Introduction to Number Theory 1

Division

Definition: Let a and b be integers. We say that \boldsymbol{a} divides b, or $a \mid b$ if $\exists d$ s.t. $b=a d$. If $b \neq 0$ then $|a| \leq|b|$.

Division Theorem: For any integer a and any positive integer n, there are unique integers q and r such that $0 \leq r<n$ and $a=q n+r$.

The value $r=a \bmod n$ is called the remainder or the residue of the division.
Theorem: If $m \mid a$ and $m \mid b$ then $m \mid \alpha a+\beta b$ for any integers α, β.
Proof: $a=r m ; b=s m$ for some r, s. Therefore, $\alpha a+\beta b=\alpha r m+\beta s m=$ $m(\alpha r+\beta s)$, i.e., m divides this number. QED

Division (cont.)

If $n \mid(a-b)$, i.e., a and b have the same residues modulo $n:(a \bmod n)=$ $(b \bmod n)$, we write $a \equiv b \quad(\bmod \boldsymbol{n})$ and say that a is congruent to b modulo n.
The integers can be divided into n equivalence classes according to their residue modulo n :

$$
\begin{gathered}
{[a]_{n}=\{a+k n: k \in \mathbb{Z}\}} \\
Z_{n}=\left\{[a]_{n}: 0 \leq a \leq n-1\right\}
\end{gathered}
$$

or briefly

$$
Z_{n}=\{0,1, \ldots, n-1\}
$$

Greatest Common Divisor

Let a and b be integers.

1. $\operatorname{gcd}(\boldsymbol{a}, \boldsymbol{b})$ (the greatest common divisor of a and b) is

$$
\operatorname{gcd}(a, b) \stackrel{\Delta}{=} \max (d: d \mid a \text { and } d \mid b)
$$

(for $a \neq 0$ or $b \neq 0$).
Note: This definition satisfies $\operatorname{gcd}(0,1)=1$.
2. $\operatorname{lcm}(\boldsymbol{a}, \boldsymbol{b})$ (the least common multiplier of a and b) is

$$
\operatorname{lcm}(a, b) \triangleq \min (d>0: a \mid d \text { and } b \mid d)
$$

(for $a \neq 0$ and $b \neq 0$).
3. a and b are coprimes (or relatively prime) iff $\operatorname{gcd}(a, b)=1$.

Greatest Common Divisor (cont.)

Theorem: Let a, b be integers, not both zero, and let d be the smallest positive element of $S=\{a x+b y: x, y \in \mathbb{N}\}$. Then, $\operatorname{gcd}(a, b)=d$.
Proof: S contains a positive integer because $|a| \in S$.
By definition, there exist x, y such that $d=a x+b y . d \leq|a|$, thus there exist q, r such that

$$
a=q d+r, \quad 0 \leq r<d
$$

Thus,

$$
r=a-q d=a-q(a x+b y)=a(1-q x)+b(-q y) \in S .
$$

$r<d$ implies $r=0$, thus $d \mid a$.
By the same arguments we get $d \mid b$.
$d \mid a$ and $d \mid b$, thus $d \leq \operatorname{gcd}(a, b)$.
On the other hand $\operatorname{gcd}(a, b) \mid a$ and $\operatorname{gcd}(a, b) \mid b$, and thus $\operatorname{gcd}(a, b)$ divides any linear combination of a, b, i.e., $\operatorname{gcd}(a, b)$ divides all elements in S, including d, and thus $\operatorname{gcd}(a, b) \leq d$. We conclude that $d=\operatorname{gcd}(a, b)$. QED

Greatest Common Divisor (cont.)

Corollary: For any a, b, and d, if $d \mid a$ and $d \mid b$ then $d \mid \operatorname{gcd}(a, b)$. Proof: $\operatorname{gcd}(a, b)$ is a linear combination of a and b.

Lemma: For $m \neq 0$

$$
\operatorname{gcd}(m a, m b)=|m| \operatorname{gcd}(a, b)
$$

Proof: If $m \neq 0(\mathrm{WLG} m>0)$ then $\operatorname{gcd}(m a, m b)$ is the smallest positive element in the set $\{a m x+b m y\}$, which is m times the smallest positive element in the set $\{a x+b y\}$.

Greatest Common Divisor (cont.)

Corollary: a and b are coprimes iff

$$
\exists x, y \text { such that } x a+y b=1 .
$$

Proof:

(\Leftarrow) Let $d=\operatorname{gcd}(a, b)$, and $x a+y b=1 . d \mid a$ and $d \mid b$ and therefore, $d \mid 1$, and thus $d=1$.
$(\Rightarrow) a$ and b are coprimes, i.e., $\operatorname{gcd}(a, b)=1$. Using the previous theorem, 1 is the smallest positive integer in $S=\{a x+b y: x, y \in I N\}$, i.e., $\exists x, y$ such that $a x+b y=1$. QED

The Fundamental Theorem of Arithmetic

The fundamental theorem of arithmetic: If $c \mid a b$ and $\operatorname{gcd}(b, c)=1$ then $c \mid a$.
Proof: We know that $c \mid a b$. Clearly, $c \mid a c$.
Thus,

$$
c \mid \operatorname{gcd}(a b, a c)=a \cdot \operatorname{gcd}(b, c)=a \cdot 1=a
$$

QED

Prime Numbers and Unique Factorization

Definition: An integer $p \geq 2$ is called prime if it is divisible only by 1 and itself.

Theorem: Unique Factorization: Every positive number can be represented as a product of primes in a unique way, up to a permutation of the order of primes.

Prime Numbers and Unique Factorization (cont.)

Proof: Every number can be represented as a product of primes, since if one element is not a prime, it can be further factored into smaller primes.
Assume that some number can be represented in two distinct ways as products of primes:

$$
p_{1} p_{2} p_{3} \cdots p_{s}=q_{1} q_{2} q_{3} \cdots q_{r}
$$

where all the factors are prime, and no p_{i} is equal to some q_{j} (otherwise discard both from the product).
Then,

$$
p_{1} \mid q_{1} q_{2} q_{3} \cdots q_{r}
$$

But $\operatorname{gcd}\left(p_{1}, q_{1}\right)=1$ and thus

$$
p_{1} \mid q_{2} q_{3} \cdots q_{r}
$$

Similarly we continue till

$$
p_{1} \mid q_{r} .
$$

Contradiction. QED

Euclid's Algorithm

Let a and b be two positive integers, $a>b>0$. Then the following algorithm computes $\operatorname{gcd}(a, b)$:
$r_{-1}=a$
$r_{0}=b$
for i from 1 until $r_{i}=0$

$$
\exists q_{i}, r_{i}: r_{i-2}=q_{i} r_{i-1}+r_{i} \text { and } 0 \leq r_{i}<r_{i-1}
$$

$\mathrm{k}=\mathrm{i}-1$
Example: $a=53$ and $b=39$.

$$
\begin{aligned}
53 & =1 \cdot 39+14 \\
39 & =2 \cdot 14+11 \\
14 & =1 \cdot 11+3 \\
11 & =3 \cdot 3+2 \\
3 & =1 \cdot 2+1 \\
2 & =2 \cdot 1+0
\end{aligned}
$$

Thus, $\operatorname{gcd}(53,39)=1$.

Extended Form of Euclid's Algorithm

Example (cont.): $a=53$ and $b=39$.

$$
\begin{aligned}
& 53=1 \cdot 39+14 \Rightarrow 14=53-39 \\
& 39=2 \cdot 14+11 \Rightarrow 11=39-2 \cdot 14=-2 \cdot 53+3 \cdot 39 \\
& 14=1 \cdot 11+3 \quad \Rightarrow \quad 3=14-1 \cdot 11=3 \cdot 53-4 \cdot 39 \\
& 11=3 \cdot 3+2 \quad \Rightarrow \quad 2=11-3 \cdot 3=-11 \cdot 53+15 \cdot 39 \\
& 3=1 \cdot 2+1 \quad \Rightarrow \quad 1=3-1 \cdot 2=14 \cdot 53-19 \cdot 39 \\
& 2=2 \cdot 1+0
\end{aligned}
$$

Therefore, $14 \cdot 53-19 \cdot 39=1$.
We will use this algorithm later as a modular inversion algorithm, in this case we get that $(-19) \cdot 39 \equiv 34 \cdot 39 \equiv 1 \quad(\bmod 53)$.
Note that every r_{i} is written as a linear combination of r_{i-1} and r_{i-2}, and ultimately, r_{i} is written as a linear combination of a and b.

Proof of Euclid's Algorithm

Claim: The algorithm stops after at most $O(\log a)$ steps.
Proof: It suffices to show that in each step $r_{i}<r_{i-2} / 2$:
For $i=1: r_{1}<b<a$ and thus in $a=q_{1} b+r_{1}, q_{1} \geq 1$. Therefore, $a \geq 1 b+r_{1}>r_{1}+r_{1}$, and thus $a / 2>r_{1}$.
For $i>1: r_{i}<r_{i-1}<r_{i-2}$ and thus $r_{i-2}=q_{i} r_{i-1}+r_{i}, q_{i} \geq 1$. Therefore, $r_{i-2} \geq 1 r_{i-1}+r_{i}>r_{i}+r_{i}$, and thus $r_{i-2} / 2>r_{i}$.
After at most $2 \log a$ steps, r_{i} reduces to zero. QED

Proof of Euclid's Algorithm (cont.)

Claim: $r_{k}=\operatorname{gcd}(a, b)$.

Proof:

$r_{k}\left|\operatorname{gcd}(a, b): \quad r_{k}\right| r_{k-1}$ because of the stop condition. $r_{k} \mid r_{k}$ and $r_{k} \mid r_{k-1}$ and therefore r_{k} divides any linear combination of r_{k-1} and r_{k}, including r_{k-2}. Since $r_{k} \mid r_{k-1}$ and $r_{k} \mid r_{k-2}$, it follows that $r_{k} \mid r_{k-3}$. Continuing this way, it follows that $r_{k} \mid a$ and that $r_{k} \mid b$, thus $r_{k} \mid \operatorname{gcd}(a, b)$.
$\operatorname{gcd}(a, b) \mid r_{k}: r_{k}$ is a linear combination of a and $b ; \operatorname{gcd}(a, b) \mid a$ and $\operatorname{gcd}(a, b) \mid b$, therefore, $\operatorname{gcd}(a, b) \mid r_{k}$.
We conclude that $r_{k}=\operatorname{gcd}(a, b)$. QED

Groups

A group (S, \oplus) is a set S with a binary operation \oplus defined on S for which the following properties hold:

1. Closure: $a \oplus b \in S$ For all $a, b \in S$.
2. Identity: There is an element $e \in S$ such that $e \oplus a=a \oplus e=a$ for all $a \in S$.
3. Associativity: $(a \oplus b) \oplus c=a \oplus(b \oplus c)$ for all $a, b, c \in S$.
4. Inverses: For each $a \in S$ there exists an unique element $b \in S$ such that $a \oplus b=b \oplus a=e$.

If a group (S, \oplus) satisfies the commutative law $a \oplus b=b \oplus a$ for all $a, b \in S$ then it is called an Abelian group.
Definition: The order of a group, denoted by $|S|$, is the number of elements in S. If a group satisfies $|S|<\infty$ then it is called a finite group. Lemma: $\left(Z_{n},+_{n}\right)$ is a finite Abelian additive group modulo n.

Groups (cont.)

Basic Properties:

Let:

$$
\begin{gathered}
a^{k}=\bigoplus_{i=1}^{k} a=\underbrace{a \oplus a \oplus \ldots \oplus a}_{k} . \\
a^{0}=e
\end{gathered}
$$

1. The identity element e in the group is unique.
2. Every element a has a single inverse, denoted by a^{-1}. We define $a^{-k}=$ $\bigoplus_{i=1}^{k} a^{-1}$.
3. $a^{m} \oplus a^{n}=a^{m+n}$.
4. $\left(a^{m}\right)^{n}=a^{n m}$.

Groups (cont.)

Definition: The order of a in a group S is the least $t>0$ such that $a^{t}=e$, and it is denoted by order (a, S).
For example, in the group $\left(Z_{3},+_{3}\right)$, the order of 2 is 3 since $2+2 \equiv 4 \equiv 1$, $2+2+2 \equiv 6 \equiv 0$ (and 0 is the identity in Z_{3}).

Subgroups

Definition: If (S, \oplus) is a group, $S^{\prime} \subseteq S$, and $\left(S^{\prime}, \oplus\right)$ is also a group, then $\left(S^{\prime}, \oplus\right)$ is called a subgroup of (S, \oplus).
Theorem: If (S, \oplus) is a finite group and S^{\prime} is any subset of S such that $a \oplus b \in S^{\prime}$ for all $a, b \in S^{\prime}$, then $\left(S^{\prime}, \oplus\right)$ is a subgroup of (S, \oplus).
Example: $\left(\{0,2,4,6\},+_{8}\right)$ is a subgroup of $\left(Z_{8},+_{8}\right)$, since it is closed under the operation $+_{8}$.
Lagrange's theorem: If (S, \oplus) is a finite group and $\left(S^{\prime}, \oplus\right)$ is a subgroup of (S, \oplus) then $\left|S^{\prime}\right|$ is a divisor of $|S|$.

Subgroups (cont.)

Let a be an element of a group S, denote by $(\langle a\rangle, \oplus)$ the set:

$$
\langle a\rangle=\left\{a^{k}: \operatorname{order}(a, S) \geq k \geq 1\right\}
$$

Theorem: $\langle a\rangle$ contains order (a, S) distinct elements.
Proof: Assume by contradiction that there exists $1 \leq i<j \leq \operatorname{order}(a, S)$, such that $a^{i}=a^{j}$. Therefore, $e=a^{j-i}$ in contradiction to fact that order $(a, S)>$ $j-i>0$. QED
Lemma: $\langle a\rangle$ is a subgroup of S with respect to \oplus.
We say that a generates the subgroup $\langle a\rangle$ or that a is a generator of $\langle a\rangle$. Clearly, the order of $\langle a\rangle$ equals the order of a in the group. $\langle a\rangle$ is also called a cyclic group.
Example: $\{0,2,4,6\} \subset Z_{8}$ can be generated by 2 or 6 .
Note that a cyclic group is always Abelian.

Subgroups (cont.)

Corollary: The order of an element divides the order of group.
Corollary: Any group of prime order must be cyclic.
Corollary: Let S be a finite group, and $a \in S$, then $a^{|S|}=e$.
Theorem: Let a be an element in a group S, such that $a^{s}=e$, then $\operatorname{order}(a, S) \mid s$.
Proof: Using the division theorem, $s=q \cdot \operatorname{order}(a, S)+r$, where $0 \leq r<$ order (a, S). Therefore,

$$
e=a^{s}=a^{q \cdot \operatorname{order}(a, S)+r}=\left(a^{\operatorname{order}(a, S)}\right)^{q} \oplus a^{r}=a^{r} .
$$

Due to the minimality of $\operatorname{order}(a, S)$, we conclude that $r=0$. QED

Fields

Definition: A Field (S, \oplus, \odot) is a set S with two binary operations \oplus and \odot defined on S and with two special elements denoted by 0,1 for which the following properties hold:

1. (S, \oplus) is an Abelian group (0 is the identity with regards to \oplus).
2. $(S \backslash\{0\}, \odot)$ is an Abelian group (1 is the identity with regards to \odot).
3. Distributivity: $a \odot(b \oplus c)=(a \odot b) \oplus(a \odot c)$.

Corollary: $\forall a \in S, a \odot 0=0$.
Proof: $a \odot 0=a \odot(0 \oplus 0)=a \odot 0 \oplus a \odot 0$, thus, $a \odot 0=0$.
Examples: $(Q,+, \cdot),\left(Z_{p},+_{p},{ }_{p}\right)$ where p is a prime.

Inverses

Lemma: Let p be a prime. Then,

$$
a b \equiv 0 \quad(\bmod p)
$$

iff

$$
a \equiv 0 \quad(\bmod p) \quad \text { or } \quad b \equiv 0 \quad(\bmod p) .
$$

Proof:

(\Leftarrow) From $p \mid a$ or $p \mid b$ it follows that $p \mid a b$.
$(\Rightarrow) p \mid a b$. If $p \mid a$ we are done. Otherwise, $p \nmid a$.
Since p a prime it follows that $\operatorname{gcd}(a, p)=1$. Therefore, $p \mid b$ (by the fundamental theorem of arithmetic). QED

Inverses (cont.)

Definition: Let a be a number. If there exists b such that $a b \equiv 1(\bmod m)$, then we call b the inverse of a modulo m, and write $b \triangleq a^{-1}(\bmod m)$.
Theorem: If $\operatorname{gcd}(a, m)=1$ then there exists some b such that $a b \equiv 1$ $(\bmod m)$.
Proof: There exist x, y such that

$$
x a+y m=1 .
$$

Thus,

$$
x a \equiv 1 \quad(\bmod m) .
$$

QED
Conclusion: a has an inverse modulo m iff $\operatorname{gcd}(a, m)=1$. The inverse can be computed by Euclid's algorithm.

$\underline{Z_{n}^{*}}$

Definition: Z_{n}^{*} is the set of all the invertible integers modulo n :

$$
Z_{n}^{*}=\left\{i \in Z_{n} \mid \operatorname{gcd}(i, n)=1\right\}
$$

Theorem: For any positive n, Z_{n}^{*} is an Abelian multiplicative group under multiplication modulo n.
Proof: Exercise.
Z_{n}^{*} is also called an Euler group.
Example: For a prime $p, Z_{p}^{*}=\{1,2, \ldots, p-1\}$.

$\underline{Z_{n}^{*} \text { (cont.) }}$

Examples:

$$
\begin{array}{ll}
Z_{2}=\{0,1\} & Z_{2}^{*}=\{1\} \\
Z_{3}=\{0,1,2\} & Z_{3}^{*}=\{1,2\} \\
Z_{4}=\{0,1,2,3\} & Z_{4}^{*}=\{1,3\} \\
Z_{5}=\{0,1,2,3,4\} & Z_{5}^{*}=\{1,2,3,4\} \\
Z_{1}=\{0\} & Z_{1}^{*}=\{0\}!!!!!
\end{array}
$$

Euler's Function

Definition: Euler's function $\varphi(n)$ represents the number of elements in Z_{n}^{*} :

$$
\varphi(n) \triangleq\left|Z_{n}^{*}\right|=\left|\left\{i \in Z_{n} \mid \operatorname{gcd}(i, n)=1\right\}\right|
$$

$\varphi(n)$ is the number of numbers in $\{0, \ldots, n-1\}$ that are coprime to n. Note that by this definition $\varphi(1) \triangleq 1$ (since $Z_{1}^{*}=\{0\}$, which is because $\operatorname{gcd}(0,1)=1$.

Euler's Function (cont.)

Theorem: Let $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{l}^{e_{l}}$ be the unique factorization of n to distinct primes. Then,

$$
\varphi(n)=\prod\left(p_{i}^{e_{i}-1}\left(p_{i}-1\right)\right)=n \prod\left(1-\frac{1}{p_{i}}\right) .
$$

Proof: Exercise.
Note: If the factorization of n is not known, $\varphi(n)$ is not known as well.
Conclusions: For prime numbers $p \neq q$, and any integers a and b

1. $\varphi(p)=p-1$.
2. $\varphi\left(p^{e}\right)=(p-1) p^{e-1}=p^{e}-p^{e-1}$.
3. $\varphi(p q)=(p-1)(q-1)$.
4. If $\operatorname{gcd}(a, b)=1$ then $\varphi(a b)=\varphi(a) \varphi(b)$.

Euler's Function (cont.)

Theorem:

$$
\sum_{d \mid n} \varphi(d)=n
$$

Proof: In this proof, we count the numbers $1, \ldots, n$ in a different order. We divide the numbers into distinct groups according to their gcd d^{\prime} with n, thus the total number of elements in the groups is n.
It remains to see what is the number of numbers out of $1, \ldots, n$ whose gcd with n is d^{\prime}.
Clearly, if $d^{\prime} \nmid n$, the number is zero.
Otherwise, let $d^{\prime} \mid n$ and $1 \leq a \leq n$ be a number such that $\operatorname{gcd}(a, n)=d^{\prime}$. Therefore, $a=k d^{\prime}$, for some $k \in\left\{1, \ldots, n / d^{\prime}\right\}$. Substitute a with $k d^{\prime}$, thus $\operatorname{gcd}\left(k d^{\prime}, n\right)=d^{\prime}$, i.e., $\operatorname{gcd}\left(k, n / d^{\prime}\right)=1$.

Euler's Function (cont.)

It remains to see for how many k 's, $1 \leq k \leq n / d^{\prime}$, it holds that

$$
\operatorname{gcd}\left(k, n / d^{\prime}\right)=1
$$

But this is the definition of Euler's function, thus there are $\varphi\left(n / d^{\prime}\right)$ such k 's. Since we count each a exactly once

$$
\sum_{d^{\prime} \mid n} \varphi\left(n / d^{\prime}\right)=n
$$

If $d^{\prime} \mid n$ then also $d=\frac{n}{d^{\prime}}$ divides n, and thus we can substitute n / d^{\prime} with d and get

$$
\sum_{d \mid n} \varphi(d)=n
$$

QED

Euler's Theorem

Theorem: For any a and m, if $\operatorname{gcd}(a, m)=1$ then

$$
a^{\varphi(m)} \equiv 1 \quad(\bmod m) .
$$

Proof: a is an element in the Euler group Z_{m}^{*}. Therefore, as a corollary from Lagrange Theorem, $a^{\left|Z_{m}^{*}\right|}=a^{\varphi(m)}=1(\bmod m)$. QED

Fermat's Little Theorem

Fermat's little theorem: Let p be a prime number. Then, any integer a satisfies

$$
a^{p} \equiv a \quad(\bmod p)
$$

Proof: If $p \mid a$ the theorem is trivial, as $a \equiv 0(\bmod p)$. Otherwise p and a are coprimes, and thus by Euler's theorem

$$
a^{p-1} \equiv 1 \quad(\bmod p)
$$

and

$$
a^{p} \equiv a \quad(\bmod p)
$$

QED

Properties of Elements in the Group Z_{m}^{*}

Definition: For a, m such that $\operatorname{gcd}(a, m)=1$, let h be the smallest integer ($h>0$) satisfying

$$
a^{h} \equiv 1 \quad(\bmod m) .
$$

(Such an integer exists by Euler's theorem: $a^{\varphi(m)} \equiv 1(\bmod m)$). We call h the order of a modulo m, and write $h=\operatorname{order}\left(a, Z_{m}^{*}\right)$.
Obviously, it is equivalent to the order of a in the Euler group Z_{m}^{*}.

Properties of Elements in the Group Z_{m}^{*} (cont.)

Conclusions: For a, m such that $\operatorname{gcd}(a, m)=1$

1. If $a^{s} \equiv 1 \quad(\bmod m)$, then $\operatorname{order}\left(a, Z_{m}^{*}\right) \mid s$.
2. order $\left(a, Z_{m}^{*}\right) \mid \varphi(m)$
3. If m is a prime, then $\operatorname{order}\left(a, Z_{m}^{*}\right) \mid m-1$.
4. The numbers

$$
1, a^{1}, a^{2}, a^{3}, \ldots, a^{\operatorname{order}\left(a, Z_{m}^{*}\right)-1}
$$

are all distinct modulo m.
Proof: Follows from the properties of groups. QED

Modular Exponentiation

Given a prime q and $a \in Z_{q}^{*}$ we want to calculate $a^{x} \bmod q$.
Denote x in binary representation as

$$
x=x_{n-1} x_{n-2} \ldots x_{1} x_{0}
$$

where $x=\sum_{i=0}^{n-1} x_{i} 2^{i}$.
Therefore, $a^{x} \bmod q$ can be written as:

$$
a^{x}=a^{2^{(n-1)} x_{n-1}} a^{2^{(n-2)} x_{n-2}} \cdots a^{2 x_{1}} a^{x_{0}}
$$

An Algorithm for Modular Exponentiation

$$
a^{x}=a^{2^{(n-1)} x_{n-1}} a^{2^{(n-2)} x_{n-2}} \cdots a^{2 x_{1}} a^{x_{0}}
$$

Algorithm:

```
r}\leftarrow
for }i\leftarrown-1\mathrm{ down to 0 do
    r\leftarrowr r}\mp@subsup{a}{}{\mp@subsup{x}{i}{}}\operatorname{mod}q\quad(\mp@subsup{a}{}{\mp@subsup{x}{i}{}}\mathrm{ is either 1 or }a
```

At the end

$$
r=\prod_{i=0}^{n-1} a^{x_{i} 2^{i}}=a^{\left(\sum_{i=0}^{n-1} x_{i} 2^{i}\right)}=a^{x} \quad(\bmod q)
$$

Complexity: $O(\log x)$ modular multiplications. For a random x this complexity is $O(\log q)$.

An Algorithm for Modular Exponentiation (cont.)

An important note:

$$
(x y) \bmod q=((x \bmod q)(y \bmod q)) \bmod q
$$

i.e., the modular reduction can be performed every multiplication, or only at the end, and the results are the same.
The proof is given as an exercise.

The Chinese Remainder Theorem

Problem 1: Let $n=p q$ and let $x \in Z_{n}$. Compute $x \bmod p$ and $x \bmod q$. Both are easy to compute, given p and q.

Problem 2: Let $n=p q$, let $x \in Z_{p}$ and let $y \in Z_{q}$. Compute $u \in Z_{n}$ such that

$$
\begin{aligned}
& u \equiv x \quad(\bmod p) \\
& u \equiv y \quad(\bmod q)
\end{aligned}
$$

The Chinese Remainder Theorem (cont.)

Generalization: Given moduli $m_{1}, m_{2}, \ldots, m_{k}$ and values $y_{1}, y_{2}, \ldots, y_{k}$. Compute u such that for any $i \in\{1, \ldots, k\}$

$$
u \equiv y_{i} \quad\left(\bmod m_{i}\right)
$$

We can assume (without loss of generality) that all the m_{i} 's are coprimes in pairs $\left(\forall_{i \neq j} \operatorname{gcd}\left(m_{i}, m_{j}\right)=1\right)$. (If they are not coprimes in pairs, either they can be reduced to an equivalent set in which they are coprimes in pairs, or else the system leads to a contradiction, such as $u \equiv 1 \quad(\bmod 3)$ and $u \equiv 2$ $(\bmod 6))$.
Example: Given the moduli $m_{1}=11$ and $m_{2}=13$ find a number u $(\bmod 11 \cdot 13)$ such that $u \equiv 7(\bmod 11)$ and $u \equiv 4(\bmod 13)$.
Answer: $u \equiv 95 \quad(\bmod 11 \cdot 13)$. Check: $95=11 \cdot 8+7,95=13 \cdot 7+4$.

The Chinese Remainder Theorem (cont.)

The Chinese remainder theorem: Let $m_{1}, m_{2}, \ldots, m_{k}$ be coprimes in pairs and let $y_{1}, y_{2}, \ldots, y_{k}$. Then, there is an unique solution u modulo $m=\prod m_{i}=m_{1} m_{2} \cdots m_{k}$ of the equations:

$$
\begin{aligned}
& u \equiv y_{1} \quad\left(\bmod m_{1}\right) \\
& u \equiv y_{2} \quad\left(\bmod m_{2}\right) \\
& \vdots \\
& u \equiv y_{k} \quad\left(\bmod m_{k}\right),
\end{aligned}
$$

and it can be efficiently computed.

The Chinese Remainder Theorem (cont.)

Example: Let

$$
u \equiv 7 \quad(\bmod 11) \quad u \equiv 4 \quad(\bmod 13)
$$

then compute

$$
u \equiv ? \quad(\bmod 11 \cdot 13) .
$$

Assume we found two numbers a and b such that

$$
a \equiv 1 \quad(\bmod 11) \quad a \equiv 0 \quad(\bmod 13)
$$

and

$$
b \equiv 0 \quad(\bmod 11) \quad b \equiv 1 \quad(\bmod 13)
$$

Then,

$$
u \equiv 7 a+4 b \quad(\bmod 11 \cdot 13)
$$

The Chinese Remainder Theorem (cont.)

We remain with the problem of finding a and b. Notice that a is divisible by 13 , and $a \equiv 1 \quad(\bmod 11)$.
Denote the inverse of 13 modulo 11 by $c \equiv 13^{-1} \quad(\bmod 11)$. Then,

$$
\begin{aligned}
& 13 c \equiv 1 \quad(\bmod 11) \\
& 13 c \equiv 0 \quad(\bmod 13)
\end{aligned}
$$

We conclude that

$$
a \equiv 13 c \equiv 13\left(13^{-1} \quad(\bmod 11)\right) \quad(\bmod 11 \cdot 13)
$$

and similarly

$$
b \equiv 11\left(11^{-1} \quad(\bmod 13)\right) \quad(\bmod 11 \cdot 13)
$$

Thus,

$$
u \equiv 7 \cdot 13 \cdot 6+4 \cdot 11 \cdot 6 \equiv 810 \equiv 95 \quad(\bmod 11 \cdot 13)
$$

The Chinese Remainder Theorem (cont.)

Proof: m / m_{i} and m_{i} are coprimes, thus m / m_{i} has an inverse modulo m_{i}. Denote

$$
l_{i} \equiv\left(m / m_{i}\right)^{-1} \quad\left(\bmod m_{i}\right)
$$

and

$$
\begin{aligned}
& b_{i}=l_{i}\left(m / m_{i}\right) . \\
b_{i} & \equiv 1 \quad\left(\bmod m_{i}\right) \\
b_{i} & \equiv 0 \quad\left(\bmod m_{j}\right), \quad \forall j \neq i \quad\left(\text { since } m_{j} \mid\left(m / m_{i}\right)\right) .
\end{aligned}
$$

The solution is

$$
\begin{aligned}
u & \equiv y_{1} b_{1}+y_{2} b_{2}+\cdots+y_{k} b_{k} \\
& \equiv \sum_{i=1}^{m} y_{i} b_{i} \quad(\bmod m)
\end{aligned}
$$

The Chinese Remainder Theorem (cont.)

We still have to show that the solution is unique modulo m. By contradiction, we assume that there are two distinct solutions u_{1} and $u_{2}, u_{1} \not \equiv u_{2}(\bmod m)$. But any modulo m_{i} satisfy $u_{1}-u_{2} \equiv 0\left(\bmod m_{i}\right)$, and thus

$$
m_{i} \mid u_{1}-u_{2}
$$

Since m_{i} are pairwise coprimes we conclude that

$$
m=\prod m_{i} \mid u_{1}-u_{2}
$$

which means that

$$
u_{1}-u_{2} \equiv 0 \quad(\bmod m)
$$

Contradiction. QED

$$
\underline{Z_{a b}^{*} \equiv Z_{a}^{*} \times Z_{b}^{*}}
$$

Consider the homomorphism $\Psi: Z_{a b}^{*} \rightarrow Z_{a}^{*} \times Z_{b}^{*}$,
$\Psi(u)=(\alpha=u \bmod a, \beta=u \bmod b)$.
Lemma: $u \in Z_{a b}^{*}$ iff $\alpha \in Z_{a}^{*}$ and $\beta \in Z_{b}^{*}$, i.e.,
$\operatorname{gcd}(a b, u)=1$ iff $\operatorname{gcd}(a, u)=1$ and $\operatorname{gcd}(b, u)=1$.

Proof:

(\Rightarrow) Trivial $\left(k_{1} a b+k_{2} u=1\right.$ for some k_{1} and $\left.k_{2}\right)$.
(\Leftarrow) By the assumptions there exist some $k_{1}, k_{2}, k_{3}, k_{4}$ such that

$$
k_{1} a+k_{2} u=1 \text { and } k_{3} b+k_{4} u=1 .
$$

Thus,

$$
k_{1} a\left(k_{3} b+k_{4} u\right)+k_{2} u=1
$$

from which we get

$$
k_{1} k_{3} a b+\left(k_{1} k_{4} a+k_{2}\right) u=1 .
$$

QED

$$
Z_{a b}^{*} \equiv Z_{a}^{*} \times Z_{b}^{*} \text { (cont.) }
$$

Lemma: Ψ is onto.
Proof: Choose any $\alpha \in Z_{a}^{*}$ and any $\beta \in Z_{b}^{*}$, we can reconstruct u, using the Chinese remainder theorem, and $u \in Z_{a b}^{*}$ from previous lemma.
Lemma: Ψ is one to one.
Proof: Assume to the contrary that for $\alpha \in Z_{a}^{*}$ and $\beta \in Z_{b}^{*}$ there are $u_{1} \not \equiv u_{2}$ $(\bmod a b)$. This is a contradiction to the uniqueness of the solution of the Chinese remainder theorem.
QED
We conclude from the Chinese remainder theorem and these two Lemmas that $Z_{a b}^{*}$ is 1-1 related to $Z_{a}^{*} \times Z_{b}^{*}$.
For every $\alpha \in Z_{a}^{*}$ and $\beta \in Z_{b}^{*}$ there exists a unique $u \in Z_{a b}^{*}$ such that $u \equiv \alpha$ $(\bmod a)$ and $u \equiv \beta \quad(\bmod b)$, and vise versa.
Note: This can be used to construct an alternative proof for $\varphi(p q)=\varphi(p) \varphi(q)$, where $\operatorname{gcd}(p, q)=1$.

Lagrange's Theorem

Theorem: A polynomial of degree $n>0$

$$
f(x)=x^{n}+c_{1} x^{n-1}+c_{2} x^{n-2}+\ldots+c_{n-1} x+c_{n}
$$

has at most n distinct roots modulo a prime p.
Proof: It is trivial for $n=1$.
By induction:
Assume that any polynomial of degree $n-1$ has at most $n-1$ roots. Let a be a root of $f(x)$, i.e., $f(a) \equiv 0(\bmod p)$.
We can write

$$
f(x)=(x-a) f_{1}(x)+r \quad(\bmod p)
$$

for some polynomial $f_{1}(x)$ and constant r (this is a division of $f(x)$ by $(x-a)$).
Since $f(a) \equiv 0 \quad(\bmod p)$ then $r \equiv 0 \quad(\bmod p)$ and we get

$$
f(x)=(x-a) f_{1}(x) \quad(\bmod p)
$$

Thus, any root $b \neq a$ of $f(x)$ is also a root of $f_{1}(x)$:

$$
0 \equiv f(b) \equiv(b-a) f_{1}(b) \quad(\bmod p)
$$

Lagrange's Theorem (cont.)

which causes

$$
f_{1}(b) \equiv 0 \quad(\bmod p) .
$$

f_{1} is of degree $n-1$, and thus has at most $n-1$ roots. Together with a, f has at most n roots. QED

Note: Lagrange's Theorem does not hold for composites, for example:

$$
x^{2}-4 \equiv 0 \quad(\bmod 35)
$$

has 4 roots: 2, 12, 23 and 33 .

Generators

Definition: a is called a generator of Z_{n}^{*} if $\operatorname{order}\left(a, Z_{n}^{*}\right)=\varphi(n)$.
Not all groups posses generators. If Z_{n}^{*} possesses a generator g, then Z_{n}^{*} is cyclic.
If g is a generator of Z_{n}^{*} and a is any element of Z_{n}^{*} then there exists a z such that $g^{z} \equiv a \quad(\bmod n)$. This z is called the discrete logarithm or index of a modulo n to the base g. We denote this value as $\operatorname{ind}_{n, g}(a)$ or $\operatorname{DLOG}_{n, g}(a)$.

The Number of Generators

Theorem: Let h be the order of a modulo m. Let s be an integer such that $\operatorname{gcd}(h, s)=1$, then the order of a^{s} modulo m is also h.
Proof: Denote the order of a by h and the order of a^{s} by h^{\prime}.

$$
\left(a^{s}\right)^{h} \equiv\left(a^{h}\right)^{s} \equiv 1 \quad(\bmod m)
$$

Thus, $h^{\prime} \mid h$.
On the other hand,

$$
a^{s h^{\prime}} \equiv\left(a^{s}\right)^{h^{\prime}} \equiv 1 \quad(\bmod m)
$$

and thus $h \mid s h^{\prime}$. Since $\operatorname{gcd}(h, s)=1$ then $h \mid h^{\prime}$.
QED

The Number of Generators (cont.)

Theorem: Let p be a prime and $d \mid p-1$. The number of integers in Z_{p}^{*} of order d is $\varphi(d)$.
Proof: Denote the number of integers in Z_{p}^{*} which are of order d by $\psi(d)$. We should prove that $\psi(d)=\varphi(d)$.
Assume that $\psi(d) \neq 0$, and let $a \in Z_{p}^{*}$ have an order $d\left(a^{d} \equiv 1(\bmod p)\right)$. The equation $x^{d} \equiv 1 \quad(\bmod p)$ has the following solutions

$$
1 \equiv a^{d}, a^{1}, a^{2}, a^{3}, \ldots, a^{d-1}
$$

all of which are distinct.
We know that $x \equiv a^{i} \quad(\bmod p)$ has an order of d iff $\operatorname{gcd}(i, d)=1$, and thus the number of solutions with order d is $\psi(d)=\varphi(d)$.

The Number of Generators (cont.)

We should show that the equality holds even if $\psi(d)=0$. Each of the integers in $Z_{p}^{*}=\{1,2,3, \ldots, p-1\}$ has some order $d \mid p-1$. Thus, the sum of $\psi(d)$ for all the orders $d \mid p-1$ equals $\left|Z_{p}^{*}\right|$:

$$
\sum_{d \mid p-1} \psi(d)=p-1
$$

As we know that $\sum_{d \mid p-1} \varphi(d)=p-1$, it follows that:

$$
\begin{aligned}
0 & =\sum_{d \mid p-1}(\varphi(d)-\psi(d))= \\
& =\sum_{d \mid p-1, \psi(d)=0}(\varphi(d)-\psi(d))+\sum_{d \mid p-1, \psi(d) \neq 0}(\varphi(d)-\psi(d))= \\
& =\sum_{d \mid p-1, \psi(d)=0} \varphi(d)+\sum_{d \mid p-1, \psi(d) \neq 0} 0=\sum_{d \mid p-1, \psi(d)=0} \varphi(d)
\end{aligned}
$$

The Number of Generators (cont.)

Since $\varphi(d) \geq 0$, then $\psi(d)=0 \Rightarrow \varphi(d)=0$. We conclude that for any d :

$$
\psi(d)=\varphi(d)
$$

QED

The Number of Generators (cont.)

Conclusion: Let p be a prime. There are $\varphi(p-1)$ elements in Z_{p}^{*} of order $p-1$ (i.e., all of them are generators).
Therefore, Z_{p}^{*} is cyclic.
Theorem: The values of $n>1$ for which Z_{n}^{*} is cyclic are $2,4, p^{e}$ and $2 p^{e}$ for all odd primes p and all positive integers e.
Proof: Exercise.

Wilson's Theorem

Wilson's theorem: Let p be a prime.

$$
1 \cdot 2 \cdot 3 \cdot 4 \cdot \ldots \cdot(p-1) \equiv-1 \quad(\bmod p)
$$

Proof: Clearly it holds for $p=2$. It suffices thus to prove it for $p \geq 3$. Let g be a generator of Z_{p}^{*}. Then,

$$
Z_{p}^{*}=\left\{1, g, g^{2}, g^{3}, \ldots, g^{p-2}\right\}
$$

and thus

$$
\begin{aligned}
1 \cdot 2 \cdot 3 \cdot 4 \cdot \ldots \cdot(p-1) & \equiv 1 \cdot g \cdot g^{2} \cdot g^{3} \cdot \ldots \cdot g^{p-2} \\
& \equiv g^{(p-2)(p-1) / 2} \quad(\bmod p)
\end{aligned}
$$

Wilson's Theorem (cont.)

If $g^{(p-1) / 2} \equiv-1 \quad(\bmod p)$, then it follows that

$$
\begin{aligned}
1 \cdot 2 \cdot 3 \cdot 4 \cdot \ldots \cdot(p-1) & \equiv g^{(p-2)(p-1) / 2} \quad(\bmod p) \\
& \equiv(-1)^{p-2} \equiv-1 \quad(\bmod p)
\end{aligned}
$$

It remains to show that $g^{(p-1) / 2} \equiv-1(\bmod p)$. From Euler theorem it follows that

$$
g^{p-1} \equiv 1 \quad(\bmod p)
$$

Thus,

$$
0 \equiv g^{p-1}-1 \equiv\left(g^{(p-1) / 2}+1\right)\left(g^{(p-1) / 2}-1\right) \quad(\bmod p)
$$

$g^{(p-1) / 2} \not \equiv 1 \quad(\bmod p)$ since $\operatorname{order}\left(g, Z_{p}^{*}\right)=p-1$ (and p is odd), and thus it must be that $g^{(p-1) / 2} \equiv-1 \quad(\bmod p)$.
QED

