We
divide the numbers into distinct groups according to their gcd d′ with n, thus
the total number of elements in the groups is n.
It remains to see what is the number of numbers out of 1, . . . , n whose gcd
with n is d′.
Clearly, if d′ 6 |n, the number is zero.
Otherwise, let d′|n and 1 ≤ a ≤ n be a number such that gcd(a, n) = d′.
Therefore, a = kd′, for some k ∈ {1, . . . , n/d′}. Substitute a with kd′, thus
gcd(kd′, n) = d′, i.e., gcd(k, n/d′) = 1.
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Euler’s Function (cont.)

It remains to see for how many k’s, 1 ≤ k ≤ n/d′, it holds that

gcd(k, n/d′) = 1.

But this is the definition of Euler’s function, thus there are ϕ(n/d′) such k’s.
Since we count each a exactly once

∑

d′|n

ϕ(n/d′) = n.

If d′|n then also d = n
d′ divides n, and thus we can substitute n/d′ with d and

get ∑

d|n

ϕ(d) = n.

QED
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Euler’s Theorem

Theorem: For any a and m, if gcd(a,m) = 1 then

aϕ(m) ≡ 1 (mod m).

Proof: a is an element in the Euler group Z∗m. Therefore, as a corollary from
Lagrange Theorem, a|Z

∗
m| = aϕ(m) = 1 (mod m). QED
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Fermat’s Little Theorem

Fermat’s little theorem: Let p be a prime number. Then, any integer a
satisfies

ap ≡ a (mod p).

Proof: If p|a the theorem is trivial, as a ≡ 0 (mod p). Otherwise p and a
are coprimes, and thus by Euler’s theorem

ap−1 ≡ 1 (mod p)

and
ap ≡ a (mod p).

QED
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Properties of Elements in the Group Z∗m

Definition: For a,m such that gcd(a,m) = 1, let h be the smallest integer
(h > 0) satisfying

ah ≡ 1 (mod m).

(Such an integer exists by Euler’s theorem: aϕ(m) ≡ 1 (mod m)). We call h
the order of a modulo m, and write h = order(a, Z∗

m).
Obviously, it is equivalent to the order of a in the Euler group Z∗m.
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Properties of Elements in the Group Z∗m (cont.)

Conclusions: For a,m such that gcd(a,m) = 1

1. If as ≡ 1 (mod m), then order(a, Z∗m)|s.

2. order(a, Z∗m)|ϕ(m)

3. If m is a prime, then order(a, Z∗m)|m− 1.

4. The numbers
1, a1, a2, a3, . . . , aorder(a,Z

∗
m)−1

are all distinct modulo m.

Proof: Follows from the properties of groups.
QED
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Modular Exponentiation

Given a prime q and a ∈ Z∗q we want to calculate axmod q.
Denote x in binary representation as

x = xn−1xn−2 . . . x1x0,

where x =
∑n−1

i=0 xi2
i.

Therefore, axmod q can be written as:

ax = a2
(n−1)xn−1a2

(n−2)xn−2 · · · a2x1ax0
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An Algorithm for Modular Exponentiation

ax = a2
(n−1)xn−1a2

(n−2)xn−2 · · · a2x1ax0

Algorithm:

r ← 1
for i← n− 1 down to 0 do

r ← r2axi mod q (axi is either 1 or a)

At the end

r =

n−1∏

i=0

axi2
i

= a(
∑

n−1
i=0 xi2

i) = ax (mod q).

Complexity: O(log x) modular multiplications. For a random x this complexity
is O(log q).
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An Algorithm for Modular Exponentiation (cont.)

An important note:

(xy)mod q = ((xmod q)(ymod q))mod q,

i.e., the modular reduction can be performed every multiplication, or only at
the end, and the results are the same.
The proof is given as an exercise.
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The Chinese Remainder Theorem

Problem 1: Let n = pq and let x ∈ Zn. Compute xmod p and xmod q.
Both are easy to compute, given p and q.

Problem 2: Let n = pq, let x ∈ Zp and let y ∈ Zq. Compute u ∈ Zn such
that

u ≡ x (mod p)

u ≡ y (mod q).
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The Chinese Remainder Theorem (cont.)

Generalization: Given moduli m1, m2, . . . , mk and values y1, y2, . . . , yk.
Compute u such that for any i ∈ {1, . . . , k}

u ≡ yi (mod mi).

We can assume (without loss of generality) that all the mi’s are coprimes in
pairs (∀i 6=j gcd(mi,mj) = 1). (If they are not coprimes in pairs, either they
can be reduced to an equivalent set in which they are coprimes in pairs, or
else the system leads to a contradiction, such as u ≡ 1 (mod 3) and u ≡ 2
(mod 6)).
Example: Given the moduli m1 = 11 and m2 = 13 find a number u
(mod 11 · 13) such that u ≡ 7 (mod 11) and u ≡ 4 (mod 13).
Answer: u ≡ 95 (mod 11 · 13). Check: 95 = 11 · 8 + 7, 95 = 13 · 7 + 4.
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The Chinese Remainder Theorem (cont.)

The Chinese remainder theorem: Let m1, m2, . . . , mk be coprimes in
pairs and let y1, y2, . . . , yk. Then, there is an unique solution u modulo
m =

∏
mi = m1m2 · · ·mk of the equations:

u ≡ y1 (mod m1)

u ≡ y2 (mod m2)
...

u ≡ yk (mod mk),

and it can be efficiently computed.
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The Chinese Remainder Theorem (cont.)

Example: Let

u ≡ 7 (mod 11) u ≡ 4 (mod 13)

then compute
u ≡? (mod 11 · 13).

Assume we found two numbers a and b such that

a ≡ 1 (mod 11) a ≡ 0 (mod 13)

and
b ≡ 0 (mod 11) b ≡ 1 (mod 13)

Then,
u ≡ 7a + 4b (mod 11 · 13).
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The Chinese Remainder Theorem (cont.)

We remain with the problem of finding a and b. Notice that a is divisible by
13, and a ≡ 1 (mod 11).
Denote the inverse of 13 modulo 11 by c ≡ 13−1 (mod 11). Then,

13c ≡ 1 (mod 11)

13c ≡ 0 (mod 13)

We conclude that

a ≡ 13c ≡ 13(13−1 (mod 11)) (mod 11 · 13)

and similarly

b ≡ 11(11−1 (mod 13)) (mod 11 · 13)

Thus,
u ≡ 7 · 13 · 6 + 4 · 11 · 6 ≡ 810 ≡ 95 (mod 11 · 13)
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The Chinese Remainder Theorem (cont.)

Proof: m/mi and mi are coprimes, thus m/mi has an inverse modulo mi.
Denote

li ≡ (m/mi)
−1 (mod mi)

and
bi = li(m/mi).

bi ≡ 1 (mod mi)

bi ≡ 0 (mod mj), ∀j 6= i (since mj|(m/mi)).

The solution is

u ≡ y1b1 + y2b2 + · · · + ykbk

≡

m∑

i=1

yibi (mod m).
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The Chinese Remainder Theorem (cont.)

We still have to show that the solution is unique modulo m. By contradiction,
we assume that there are two distinct solutions u1 and u2, u1 6≡ u2 (mod m).
But any modulo mi satisfy u1 − u2 ≡ 0 (mod mi), and thus

mi|u1 − u2.

Since mi are pairwise coprimes we conclude that

m =
∏

mi|u1 − u2

which means that
u1 − u2 ≡ 0 (mod m).

Contradiction. QED
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Z∗ab ≡ Z∗a × Z
∗
b

Consider the homomorphism Ψ : Z∗ab → Z∗a × Z
∗
b ,

Ψ(u) = (α = umod a, β = umod b).
Lemma: u ∈ Z∗ab iff α ∈ Z

∗
a and β ∈ Z∗b , i.e.,

gcd(ab, u) = 1 iff gcd(a, u) = 1 and gcd(b, u) = 1.
Proof:
(⇒) Trivial (k1ab + k2u = 1 for some k1 and k2).
(⇐) By the assumptions there exist some k1, k2, k3, k4 such that

k1a + k2u = 1 and k3b + k4u = 1.

Thus,
k1a(k3b + k4u) + k2u = 1

from which we get
k1k3ab + (k1k4a + k2)u = 1.

QED
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Z∗ab ≡ Z∗a × Z
∗
b (cont.)

Lemma: Ψ is onto.
Proof: Choose any α ∈ Z∗a and any β ∈ Z∗b , we can reconstruct u, using the
Chinese remainder theorem, and u ∈ Z∗ab from previous lemma.
Lemma: Ψ is one to one.
Proof: Assume to the contrary that for α ∈ Z∗a and β ∈ Z

∗
b there are u1 6≡ u2

(mod ab). This is a contradiction to the uniqueness of the solution of the
Chinese remainder theorem.
QED
We conclude from the Chinese remainder theorem and these two Lemmas that
Z∗ab is 1-1 related to Z∗a × Z

∗
b .

For every α ∈ Z∗a and β ∈ Z∗b there exists a unique u ∈ Z∗ab such that u ≡ α
(mod a) and u ≡ β (mod b), and vise versa.
Note: This can be used to construct an alternative proof for ϕ(pq) = ϕ(p)ϕ(q),
where gcd(p, q) = 1.
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Lagrange’s Theorem

Theorem: A polynomial of degree n > 0

f(x) = xn + c1x
n−1 + c2x

n−2 + . . . + cn−1x + cn

has at most n distinct roots modulo a prime p.
Proof: It is trivial for n = 1.
By induction:
Assume that any polynomial of degree n− 1 has at most n− 1 roots. Let a be
a root of f(x), i.e., f(a) ≡ 0 (mod p).
We can write

f(x) = (x− a)f1(x) + r (mod p)

for some polynomial f1(x) and constant r (this is a division of f(x) by (x−a)).

Since f(a) ≡ 0 (mod p) then r ≡ 0 (mod p) and we get

f(x) = (x− a)f1(x) (mod p).

Thus, any root b 6= a of f(x) is also a root of f1(x):

0 ≡ f(b) ≡ (b− a)f1(b) (mod p)
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Lagrange’s Theorem (cont.)

which causes
f1(b) ≡ 0 (mod p).

f1 is of degree n− 1, and thus has at most n− 1 roots. Together with a, f has
at most n roots. QED

Note: Lagrange’s Theorem does not hold for composites, for example:

x2 − 4 ≡ 0 (mod 35)

has 4 roots: 2, 12, 23 and 33.
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Generators

Definition: a is called a generator of Z∗n if order(a, Z∗n) = ϕ(n).
Not all groups posses generators. If Z∗n possesses a generator g, then Z∗n is
cyclic.
If g is a generator of Z∗n and a is any element of Z∗n then there exists a z such
that gz ≡ a (mod n). This z is called the discrete logarithm or index of
a modulo n to the base g. We denote this value as indn,g(a) or DLOGn,g(a).
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The Number of Generators

Theorem: Let h be the order of a modulo m. Let s be an integer such that
gcd(h, s) = 1, then the order of as modulo m is also h.
Proof: Denote the order of a by h and the order of as by h′.

(as)h ≡ (ah)s ≡ 1 (mod m).

Thus, h′|h.
On the other hand,

ash
′

≡ (as)h
′

≡ 1 (mod m)

and thus h|sh′. Since gcd(h, s) = 1 then h|h′.
QED
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The Number of Generators (cont.)

Theorem: Let p be a prime and d|p − 1. The number of integers in Z∗p of
order d is ϕ(d).
Proof: Denote the number of integers in Z∗p which are of order d by ψ(d). We
should prove that ψ(d) = ϕ(d).
Assume that ψ(d) 6= 0, and let a ∈ Z∗p have an order d (ad ≡ 1 (mod p)).

The equation xd ≡ 1 (mod p) has the following solutions

1 ≡ ad, a1, a2, a3, . . . , ad−1,

all of which are distinct.
We know that x ≡ ai (mod p) has an order of d iff gcd(i, d) = 1, and thus
the number of solutions with order d is ψ(d) = ϕ(d).
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The Number of Generators (cont.)

We should show that the equality holds even if ψ(d) = 0. Each of the integers
in Z∗p = {1, 2, 3, . . . , p− 1} has some order d|p− 1. Thus, the sum of ψ(d) for
all the orders d|p− 1 equals |Z∗p |:

∑

d|p−1

ψ(d) = p− 1.

As we know that
∑

d|p−1ϕ(d) = p− 1, it follows that:

0 =
∑

d|p−1

(ϕ(d)− ψ(d)) =

=
∑

d|p−1,ψ(d)=0

(ϕ(d)− ψ(d)) +
∑

d|p−1,ψ(d) 6=0

(ϕ(d)− ψ(d)) =

=
∑

d|p−1,ψ(d)=0

ϕ(d) +
∑

d|p−1,ψ(d) 6=0

0 =
∑

d|p−1,ψ(d)=0

ϕ(d)
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The Number of Generators (cont.)

Since ϕ(d) ≥ 0, then ψ(d) = 0⇒ ϕ(d) = 0. We conclude that for any d:

ψ(d) = ϕ(d).

QED

c© Eli Biham - March 29, 2011 254 Introduction to Number Theory 1



The Number of Generators (cont.)

Conclusion: Let p be a prime. There are ϕ(p − 1) elements in Z∗p of order
p− 1 (i.e., all of them are generators).
Therefore, Z∗p is cyclic.
Theorem: The values of n > 1 for which Z∗n is cyclic are 2, 4, pe and 2pe for
all odd primes p and all positive integers e.
Proof: Exercise.
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Wilson’s Theorem

Wilson’s theorem: Let p be a prime.

1 · 2 · 3 · 4 · . . . · (p− 1) ≡ −1 (mod p).

Proof: Clearly it holds for p = 2. It suffices thus to prove it for p ≥ 3.
Let g be a generator of Z∗p . Then,

Z∗p = {1, g, g
2, g3, . . . , gp−2}

and thus

1 · 2 · 3 · 4 · . . . · (p− 1) ≡ 1 · g · g2 · g3 · . . . · gp−2

≡ g(p−2)(p−1)/2 (mod p).
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Wilson’s Theorem (cont.)

If g(p−1)/2 ≡ −1 (mod p), then it follows that

1 · 2 · 3 · 4 · . . . · (p− 1) ≡ g(p−2)(p−1)/2 (mod p)

≡ (−1)p−2 ≡ −1 (mod p).

It remains to show that g(p−1)/2 ≡ −1 (mod p). From Euler theorem it
follows that

gp−1 ≡ 1 (mod p).

Thus,
0 ≡ gp−1 − 1 ≡ (g(p−1)/2 + 1)(g(p−1)/2− 1) (mod p).

g(p−1)/2 6≡ 1 (mod p) since order(g, Z∗p) = p − 1 (and p is odd), and thus it

must be that g(p−1)/2 ≡ −1 (mod p).
QED
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