Shannon’s Theory of Secrecy Systems

See:
C. E. Shannon,
Notation

Given a cryptosystem, denote

- M a message (plaintext)
- C a ciphertext
- K a key
- E be the encryption function $C = E_K(M)$
- D be the decryption function $M = D_K(C)$

For any key K, $E_K(\cdot)$ and $D_K(\cdot)$ are 1-1, and $D_K(E_K(\cdot)) = \text{Identity.}$
Shannon’s Theory of Secrecy Systems (1949)

Let \(\{M_1, M_2, \ldots, M_n\}\) be the message space. The messages \(M_1, M_2, \ldots, M_n\) are distributed with known probabilities \(p(M_1), p(M_2), \ldots, p(M_n)\) (not necessarily uniform).

Let \(\{K_1, K_2, \ldots, K_l\}\) be the key space. The keys \(K_1, K_2, \ldots, K_l\) are distributed with known probabilities \(p(K_1), p(K_2), \ldots, p(K_l)\). Usually (but not necessarily) the keys are uniformly distributed: \(p(K_i) = 1/l\).

Each key projects all the messages onto all the ciphertexts, giving a bipartite graph:
Shannon’s Theory of Secrecy Systems (1949) (cont.)

\[p_1 = p(M_1) \]
\[p_2 = p(M_2) \]
\[p_3 = p(M_3) \]
\[p_n = p(M_n) \]
Perfect Ciphers

Definition: A cipher is **perfect** if for any M, C

$$p(M|C) = p(M)$$

(i.e., the ciphertext does not reveal any information on the plaintext).

By this definition, a perfect cipher is immune against ciphertext only attacks, even if the attacker has infinite computational power (unconditional security in context of ciphertext only attacks).

Note that

$$p(M)p(C|M) = p(M, C) = p(C)p(M|C).$$
and thus it follows that

Theorem: A cipher is perfect iff

\[\forall M, C \quad p(C) = p(C|M). \]

Note that

\[p(C|M) = \sum_K p(K). \]

Therefore, a cipher is perfect iff

\[\forall C \left\{ \sum_K p(K) \text{ is independent of } M \right\}. \]
Perfect Ciphers (cont.)

Theorem: A perfect cipher satisfies \(l \geq n \) (#keys \(\geq \) #messages).

Proof: Assume the contrary: \(l < n \). Let \(C_0 \) be such that \(p(C_0) > 0 \). There exist \(l_0 \) (\(1 \leq l_0 \leq l \)) messages \(M \) such that \(M = D_K(C_0) \) for some \(K \). Let \(M_0 \) be a message not of the form \(D_K(C_0) \) (there exist \(n - l_0 \) such messages). Thus,

\[
p(C_0|M_0) = \sum_{K \in \emptyset} p(K) = \sum_{E_K(M_0) = C_0} p(K) = 0
\]

but in a perfect cipher

\[
p(C_0|M_0) = p(C_0) > 0.
\]

Contradiction. QED
Perfect Ciphers (cont.)

Example: Encrypting only one letter by Caesar cipher: \(l = n = 26, \ p(C') = p(C|M) = 1/26 \).

But:

When encrypting two letters: \(l = 26, \ n = 26^2, \ p(C) = 1/26^2 \).

Each \(M \) has only 26 possible values for \(C \), and thus for those \(C \)'s: \(p(C|M) = 1/26 \), while for the others \(C \)'s \(p(C|M) = 0 \).

In particular, \(p(C = XY|M = aa) = 0 \) for any \(X \neq Y \).
Vernam is a Perfect Cipher

Theorem: Vernam is a perfect cipher.

Vernam is a Vigenere with keys as long as the message. Clearly, if the keys are even slightly shorter, the cipher is not perfect.

Proof: Clearly, in Vernam $l = n$. Given that the keys are uniformly selected at random, $p(K) = 1/l = 1/n$.

$$p(C|M) = p(K = C - M) = \frac{1}{n} = \frac{1}{l}.$$

Since $p(C|M) = 1/l$ for any M and C, clearly also $p(C'|M) = p(C')$. QED
Entropy

Let S be a source of n elements distributed with the probabilities p_1, p_2, \ldots, p_n.

Definition: The entropy $H(S)$ of S is

$$H(S) = \sum_{i=1}^{n} p_i \log \frac{1}{p_i} = - \sum_{i=1}^{n} p_i \log p_i$$

(log is used in all the course in base 2).

The entropy is measured in units of **bits**. It measures the amount of **unknown information** in S.
Entropy (cont.)

Example: English text: We already mentioned that the frequency of the letters in English texts are

<table>
<thead>
<tr>
<th>Letter</th>
<th>Frequency</th>
<th>Letter</th>
<th>Frequency</th>
<th>Letter</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>12.31%</td>
<td>l</td>
<td>4.03%</td>
<td>b</td>
<td>1.62%</td>
</tr>
<tr>
<td>t</td>
<td>9.59%</td>
<td>d</td>
<td>3.65%</td>
<td>g</td>
<td>1.61%</td>
</tr>
<tr>
<td>a</td>
<td>8.05%</td>
<td>c</td>
<td>3.20%</td>
<td>v</td>
<td>0.93%</td>
</tr>
<tr>
<td>o</td>
<td>7.94%</td>
<td>u</td>
<td>3.10%</td>
<td>k</td>
<td>0.52%</td>
</tr>
<tr>
<td>n</td>
<td>7.19%</td>
<td>p</td>
<td>2.29%</td>
<td>q</td>
<td>0.20%</td>
</tr>
<tr>
<td>i</td>
<td>7.18%</td>
<td>f</td>
<td>2.28%</td>
<td>x</td>
<td>0.20%</td>
</tr>
<tr>
<td>s</td>
<td>6.59%</td>
<td>m</td>
<td>2.25%</td>
<td>j</td>
<td>0.10%</td>
</tr>
<tr>
<td>r</td>
<td>6.03%</td>
<td>w</td>
<td>2.03%</td>
<td>z</td>
<td>0.09%</td>
</tr>
<tr>
<td>h</td>
<td>5.14%</td>
<td>y</td>
<td>1.88%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The entropy of such a source of letters is then

\[
H(S) = - 0.1231 \log 0.1231 - 0.0959 \log 0.0959 - \ldots - 0.0009 \log 0.0009 \approx 4
\]
Entropy (cont.)

Example: Let S be uniformly distributed: $p_i = 1/n$. Then,

$$H(S) = - \sum_{i=1}^{n} \frac{1}{n} \log \frac{1}{n} = n \cdot \frac{1}{n} \cdot \log n = \log n.$$

In particular, if $n = 2^k$ then $H(S) = \log n = k$.
If $n = 26$ then $H(S) = \log 26 = 4.7$. As we noticed, in English S is not uniformly distributed, and $H(S) = 4$.

Lemma: If the distribution is not uniform $H(S) < \log n$. (to be proven shortly).
In this case, a long string whose characters are distributed as in S can be compressed to $H(S)$ bits.
Entropy (cont.)

Claim: $\ln x \leq x - 1$.

Proof: Consider the function $\ln x - (x - 1)$. Its derivative is $\frac{d}{dx} (\ln x - (x - 1)) = \frac{1}{x} - 1$, and thus the maximum is at $x = 1$ where $\ln x - (x - 1) = 0$.

The figure shows the curves of x, of $x - 1$, and of $\ln x$:

![Graph showing the curves of x, x-1, and ln x](image)

QED
Entropy (cont.)

Lemma: $H(S) \leq \log n$ (equality iff S is uniformly distributed).

Proof: Let p_i and q_i be two distributions, $\Sigma p_i = \Sigma q_i = 1$. Then

\[\sum p_i \log \frac{1}{p_i} - \sum q_i \log \frac{1}{q_i} = \sum p_i \log \frac{q_i}{p_i} = \]
\[= \frac{1}{\ln 2} \sum p_i \ln \frac{q_i}{p_i} \leq \frac{1}{\ln 2} \sum p_i \left(\frac{q_i}{p_i} - 1 \right) = \]
\[= \frac{1}{\ln 2} \left(\sum q_i - \sum p_i \right) = \frac{1}{\ln 2} (1 - 1) = 0 \]

and thus,

\[\sum p_i \log \frac{1}{p_i} \leq \sum q_i \log \frac{1}{q_i} \quad (*) \]
Entropy (cont.)

and in particular for $q_i \equiv 1/n$:

$$H(S) = \sum p_i \log \frac{1}{p_i} \leq \sum p_i \log \frac{1}{q_i} =$$

$$= \sum p_i \log \frac{1}{1/n} = \log n.$$

QED
Properties of the Entropy

Let A and B be two independent sources with distributions p, q, respectively.

Theorem: $H(A, B) = H(A) + H(B)$.

Proof:

$$-H(A, B) = \sum_{i,j} p_i q_j \log(p_i q_j)$$

$$= \sum_j q_j \sum_i p_i \log p_i + \sum_i p_i \sum_j q_j \log q_j$$

$$= \sum_i p_i \log p_i + \sum_j q_j \log q_j$$

$$= -(H(A) + H(B)).$$

QED
Conditional Entropy

Let \(p_{i,j} \) be the distribution of \(i \in A, j \in B \) \((\sum_{i,j} p_{i,j} = 1) \).

Let

\[
\begin{align*}
 p_i &= \sum_j p_{i,j} \\
 q_j &= \sum_i p_{i,j} \\
 q(j|i) &= \frac{p_{i,j}}{p_i} \quad \text{(Normalized in each row)}
\end{align*}
\]
Conditional Entropy (cont.)

Example:

<table>
<thead>
<tr>
<th></th>
<th>B_1</th>
<th>B_2</th>
<th>B_j</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>$p_{1,1}$</td>
<td>$p_{1,2}$</td>
<td>$p_{1,j}$</td>
<td>p_1</td>
</tr>
<tr>
<td>A_2</td>
<td>$p_{2,1}$</td>
<td>$p_{2,2}$</td>
<td>$p_{2,j}$</td>
<td>p_2</td>
</tr>
<tr>
<td>A_i</td>
<td>$p_{i,1}$</td>
<td>$p_{i,2}$</td>
<td>$p_{i,j}$</td>
<td>p_i</td>
</tr>
<tr>
<td>Sum</td>
<td>q_1</td>
<td>q_2</td>
<td>q_j</td>
<td>1</td>
</tr>
</tbody>
</table>

A special example is pairs of consecutive letters in English. The entry (Q, U) has probability 0, while (T, H) has probability above average.
Conditional Entropy (cont.)

Definition:

\[H(B|A_i) = - \sum_j q(j|i) \log q(j|i) \]

(the entropy of B given the exact value of \(A_i \)).

The **Conditional Entropy** is defined to be

\[H(B|A) = \sum_i p_i H(B|A_i). \]
Conditional Entropy (cont.)

Theorem: $H(A, B) = H(A) + H(B|A)$.

Proof:

$$-H(A, B) = \sum_{i,j} p_i q(j|i) \log(p_i q(j|i))$$

$$= \sum_i p_i \log p_i \sum_j q(j|i) + \sum_i p_i [\sum_j q(j|i) \log q(j|i)]$$

$$= \sum_i p_i \log p_i + \sum_i p_i [-H(B|A_i)]$$

$$= -H(A) - H(B|A)$$

QED

Conclusion: $H(A, B) \geq H(A)$.
Conditional Entropy (cont.)

Theorem: \(H(B|A) \leq H(B) \) (equality only if \(A \) and \(B \) are independent).

Proof:

\[
H(B|A) = \sum_i p_i H(B|A_i) = \sum_i p_i \sum_j q(j|i) \log \frac{1}{q(j|i)}
\]

By (*):

\[
\leq \sum_i p_i \sum_j q(j|i) \log \frac{1}{q_j} = \sum_j \left(\sum_i p_i q(j|i) \right) \log \frac{1}{q_j}
\]

\[
= \sum_j q_j \log \frac{1}{q_j} = H(B)
\]

QED

Similarly, \(H(C|B, A) \leq H(C|B) \).
Long Message Encryption

To encrypt a long message $M = M_1 M_2 \ldots M_N$ (M is the full message, the M_i’s are the various letters) we encrypt each block M_i to $C_i = E_K(M_i)$ under the same key K, and concatenate the results $C = C_1 C_2 \ldots C_N$.

This cipher is not perfect since there is N such that $\#\text{keys} < \#\text{messages of length } N$ (and since $p(XY|aa) = 0 \neq p(XY)$ when $X \neq Y$).

Thus, we can gain information on the key or the message given the ciphertext only (for a given C there are only $\#\text{keys}$ possible messages, rather than $\#\text{messages}$).
Long Message Encryption (cont.)

Theorem: for any $S \geq N$, and for any A,

1. $H(K|C_1C_2\ldots C_S) \leq H(K|C_1C_2\ldots C_N)$

2. $H(M_1M_2\ldots M_A|C_1C_2\ldots C_S) \leq H(M_1M_2\ldots M_A|C_1C_2\ldots C_N)$

3. $H(M_1M_2\ldots M_N|C_1C_2\ldots C_N) \leq H(K|C_1C_2\ldots C_N)$

Thus, when the size of C grows, the entropies of the message and the key are reduced.

Proof: Exercise.
Unicity Distance

How long should M and C be so we can identify the message M uniquely given the ciphertext C?

We wish that $H(M|C) = H(M_1M_1\ldots M_N|C_1C_2\ldots C_N)$ be zero (or very small; we know that it reduces when N is increasing).

Observe that some keys may be equivalent, and thus $H(K)$ may be just an upper bound on the effective entropy of the key $H(C|M)$.
Unicity Distance (cont.)

Look at the equations:

\[H(C') + H(M|C) = H(M, C') = H(M) + H(C|M) \]

By moving terms we get:

\[H(C') - H(M) = H(C|M) - H(M|C) \]

Let \(H(M') \overset{\Delta}{=} H(M)/N \) and \(H(C') \overset{\Delta}{=} H(C)/N \), be the average additional entropy for each additional letter, where \(N \) is the message length, and assume that \(H(M|C) = 0 \) (as the message is unique given \(C \)).

Then,

\[N \left(H(C') - H(M') \right) = H(C|M) \]
Unicity Distance (cont.)

$H(K)$, $H(C')$, and $H(M')$ are fixed. Thus, in order to get a unique key we need

$$N \geq \frac{H(C|M)}{H(C') - H(M')}.$$

$H(K) \geq H(C|M)$ and thus it suffices to assume that we get a message of length

$$N \geq \frac{H(K)}{H(C') - H(M')}$$

(which is the unicity distance of identifying the key uniquely).
Unicity Distance (cont.)

Definition: the unicity distance N is

\[N = \frac{H(K)}{H(C') - H(M')} \]

If $H(C') = H(M')$, then $H(M|C) = H(C|M) > 0$, then the message is never unique. In this case we say that $N = \infty$.

Moreover, if $H(K) \not< H(M)$ then $H(M|C) = H(K) \geq H(M)$ so the ciphertext does not disclose any information on the message M if the key has sufficient entropy.

Conclusion: Compression of a message before encrypting reduces $H(C') - H(M')$ and thus increases the unicity distance.
Random Ciphers

Assume that the message space and the ciphertext space are of size n (n different messages of size N). The messages are **redundant**, i.e., not all the n messages are legal, or not all have the same probabilities.

Each key represents a random permutation of the letters, each with probability $1/n!$. Thus,

$$p(C_1) = 1/n$$
$$H(C_1) = \log n$$
Random Ciphers (cont.)

Let $H(C')$ and $H(M')$ be $H(C') \triangleq H(C)/N$, and $H(M') \triangleq H(M)/N$.

Definition: $D \triangleq H(C') - H(M')$ is called the source redundancy.

Definition: The unicity distance is

$$N = \frac{H(K)}{H(C') - H(M')} = \frac{H(K)}{D}$$
Random Ciphers (cont.)

Example: In English $D = \log 26 - H(M')$. \(\log 26 = 4.7, \ H(M') = 1.5\) (as letters are dependent in English). \(D = \log 26 - H(M') = 4.7 - 1.5 = 3.2\).

In Caesar’s cipher (26 possible shifts), the unicity distance is thus

\[
N = \frac{H(K)}{3.2} = \frac{\log 26}{3.2} = 1.5
\]

In a substitution cipher

\[
N = \frac{H(K)}{3.2} = \frac{\log 26!}{3.2} = \frac{88.4}{3.2} = 27.6
\]

In a uniformly random letter distribution, whose frequencies are as in English, \(D = 4.7 - 4 = 0.7\) and the unicity distances would be 7 and 126, respectively.