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Division

Definition: Let a and b be integers. We say that a divides b, or a|b if 3d
s.t. b=ad. If b # 0 then |a| < |b].

Division Theorem: For any integer a and any positive integer n, there are
unique integers ¢ and r such that 0 <r <n and a = gn + r.

The value r = a mod n is called the remainder or the residue of the division.
Theorem: If m|a and m|b then m|aa + Bb for any integers «, (3.

Proof: a = rm; b = sm for some r, s. Therefore, aa + b = arm + Bsm =
m(ar + Bs), i.e., m divides this number. QED
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Division (cont.)

If n|(a —b), i.e., a and b have the same residues modulo n: (a mod n) =
(b mod n), we write @ = b (mod n) and say that a is congruent to b
modulo n.

The integers can be divided into n equivalence classes according to their residue

modulo n:
al,={a+kn: ke Z}

Zn=A{la],:0<a<n-—1}

or briefly
Z,=40,1,....,n—1}
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Greatest Common Divisor

Let a and b be integers.

1. ged(a, b) (the greatest common divisor of a and b) is
ged(a, b) 2 max(d : d|a and d|b)

(for @ #£ 0 or b #0).
Note: This definition satisfies ged(0,1) = 1.

2. lem(a, b) (the least common multiplier of a and b) is

lem(a, b) 2 min(d > 0 : a|d and b|d)

(for a # 0 and b # 0).

3. a and b are coprimes (or relatively prime) iff gcd(a, b) = 1.
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Greatest Common Divisor (cont.)

Theorem: Let a, b be integers, not both zero, and let d be the smallest positive
element of S' = {ax + by : x,y € IN}. Then, ged(a,b) = d.
Proof: S contains a positive integer because |a| € S.
By definition, there exist x, y such that d = ax + by. d < |a|, thus there exist
q,r such that

a=qd-+r, 0<r<d.

Thus,
r=a—qd=a—qlar+by) =a(l —qx)+b(—qy) € S.

r < d implies r = 0, thus d|a.

By the same arguments we get d|b.

d|a and d|b, thus d < ged(a, b).

On the other hand ged(a, b)|a and ged(a, b)|b, and thus ged(a, b) divides any
linear combination of a, b, i.e., ged(a, b) divides all elements in S, including d,
and thus ged(a, b) < d. We conclude that d = ged(a, b). QED
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Greatest Common Divisor (cont.)

Corollary: For any a, b, and d, if d|a and d|b then d| ged(a, b).
Proof: gcd(a,b) is a linear combination of a and b.

Lemma: For m # 0
gcd(ma, mb) = |m| ged(a, b).

Proof: If m # 0 (WLG m > 0) then ged(ma, mb) is the smallest positive
element in the set {amax+bmy}, which is m times the smallest positive element
in the set {ax + by}.
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Greatest Common Divisor (cont.)

Corollary: a and b are coprimes iff

dJx,y such that xa + yb = 1.

Proof:

(<) Let d = ged(a,b), and za + yb = 1. d|a and d|b and therefore, d|1, and
thus d = 1.

(=) a and b are coprimes, i.e., ged(a, b) = 1. Using the previous theorem, 1 is

the smallest positive integer in S = {ax +by : x,y € IN}, i.e., dx,y such that
ar + by = 1. QED
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The Fundamental Theorem of Arithmetic

The fundamental theorem of arithmetic: If c|ab and ged(b, ¢) = 1 then

cla.
Proof: We know that c|ab. Clearly, c|ac.
Thus,
clged(ab, ac) = a - ged(b,c) =a -1 = a.
QED
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Prime Numbers and Unique Factorization

Definition: An integer p > 2 is called prime if it is divisible only by 1 and
itself.

Theorem: Unique Factorization: Every positive number can be repre-
sented as a product of primes in a unique way, up to a permutation of the order
of primes.
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Prime Numbers and Unique Factorization (cont.)

Proof: Every number can be represented as a product of primes, since if one
element is not a prime, it can be further factored into smaller primes.

Assume that some number can be represented in two distinct ways as products
of primes:

P1P2pP3 - - - Ps = 414243 - - - gy

where all the factors are prime, and no p; is equal to some g; (otherwise discard
both from the product).
Then,

Pilq19293 - - - 4y
But ged(pr, 1) = 1 and thus

P1lqeqs - - - g

Similarly we continue till
b1 ‘QT

Contradiction. QED
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Euclid’s Algorithm

Let a and b be two positive integers, a > b > 0. Then the following algorithm
computes ged(a, b):

r-1=a
’I“QZb
for ¢ from 1 until r, =0
i, i riceo =qirica +riand 0 <y <1y
k=i-1

Example: a = 53 and b = 39.

53=1-39+ 14
39=2-14+ 11
4=1-114+3
[1=3-342
3=1-2+4+1
2=2-140

Thus, ged(53,39) = 1.
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Extended Form of Euclid’s Algorithm

Example (cont.): a = 53 and b = 39.

B=1-39+14 = 14=53 -39
39=2-144+11 = 11=39—-2-14=-2-53+3-39
4=1-11+3 = 3=14-1-11=3-53-4-39
11=3-34+42 = 2=11-3-3=—-11-534+15-39
3=1-241 = 1=3-1-2=14-53-19-39
2=2-140

Therefore, 14 - 53 — 19 -39 = 1.

We will use this algorithm later as a modular inversion algorithm, in this case
we get that (—19)-39=34-39=1 (mod 53).

Note that every r; is written as a linear combination of r;_; and r;_, and
ultimately, 7; is written as a linear combination of a and b.

© Eli Biham - March 29, 2011 214 Introduction to Number Theory 1



Proof of Euclid’s Algorithm

Claim: The algorithm stops after at most O(log a) steps.

Proof: It suffices to show that in each step r; < r;_o/2:

Fori = 1. 1 < b < a and thus in a = ¢:b + r1, ¢4 > 1. Therefore,
a>1b+ 1y > r; +rq, and thus a/2 > 1.

For ¢ > 1: r; < ri_1 < r;_9 and thus r,_9 = q;r;i_1 + r;, ¢; > 1. Therefore,
ri_o > 1ri1+1; > 1+ r;, and thus ;o /2 > 7,

After at most 2log a steps, r; reduces to zero. QED
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Proof of Euclid’s Algorithm (cont.)

Claim: r; = ged(a, b).

Proof:

ri| ged(a, b): ri|ry_1 because of the stop condition. rg|r, and rg|ry_; and
therefore r;. divides any linear combination of r;_1 and ry, including r,_o. Since
ri|re—1 and r|rp_s, it follows that ri|r,_3. Continuing this way, it follows that
ri|a and that rg|b, thus ri| gcd(a, b).

ged(a, b)|rg: 7y is a linear combination of a and b; ged(a, b)|a and ged(a, b)|b,
therefore, ged(a, b)|ry.

We conclude that r; = ged(a, b). QED
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Groups

A group (S,®) is a set .S with a binary operation & defined on .S for which
the following properties hold:

1. Closure: a®be S Foralla,beS.

2. Identity: There is an element e € .S such that e ®a = a & e = a for
all a € S.

3. Associativity: (a®b)@c=a® (bDc)forall a,b,ce S.

4. Inverses: For each a € S there exists an unique element b € S such
thata b=0Da =e.

If a group (S, @) satisfies the commutative law a®b = b@a forall a,b € S
then it is called an Abelian group.

Definition: The order of a group, denoted by |S|, is the number of elements
in S. If a group satisfies |S| < oo then it is called a finite group.

Lemma: (Z,,+,) is a finite Abelian additive group modulo n.
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Groups (cont.)

Basic Properties:
Let:

1. The identity element e in the group is unique.

2. Every element a has a single inverse, denoted by a~!. We define a=* =

ko
@izla g

3. am @ an _ am%—n'

4. (a™)" = a"m.
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Groups (cont.)

Definition: The order of a in a group S is the least ¢ > 0 such that a’ = e,
and it is denoted by order(a, S).

For example, in the group (Z3,+3), the order of 2 is 3 since 2 +2 = 4 = 1,
2+2+2=6=0 (and 0 is the identity in Z3).
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Subgroups

Definition: If (5, @) is a group, S’ C S, and (5, @) is also a group, then
(57, @) is called a subgroup of (S, ®).

Theorem: If (S, ®) is a finite group and S’ is any subset of S such that
a®be S foralla,be S then (S, @) is a subgroup of (S, B).

Example: ({0,2,4,6}, +g) is a subgroup of (Zg, +3), since it is closed under
the operation —+g.

Lagrange’s theorem: If (S, @) is a finite group and (S’, ) is a subgroup
of (.S, ®) then |S’| is a divisor of |S].
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Subgroups (cont.)

Let a be an element of a group S, denote by ({a), ®) the set:

(a) = {a" : order(a, S) > k > 1}

Theorem: (a) contains order(a,.S) distinct elements.

Proof: Assume by contradiction that there exists 1 < ¢ < j < order(a, S),
such that a’ = a’. Therefore, e = @’ in contradiction to fact that order(a, S) >
j—1>0. QED

Lemma: (a) is a subgroup of S with respect to &®.

We say that a generates the subgroup (a) or that a is a generator of (a).
Clearly, the order of (a) equals the order of a in the group. (a) is also called a
cyclic group.

Example: {0,2,4,6} C Zs can be generated by 2 or 6.

Note that a cyclic group is always Abelian.
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Subgroups (cont.)

Corollary: The order of an element divides the order of group.

Corollary: Any group of prime order must be cyclic.

Corollary: Let S be a finite group, and a € S, then o/l = e.

Theorem: Let a be an element in a group S, such that a® = e, then
order(a, S)|s.

Proof: Using the division theorem, s = ¢ - order(a, S) + r, where 0 < r <
order(a,.S). Therefore,

e =aqa° = aq-order(a,3)+r o (aorder(a,S)>q & o=

Due to the minimality of order(a,.S), we conclude that r = 0. QED
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Fields

Definition: A Field (S, ®,®) is a set S with two binary operations ¢ and
® defined on S and with two special elements denoted by 0,1 for which the
following properties hold:

1. (S,®) is an Abelian group (0 is the identity with regards to @).
2. (S'\ {0}, ®) is an Abelian group (1 is the identity with regards to ®).
3. Distributivity: a © (0@ ¢)=(a©®b) ® (a ® ¢).

Corollary: Va € S,a © 0= 0.
Proof: a ©0=a® (00 0)=a®0da®0, thus, a ® 0= 0.
Examples: (Q,+, ), (Z,,+,, ) where p is a prime.
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Inverses

Lemma: Let p be a prime. Then,
ab=0 (mod p)

iff
a=0 (modp) or b=0 (mod p).

Proof:

(«<=) From pl|a or p|b it follows that p|ab.

(=) plab. If pla we are done. Otherwise, p fa.

Since p a prime it follows that ged(a, p) = 1. Therefore, p|b (by the fundamental
theorem of arithmetic). QED
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Inverses (cont.)

Definition: Let a be a number. If there exists b such that ab=1 (mod m),

then we call b the inverse of @ modulo m, and write b 2 (mod m).

Theorem: If ged(a,m) = 1 then there exists some b such that ab = 1
(mod m).
Proof: There exist x,y such that

xa +ym = 1.

Thus,
ra=1 (mod m).

QED
Conclusion: a has an inverse modulo m iff ged(a, m) = 1. The inverse can
be computed by Euclid’s algorithm.
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*
Zn
Definition: 7 is the set of all the invertible integers modulo n:

Z"=Ai € Z,|ged(i,n) = 1}.

Theorem: For any positive n, Z* is an Abelian multiplicative group under
multiplication modulo n.

Proof: Exercise.

Z: is also called an Euler group.

Example: For a prime p, 77 = {1,2,...,p — 1}.
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Z» (cont.)

Examples:

Zy = 10,1} Zy = {1}

Zy = {0,1,2} Z: ={1,2}

Z4 — {07 17273} Zzlk - {173}
Zs=1{0,1,2,3,4} Z: ={1,2,3,4}

Z, = {0} Zr = {0} 1
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Euler’s Function

Definition: Euler’s function ¢(n) represents the number of elements in Z*:

p(n) 2125 = [{i € Z,| ged(i,n) = 1}

¢(n) is the number of numbers in {0, ..., n — 1} that are coprime to n.

Note that by this definition (1) 2 (since Z7 = {0}, which is because
ged(0,1) = 1).
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Euler’s Function (cont.)

Theorem: Let n = pi'py*- - p;’ be the unique factorization of n to distinct

primes. Then,

o) =@ i — 1) =n]]0-=).

Pi

Proof: Exercise.
Note: If the factorization of n is not known, p(n) is not known as well.
Conclusions: For prime numbers p # ¢, and any integers a and b

L.pp)=p—1
2. 9(p)=(p—1Lp~ " =p°—p"
3. ¢(pg) = (p—1)(g—1).

4. If ged(a, b) = 1 then p(ab) = p(a)p(b).

(© Eli Biham - March 29, 2011 229 Introduction to Number Theory 1



Euler’s Function (cont.)

Theorem:
> eld)=n.
dln
Proof: In this proof, we count the numbers 1,...,n in a different order. We

divide the numbers into distinct groups according to their ged d' with n, thus
the total number of elements in the groups is n.

[t remains to see what is the number of numbers out of 1,...,n whose ged
with n is d'.

Clearly, if d’ fn, the number is zero.

Otherwise, let d'|n and 1 < a < n be a number such that ged(a,n) = d'.
Therefore, a = kd', for some k € {1,...,n/d'}. Substitute a with kd’, thus
oed(kd',n) =d', ie., ged(k,n/d) = 1.
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Euler’s Function (cont.)

[t remains to see for how many k’s, 1 < k < n/d', it holds that
ged(k,n/d) = 1.

But this is the definition of Euler’s function, thus there are p(n/d’) such k’s.
Since we count each a exactly once

If d'|n then also d = % divides n, and thus we can substitute n/d’" with d and

get
> ld) =n.

dn
QED

(© Eli Biham - March 29, 2011 231 Introduction to Number Theory 1 *



Euler’s Theorem

Theorem: For any a and m, if ged(a, m) = 1 then

a?™ =1 (mod m).

Proof: a is an element in the FEuler group Z7 . Therefore, as a corollary from
Lagrange Theorem, al?n = a#™ =1 (mod m). QED
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Fermat’s Little Theorem

Fermat’s little theorem: Let p be a prime number. Then, any integer a
satisfies
a? =a (mod p).

Proof: If pla the theorem is trivial, as a = 0 (mod p). Otherwise p and a
are coprimes, and thus by Euler’s theorem

> '=1 (mod p)

and
a’? =a (mod p).

QED

(© Eli Biham - March 29, 2011 233 Introduction to Number Theory 1



Properties of Elements in the Group 72,

Definition: For a,m such that ged(a,m) = 1, let h be the smallest integer
(h > 0) satisfying
a" =1 (mod m).

(Such an integer exists by Euler’s theorem: a?™ =1 (mod m)). We call h
the order of a modulo m, and write h = order(a, Z*)).
Obviously, it is equivalent to the order of a in the Fuler group Z; .
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Properties of Elements in the Group 7, (cont.)

Conclusions: For a, m such that ged(a,m) =1
1. Ifa®*=1 (mod m), then order(a, Z%)|s.
2. order(a, Z* )|p(m)
3. If m is a prime, then order(a, Z* )|m — 1.

4. The numbers

* J—
1, CLl, CLQ, CL3, o ’aorder(a,Zm) 1

are all distinct modulo m.

Proof: Follows from the properties of groups.
QED
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Modular Exponentiation

Given a prime g and a € Z; we want to calculate a” mod q.
Denote z in binary representation as

L =Tp-1Tp—2...T1To,

_ Nl o
where x = > -~ ;2" |
Therefore, a® mod ¢ can be written as:

aF — a2(”‘1)xn—1 a2(”"2)xn—z g 2T

(© Eli Biham - March 29, 2011 236 Introduction to Number Theory 1 T



An Algorithm for Modular Exponentiation

a”]j‘ — ajz(n_l)g}n_laz(ﬂ_2)ﬂfn_2 . e . a2371a370
Algorithm:
r<—1
for ¢ < n — 1 down to 0 do

r < r?a® mod ¢ (@™ is either 1 or a)

At the end

n—1

i n—1 __ 4j
r = H ati? = (im0 1i2') — 4@ (mod q).
i=0

Complexity: O(log x) modular multiplications. For a random x this complexity
is O(logq).
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An Algorithm for Modular Exponentiation (cont.)

An important note:
(zy) mod g = ((z mod ¢)(y mod ¢)) mod g,

i.e., the modular reduction can be performed every multiplication, or only at
the end, and the results are the same.
The proof is given as an exercise.
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The Chinese Remainder Theorem

Problem 1: Let n = pg and let x € Z,,. Compute £ mod p and x mod q.
Both are easy to compute, given p and q.

Problem 2: Let n = pg, let x € Z, and let y € Z,. Compute u € Z,, such
that

r (mod p)
u =y (mod q).
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The Chinese Remainder Theorem (cont.)

Generalization: Given moduli my, ms, ..., my and values y1, 9, ..., Y.
Compute u such that for any ¢ € {1,..., k}

u=1y; (mod m;).

We can assume (without loss of generality) that all the m;’s are coprimes in
pairs (V. ged(m;, m;) = 1). (If they are not coprimes in pairs, either they
can be reduced to an equivalent set in which they are coprimes in pairs, or
else the system leads to a contradiction, such as u = 1 (mod 3) and u = 2
(mod 6)).

Example: Given the moduli my = 11 and ms = 13 find a number u
(mod 11 - 13) such that u =7 (mod 11) and u =4 (mod 13).

Answer: © =95 (mod 11-13). Check: 95 =11-8+7,95=13 -7+ 4.
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The Chinese Remainder Theorem (cont.)

The Chinese remainder theorem: Let mi, ms, ..., my be coprimes in
pairs and let y1, ¥o, ..., yi. Then, there is an unique solution u modulo
m = | [m; = mims - - - my of the equations:

u = y;  (mod my)
u = 1y (mod my)

u = 1y (mod my),

and it can be efficiently computed.
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The Chinese Remainder Theorem (cont.)

Example: Let

=7 (mod 11) u=4 (mod 13)
then compute
u =7 (mod 11 -13).

Assume we found two numbers a and b such that

a=1 (mod 11) a=0 (mod 13)
and
b=0 (mod 11) b=1 (mod 13)

Then,
u="Ta+4b (mod 11-13).
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The Chinese Remainder Theorem (cont.)

We remain with the problem of finding a and b. Notice that a is divisible by
13, and a =1 (mod 11).
Denote the inverse of 13 modulo 11 by ¢ = 137! (mod 11). Then,

13c =1 (mod 11)
13¢c = 0 (mod 13)

We conclude that

a = 13¢=13(13"" (mod 11)) (mod 11 - 13)

and similarly

b

11(117"  (mod 13)) (mod 11 -13)

Thus,
u=7-13-6+4-11-6=810=95 (mod 11 -13)
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The Chinese Remainder Theorem (cont.)

Proof: m/m; and m; are coprimes, thus m/m,; has an inverse modulo m;.

Denote

and

b;
b;

1
o =

The solution is

(© Eli Biham - March 29, 2011

L= (m/m)"  (mod m;)

bz' = lz(m/mz)

(mod m;)

(mod m;), Vi #1 (since m;|(m/m;)).

= Y101 + y2bo + - - - + yiby,

Z y;b;  (mod m).
i=1
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The Chinese Remainder Theorem (cont.)

We still have to show that the solution is unique modulo m. By contradiction,
we assume that there are two distinct solutions u; and ug, w3 Z us  (mod m).
But any modulo m; satisfy u; — us =0 (mod m;), and thus

mi\ul — U9.

Since m; are pairwise coprimes we conclude that

m = Hmi\ul — U

which means that
uy —us =0 (mod m).

Contradiction. QED
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75 =2 X Zy

Consider the homomorphism ¥ : 2% — Z7 X Z;,

U(u) = (a=umoda, S =umodb).

Lemma: v Z), it o € Z] and 5 € Z}, i.e.,

ged(ab, u) = 1 iff ged(a, ) = 1 and ged(b, u) = 1.

Proof:

(=) Trivial (k1ab + kou = 1 for some ki and k).

(«<=) By the assumptions there exist some ky, ko, k3, k4 such that

kia + kou = 1 and ksb + kyu = 1.
Thus,

]ﬁCL(kgb + k4u) + kou =1
from which we get

kiksab + (kiksa + ko)u = 1.

QED
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2% = Zg X Zy (cont.)

Lemma: WV is onto.

Proof: Choose any o € Z and any 8 € Z;, we can reconstruct u, using the
Chinese remainder theorem, and v € Z, from previous lemma.

Lemma: WV is one to one.

Proof: Assume to the contrary that for o € Z; and 8 € Z; there are u; # us
(mod ab). This is a contradiction to the uniqueness of the solution of the
Chinese remainder theorem.

QED

We conclude from the Chinese remainder theorem and these two Lemmas that
Z 1s 1-1 related to Z; x Z}.

For every av € Z and 8 € Z; there exists a unique u € Z, such that v = «
(mod a) and u = (mod b), and vise versa.

Note: This can be used to construct an alternative proof for ¢(pq) = ¢©(p)e(q),
where ged(p, q) = 1.
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Lagrange’s Theorem

Theorem: A polynomial of degree n > 0
flx) =2a" + e Ve 4 ey + e

has at most n distinct roots modulo a prime p.

Proof: It is trivial for n = 1.

By induction:

Assume that any polynomial of degree n — 1 has at most n — 1 roots. Let a be
a root of f(z), ie., f(a) =0 (mod p).

We can write

flz) = (z —a)fi(z) +r (mod p)

for some polynomial fi(x) and constant r (this is a division of f(x) by (x —a)).

Since f(a) =0 (mod p) then 7 =0 (mod p) and we get
f(@) = (z—a)fi(z) (mod p).
Thus, any root b # a of f(x) is also a root of fi(x):
0= f(0) = (b—a)fi(b) (mod p)
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Lagrange’s Theorem (cont.)

which causes
AB) =0 (mod p).

f11s of degree n — 1, and thus has at most n — 1 roots. Together with a, f has
at most n roots. QED

Note: Lagrange’s Theorem does not hold for composites, for example:

7> —4=0 (mod 35)

has 4 roots: 2,12, 23 and 33.
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(Generators

Definition: « is called a generator of Z* if order(a, Z*) = p(n).

Not all groups posses generators. If Z' possesses a generator g, then Z7 is
cyclic.

If g is a generator of Z and a is any element of Z* then there exists a z such
that ¢* =a (mod n). This z is called the discrete logarithm or index of
a modulo n to the base g. We denote this value as ind,, ;,(a) or DLOG,, ,(a).
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The Number of Generators

Theorem: Let h be the order of @ modulo m. Let s be an integer such that
gcd(h, s) = 1, then the order of a® modulo m is also h.
Proof: Denote the order of a by h and the order of a® by A’

(@)"=(a")¥*=1 (mod m).

Thus, h'|h.
On the other hand, / /
' = ()" =1 (mod m)

and thus h|sh'. Since ged(h, s) = 1 then h|h'.
QED
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The Number of Generators (cont.)

Theorem: Let p be a prime and d|p — 1. The number of integers in Z, of
order d is p(d).

Proof: Denote the number of integers in Z which are of order d by ¥(d). We
should prove that ¢(d) = ¢(d).

Assume that ¢(d) # 0, and let @ € Z) have an order d (¢’ =1 (mod p)).

The equation 27 =1 (mod p) has the following solutions

_d 1 2 3 d—1
l=a"a,a",a>,....,a

all of which are distinct.

We know that # = a' (mod p) has an order of d iff ged(i,d) = 1, and thus
the number of solutions with order d is 1 (d) = ¢(d).
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The Number of Generators (cont.)

We should show that the equality holds even if 1(d) = 0. Each of the integers

in Z;=11,2,3,...,p— 1} has some order d|p — 1. Thus, the sum of ¥(d) for
all the orders d|p — 1 equals [ Z}]:

> vld)=p-1.

dlp—1

As we know that > a1 o(d) = p—1, it follows that:

0= (p(d)—p(d) =

dlp—1

= ) (pd v+ D> (p(d) = P(d) =
dlp—1,(d)=0 dlp—1,4(d)#0

= > e+ D 0= ) eld)
dlp—1,1(d)=0 d|p—1,1(d)#0 dlp—1,1(d)=0
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The Number of Generators (cont.)

Since ¢(d) > 0, then ¥(d) = 0 = ¢(d) = 0. We conclude that for any d:

QED
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The Number of Generators (cont.)

Conclusion: Let p be a prime. There are p(p — 1) elements in Z; of order
p — 1 (i.e., all of them are generators).

Therefore, Z7 is cyclic.

Theorem: The values of n > 1 for which Z is cyclic are 2,4, p® and 2p° for
all odd primes p and all positive integers e.

Proof: Exercise.
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Wilson’s Theorem

Wilson’s theorem: Let p be a prime.

1:2:3:4-...-(p—1)=—-1 (mod p).

Proof: Clearly it holds for p = 2. It suflices thus to prove it for p > 3.
Let g be a generator of Z7. Then,

Z; — {17 97927 937 T 7gp—2}
and thus

1-2-3-4-...-(p—1) l-g-g°-¢°...-g"*
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Wilson’s Theorem (cont.)

If g?=1V/2= —1 (mod p), then it follows that

1-2:3-4-...-(p=1) = ¢ PP=D2 (1mod p)
= (—1"?= -1 (mod p).

It remains to show that ¢®~/2 = —1 (mod p). From Euler theorem it
follows that
@ t=1 (mod p).

Thus,

g~ 1/2 £ 1 (mod p) since order(g, Z;) = p — 1 (and p is odd), and thus it
must be that ¢g?~/2= —1  (mod p).

QED
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