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RSA

Reference: Rivest, Shamir, Adleman, A Method for Obtaining Digital Sig-

natures and Public Key Cryptosystems, CACM, Vol. 21, No. 2, pp. 120–126,
February 1978.
RSA is a public key cryptosystem based on number theory.
The security of RSA is based on the difficulty of factoring a number to
its prime factors, while its efficiency is based on the ease of multiplying prime
numbers and checking whether given numbers are primes.
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RSA — the Key Generation

User A chooses his keys by:

1. Randomly chooses two large prime numbers p and q of size 512 bits (154
decimal digits) at least.

2. Computes n = pq (a 1024-bit number).

3. Randomly chooses an odd number e in the range 1 < e < ϕ(n) which is
coprime to ϕ(n) (i.e., e ∈ Z∗

ϕ(n)).

4. Computes e ≡ d−1 (mod ϕ(n)) by Euclid’s algorithm. Thus, de ≡ 1
(mod ϕ(n)).

5. Publishes e, n as the public key, and keeps d secret as the secret key.
(There is no need to keep p, q and ϕ(n)).

We denote the public key of user A by eA, nA and the secret key by dA.
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RSA — the Key Generation (cont.)

Notes:

1. It is easy to find random primes: One of every lnn numbers around n is
a prime. Given a number, it is easy to check whether it is a prime (by a
probabilistic algorithm). Therefore, to choose a random prime, random
numbers are chosen and are checked whether they are primes. On average
about lnn number are chosen and checked till a prime is found.

2. Choosing e: In Z∗
ϕ(n) there are ϕ(ϕ(n)) invertible numbers modulo ϕ(n),

and we do not choose even e’s (which are not invertible). Thus, about
ϕ(n)

2ϕ(ϕ(n)) random e’s should be chosen till an invertible e is found — in

most cases the first or second chosen e is selected.
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RSA — Encryption/Decryption

The encryption algorithm E:
Everybody can encrypt messages m (0 ≤ m < nA) to user A by

c = EA(m) = meA modnA.

The ciphertext c (0 ≤ c < nA) can be sent to A, and only A can decrypt.
The decryption algorithm D:
Only A knows his secret key dA and can decrypt:

m = DA(c) = cdA modnA.
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RSA — Correctness

Theorem:
∀m ∈ Zn D(E(m)) = m.

Proof: We should prove that

∀m ∈ Zn (me)d ≡ m (mod n).

It suffices to prove the congruence twice: modulo p and modulo q. Without
loss of generality we prove modulo p.

1. if p|m: med ≡ 0ed ≡ 0 ≡ m (mod p).

2. if p 6 |m:

med ≡ m1+k(p−1)(q−1) ≡ m(mp−1)(q−1)k ≡ m (mod p).

QED
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RSA — Efficiency

Key generation:

1. It is easy to test random numbers for primality (using probabilistic algo-
rithms; a less efficient deterministic algorithm also exists).

2. It is easy to invert numbers in Zn using Euclid’s algorithm.
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RSA — Efficiency (cont.)

Encryption and decryption:

1. Efficient modular exponentiation to the exponent e requires about 1.5 log e
multiplications, where each multiplication is modular as well (all interme-
diate results are not larger than the modulus).

2. To increase efficiency of encryption, relatively small e’s can be used.

3. To increase efficiency of decryption (by a factor of about 4), it is possible
to decrypt modulo p and q separately, and combine the results using the
Chinese remainder theorem.

In practice, key generation takes up to a few seconds, and encryption/decryption
can be performed thousands of times every second on modern computers.
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RSA — Strength

Note that if p|m (or q|m) and m 6= 0 then gcd(m,n) = p (or q). In such a
case, the user can compute p, q and the secret key d.
We now show that the probability of it is low: The number of numbers coprime
to n in Zn is ϕ(n). Thus, the number of non-coprime numbers is

n− ϕ(n) = pq − (p− 1)(q − 1) = pq − pq + p + q − 1 = p + q − 1,

and the probability to have a non-coprime number is

n− ϕ(n)

n
=

p + q − 1

n
≈ 2512 + 2512

21024
= 2−511

(or less if |n| > 1024). Therefore, it is very improbable that m and n are not
coprime.
We assume that factoring is difficult. Otherwise, from the factors p and q of
n it is easy to compute ϕ(n) and d.
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RSA — Strength (cont.)

Theorem: Given ϕ(n) it is easy to compute p and q.
Proof: Given ϕ(n) it is easy to compute p + q by

n− ϕ(n) + 1 = pq − pq + p + q − 1 + 1 = p + q

and p− q by

(p− q)2 = p2 + q2 − 2pq = (p + q)2 − 4pq = (n− ϕ(n) + 1)2 − 4n.

Then,

p =
(p + q) + (p− q)

2

q =
(p + q)− (p− q)

2
.

QED
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RSA — Strength (cont.)

Theorem: Computing d is equivalent to factoring n.
Sketch of Proof:

1. Given d it is easy to compute a multiple of ϕ(n) by e · d − 1. Denote it
by 2k · t, where t is odd.

2. Take a random integer r. [With a good probability (usually about half)
r is a quadratic non-residue (whose orders modulo p and modulo q are
divisible by different powers of 2).]

3. Compute r1 = rt (mod n), and then iteratively ri = r2i−1 (mod n) till
rj = 1 (mod n) for some j.

4. Then, rj−1 is a square root of 1.

5. We will see later that a non-trivial square root of 1 allows to compute the
factorization of n by gcd(·, n).

QED
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RSA — Strength (cont.)

Therefore, any algorithm that computes the secret key given e, n (and possibly
encrypted messages) can be converted to an algorithm to factor n.
Note: Computing m from E(m) = memodn is not known to be equivalent
to factoring (since it does not require to compute d). It requires “only” to
compute an e’th root, however, computing the e’th root modulo n is also a
difficult problem.
The particular case of computing square roots was shown to be equivalent to
factoring, but this function is not 1-1!
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Signatures using RSA

Since the domain and the range of RSA are equal (Zn), RSA can be used both
for encryption and for signing.
Given the public key eA, nA and the secret key dA, A signs a document m
(actually signs H(m)) by

S = DA(m) = mdA modnA,

and any other user can verify the signatures by checking whether

m
?
= EA(S) = SeA modnA.

Forging signatures is difficult sinceDA should be computed to forge a signature.
To forge a signature either dA should be known, or an efficient algorithm to
compute the eA’th root should be known.
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Rabin’s RSA Variant

Reference: M. Rabin, Digitalized Signatures and Public Key Functions as

Intractable as Factoring, Technical report MIT/LCS/TR-212, January 1979.

Rabin’s RSA variant is similar to RSA but uses e = 2. This choice allows to
prove the equivalence to factoring.
Notes:

1. Using e = 2 decryption is not unique, since ciphertexts can have four
distinct roots.

2. There is no d such that ed ≡ 1 (mod ϕ(n)), since gcd(e, ϕ(n)) = 2 6= 1.
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Difficulty of Computing Modular Square Roots

1. It is difficult to compute modular square roots modulo n whose factor-
ization is unknown. Computing square roots modulo n is equivalent to
factoring n.

2. It is easy to compute square roots modulo prime numbers:

• p = 4k + 3: Let α be a quadratic residue modulo p. Then

β ≡ α
p+1

4 ≡ αk+1 (mod p)

is a square root of α:

β2 ≡ α
p+1

2 ≡ αα
p−1

2 ≡ α1 ≡ α (mod p).

• p = 4k + 1: There is a probabilistic algorithm to compute the
modular square roots.
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Difficulty of Computing Modular Square Roots (cont.)

3. It is easy to compute square roots modulo n whose factorization is known,
by computing modulo each of the prime factors, and using the Chinese
remainder theorem.
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Difficulty of Computing Modular Square Roots (cont.)

Theorem: Let n = pq, and let m ∈ Z∗
n be a quadratic residue. Given the

four square roots of m, it is easy to factor n.
Proof: Let the square roots of m modulo p be β and −β, and let the square
roots of m modulo q be γ and −γ.
Then, the four square roots of m modulo n are

α++ : α++ ≡ +β (mod p), α++ ≡ +γ (mod q)

α+− : α+− ≡ +β (mod p), α+− ≡ −γ (mod q)

α−+ : α−+ ≡ −β (mod p), α−+ ≡ +γ (mod q)

α−− : α−− ≡ −β (mod p), α−− ≡ −γ (mod q)

Clearly, α++ ≡ −α−− (mod n) and α+− ≡ −α−+ (mod n).
We can see that α++ ≡ α+− (mod p). Thus, α++ − α+− ≡ 0 (mod p).
But, α++ − α+− 6≡ 0 (mod n).
Therefore, p = gcd(α++ − α+−, n). Similarly, q = gcd(α++ + α+−, n). QED
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Difficulty of Computing Modular Square Roots (cont.)

Theorem: Computing square roots modulo n is equivalent to factoring n.
Proof:
(⇐) Given p and q anybody can compute square roots just as the signer do,
by computing modulo p and modulo q.
(⇒) Let A be an algorithm which computes square roots modulo n.
Define a probabilistic algorithm B to factor n using the algorithm A:

1. Choose a random α ∈ Zn.

2. If gcd(α, n) > 1 then n is factored into gcd(α, n) and n
gcd(α,n).
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Difficulty of Computing Modular Square Roots (cont.)

3. If gcd(α, n) = 1 then α ∈ Z∗
n.

Compute m = α2modn and apply Algorithm A to compute a square
root β of m modulo n:

β2 ≡ m ≡ α2 (mod n).

m has four roots modulo n. Two of them are α and −α. Since A does
not have any information on which root α ofm was chosen by B, it returns
with probability half one of the roots α or −α, and with probability half
one of the other two roots.

4. If A returns a root β ≡ ±α (mod n), Algorithm B restarts again from
step 1.

5. Otherwise (the four square roots of m are α, −α, β, and −β), B recovers
the factors by computing gcd(α− β, n) and n

gcd(α−β,n).

6. In each step there is a probability half to find the factorization of n. After
k steps the probability of failure is only 2−k. QED

c© Eli Biham - May 2, 2011 361 Public Key Cryptography 2



Rabin’s RSA Variant (cont.)

Key generation:
User A chooses his keys by:

1. Randomly chooses two large prime numbers p and q of size 512 bits (154
decimal digits) at least (as in RSA).

2. Computes n = pq.

3. Chooses e = 2.

4. Publishes n as the public key, and keeps p and q secret as the secret key.
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Rabin’s RSA Variant (cont.)

The encryption algorithm E:
Let m be a message with several bits of known redundancy.

c = EA(m) = m2modnA.

The decryption algorithm D:
User A computes the modular square root of c. He can compute modular square
roots since he knows the factorization of n. He gets four roots, one of which is
the message m.
In order to be able to identify m, some redundancy must be
added to m before encryption (such as have some fixed value in prede-
termined bits).
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Rabin’s Signature

Signature generation:

1. Given a document m to sign, a value u of a short length (say three bits)
is chosen, and m and u are concatenated to

c = m‖u.
(note that the size of m should be slightly shorter than the size of n).

2. The signer A tests whether gcd(c, n) = 1 and whether c is a quadratic
residue modulo n (it takes O(logn) steps).

3. If the tests fail, A chooses another value u and tries again. (On average
she chooses four u’s till both tests succeed).

4. When both tests succeed, A computes a square root x of c: x2 ≡ c
(mod n).

5. The signature is x
S(m) = x.
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Rabin’s Signature (cont.)

Signature verification:
Given m and S(m), the verifier computes

c′ = (S(m))2modn,

removes the rightmost bits of c′

c′′ = c′ ≫ 3,

and checks whether
c′′

?
= m.
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Rabin’s Signature (cont.)

Note: Rabin’s encryption and signature verification require only one modular
multiplication, while using RSA about O(logn) modular multiplications are
required (or 2 if e is chosen to be small e = 3).
The decryption and signature generation require to compute square roots (given
p and q), whose complexity is similar to O(logn) modular multiplications, i.e.,
similar to the complexity using RSA.
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Security

Breaking Rabin’s variant allows the attacker to compute modular square roots.
As we already proved, the ability to compute modular square roots allows to
factor.
Therefore, any successful attack on Rabin’s variant is as difficult as factorization
(whereas RSA does not have such a proof).

c© Eli Biham - May 2, 2011 367 Public Key Cryptography 2



A Paradox

Paradox: The proof that decryption is equivalent to factorization of n suggests
an efficient method to break the cryptosystem using a chosen ciphertext attack:

1. Apply the Algorithm B described in the proof.

2. Each time Algorithm B requires to compute a square root, request the
owner of the secret key to decrypt (or sign)!

There are several such cases in cryptography where a proof of hardness also
suggests a shortcut for the attacker, but it should not be understood that all
proofs lead to this phenomena. It only means that the theorem is not strong
enough, or that the security criteria we use are too strong.
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Rabin’s RSA Variant – Revisited

In order to protect against attacks based on this paradox, some redundancy
should be added to plaintexts before encryption.
Then, after decryption, the receiver can verify whether the plaintext is in the
correct format. If it is not, she should ignore the decrypted plaintext.
This way, if an attacker performs this attack, he is almost always detected. The
probability that he succeeds to find the factorization becomes very small.

The number of bits of redundancy should not be too small, preferably not
less than 10, but also do not have to be very large, as with, say, 60 bits of
redundancy, the probability of a successful attack is negligible.

Adding redundancy: setting several bits of the plaintext to be fixed, or a func-
tion of the other bits, to allow the receiver to verify existence of this redundancy.

c© Eli Biham - May 2, 2011 369 Public Key Cryptography 2



Rabin’s Signature – Revisited

For signatures we need to add some randomness, in order to decrease the prob-
ability that the signer calculates a square root of a value chosen by the attacker.

Signature generation:

1. Given a document m to sign, a random word u of a predetermined length
(such as 60 bits) is chosen, and

c = H(m‖u)

is computed by applying a public hash functionH , whose range is a subset
of {0, 1, . . . , nA − 1}. (m‖u is the concatenation of m and u).

2. The signer A tests whether gcd(c, n) = 1 and whether c is a quadratic
residue modulo n (it takes O(logn) steps).

3. If the tests fail, A chooses another random value u and tries again. (On
average he chooses four u’s till both tests succeed).
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Rabin’s Signature – Revisited (cont.)

4. When both tests succeed, A computes a square root x of c: x2 ≡ c
(mod n).

5. The signature is
S(m) = (u, x)

such that
x2 ≡ H(m‖u) (mod n).

Signature verification:
Given m and S(m) = (u, x), the verifier checks whether

x2
?≡ H(m‖u) (mod n).
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A Weakness of Rabin/RSA with Small Exponents

This weakness exists in Rabin’s variant and in RSA with small exponents e. It
exists only for encryption!
Assume that in a network, all the users use the same small e, and whose public
keys differ only in the modulus n.

1. In Rabin’s variant e is always considered to be e = 2 for all the users.

2. In RSA, if e = 3 or some other small odd integer.
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A Weakness of Rabin/RSA with Small Exponents (cont.)

Suppose a message m has to be sent to e (or more) distinct users. To each
user U, the message m is encrypted under the user’s public key EU(m). The
ciphertexts CU = EU(m) are sent to the users.
Suppose an eavesdropper listens to the encrypted messages and knows CU1

,
CU2

, . . . , CUe.
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A Weakness of Rabin/RSA with Small Exponents (cont.)

Then, me can be found by the eavesdropper by computing the unique value x
modulo

∏

ni which is congruent to all the CUi’s modulo ni:

x ≡ CU1
(mod n1)

x ≡ CU2
(mod n2)

...

x ≡ CUe (mod ne)

Using the Chinese remainder theorem, the unique x modulo n1n2 · · ·ne can
be found.
We conclude that

x ≡ me (mod n1n2 · · ·ne).
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A Weakness of Rabin/RSA with Small Exponents (cont.)

Since m < ni, ∀i ∈ {1, 2, . . . , e} then me < n1n2 · · ·ne and thus

x = me.

A standard (non-modular) e’th root of x can be efficiently computed, and the
result is just the secret message m.
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How to use RSA Correctly?

Due to the algebraic structure of RSA (and Rabin’s variant), there are several
undesirable properties, for example:

1. Multiplication property

2. The Jacobi symbol is not affected by encryption in RSA

3. The paradox of Rabin’s variant

4. The weaknesses of low exponent RSA/Rabin

We already saw two types of partial solutions:

1. Adding redundancy

2. Adding randomness
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How to use RSA Correctly? (cont.)

We now show an example where even both solutions simultaneously do not help

Example: The PKCS#1.5 standard:
The PKCS#1.5 involves the following steps before encryption with RSA

1. denote the plaintext by m

2. select a value r at random (with all bytes non-zero)

3. Let 0 and 2 denote bytes with the corresponding values

4. compute m′ = 0‖2‖r‖0‖m (where 0 ≤ m′ < n)

Then, m′ is encrypted by RSA, instead of m.
After several years of use of this standard, it was found that a complex chosen
ciphertext attack can recover the plaintexts, if only the receiver responds with
an error notice whenever the decryption fails (i.e., there are no 0 or 2 bytes in
the appropriate locations of the decrypted message).
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The OAEP Scheme

Due to various attacks of modes of use of RSA, it became necessary to select
modes that can be proven secure under some models of threats.
OAEP (Optimal Asymmetric Encryption Padding) is one (but not the only)
such attempt. It adds both redundancy and randomness to a message before
encryption in the following way:

m 0 r

G

H

s t

where 0 denotes zero bits, r denotes a random value,m is the plaintext (m‖0‖r <
n), G and H are pseudo-random functions (such as cryptographic hash func-
tions), and s‖t is the value on which the RSA encryption is performed.
The resulting encryption is: Select the random r and compute

c = (OAEP(m, 0, r))emodn.
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The OAEP Scheme (cont.)

Decryption is performed by

(m, z, r) = OAEP−1(cdmodn),

followed by verification that z = 0. If z = 0, the decrypted message is m. Oth-
erwise, the ciphertext was forged, and the decrypted value should be ignored.

It can be shown that under some security models and some ideal selections of
G and H , the resulting encryption is secure.

Similar padding schemes exist also for signatures — replacing the simple hashing
of the messages described earlier in the course.
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ElGamal Signature Scheme

System parameters:

1. Let p be a large prime (512 bits).

2. Let g be a generator of Z∗
p .

3. p and g can be common to all the users, or be distinct for each user.

Public and secret keys:

1. User U chooses a random secret key X = XU .

2. Computes the public key Y = YU = g−XU mod p.
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ElGamal Signature Scheme (cont.)

Signature generation: Given a message m, U signs by

1. Chooses a random r (1 ≤ r < p), (invertible modulo p− 1).

2. Computes R = grmod p.

3. Computes S = ((m +XR)r−1)mod(p− 1).

4. The signature on m is the pair (R, S).

Signature verification: Given m and an alleged signature (R, S), every-
body can verify that U generated the signature by

Y RRS ?
= gm (mod p).
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ElGamal Signature Scheme (cont.)

Correctness:

Y RRS = (g−X)R(gr)(m+XR)r−1

= g−XRgm+XR = g−XR+m+XR = gm (mod p)
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ElGamal Signature Scheme (cont.)

Security:

1. Computing the secret key from the public key is equivalent to computing
DLOG.

2. It is believed that computing the secret key using also many signed mes-
sages is as difficult as computing DLOG.

3. It is believed that signing without knowing the secret key is as difficult as
computing DLOG.

4. It is very important to use random r’s generated independently for each
signature; otherwise the secret key might be recovered from a few signa-
tures.
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ElGamal Signature Scheme (cont.)

Advantage: In the signature generation, r, r−1, R and XR can be computed
in advance, before m is known. Thus, the signature generation requires only
one modular multiplication in real-time (to compute S).
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Schnorr’s Signature Scheme

Schnorr’s Signature is a variant of the ElGamal Signature.
System parameters:

1. Let p be a large prime (512 bits).

2. Let q be a smaller prime (140 bits) which divides p− 1.

3. Let α be with order q in Z∗
p .

4. A one-way hash function h : Zp×Z → {0, . . . , 2t− 1}, for some security
parameter t ≥ 72.

5. These parameters can be common to all the users, or be distinct for each
user.
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Schnorr’s Signature Scheme (cont.)

Public and secret keys:

1. User U chooses a random secret key s = sU ∈ Zq.

2. Computes the public key v = vU = α−sU mod p.
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Schnorr’s Signature Scheme (cont.)

Signature generation: Given a message m, U signs by

1. Chooses a random r ∈ Zq.

2. Computes x = αrmod p.

3. The above steps can be done in advance (preprocessing) as they do not
involve knowledge of m.

4. Computes e = h(x,m).

5. Computes y = r + semod q.

6. The signature on m is the pair (e, y).

This scheme is very efficient for signing as after the preprocessing, the signer
needs to perform only one modular multiplication and one modular addition,
both modulo the smaller prime q.
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Schnorr’s Signature Scheme (cont.)

Signature verification: Givenm and an alleged signature (e, y), everybody
can verify that U generated the signature by computing

x̄ = αyvemod p

and checking whether

e
?
= h(x̄, m).
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Schnorr’s Signature Scheme (cont.)

Correctness: Exercise.
Security:

1. Computing the secret key from the public key is equivalent to computing
DLOG.

2. The advantage of this scheme over ElGamal is that the corresponding
authentication protocol (i.e., when e is selected at random) is zero knowl-
edge.

3. It is believed that computing the secret key using also many signed mes-
sages is as difficult as computing DLOG.

4. It is believed that signing without knowing the secret key is as difficult as
computing DLOG.

5. It is very important to use random r’s generated independently for each
signature; otherwise the secret key might be recovered from a few signa-
tures.
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The Digital Signature Standard (DSS)

DSS (also known as DSA: the Digital Signature Algorithm) is a US NIST
standard based on Schnorr’s signature. The modification was mainly done
to avoid patent issues (as Schnorr’s signature is patented), but the success in
avoiding the patent issues is questionable.
Note: As of December 1998, RSA signatures are also approved by NIST.
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The Digital Signature Standard (DSS) (cont.)

System parameters:

1. Let p be a large prime (512 bits, can be increased up to 1024 bits by
multiples of 64 bits).

2. Let q be a 160-bit prime which divides p− 1.

3. Let g be with order q in Z∗
p (select it by taking any h ∈ Zp and computing

g = h(p−1)/q).

4. The one-way hash function SHA-1.

5. These parameters can be common to all the users, or be distinct for each
user.
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The Digital Signature Standard (DSS) (cont.)

Public and secret keys:

1. User U chooses a random secret key x = xU ∈ Zq.

2. Computes the public key y = yU = gxU mod p.
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The Digital Signature Standard (DSS) (cont.)

Signature generation: Given a message m, U signs by

1. Chooses a random k ∈ Zq.

2. Computes r = (gkmod p)mod q.

3. The above steps can be done in advance (preprocessing) as they do not
involve knowledge of m.

4. Computes s =
(

k−1 · (SHA-1(m) + xr)
)

mod q.

5. The signature on m is the pair (r, s).

This scheme is very efficient for signing as after the preprocessing, the signer
needs to perform only one modular multiplication and one modular addition,
both modulo the smaller prime q.
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The Digital Signature Standard (DSS) (cont.)

Signature verification: Given m and an alleged signature (r, s), everybody
can verify that U generated the signature by computing

1. w = s−1mod q.

2. u1 = (SHA-1(m)w)mod q.

3. u2 = rwmod q.

4. v = ((gu1yu2)mod p)mod q.

and checking whether

v
?
= r.
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The Digital Signature Standard (DSS) (cont.)

Correctness: Exercise.
Security: As in Schnorr’s signature.
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Public Key Cryptography in Practice
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How Cryptography is Used in Applications

The main drawback of public key cryptography is the inherent slow speed of
the public key schemes.
There are only a few schemes which are relatively faster, but they require use
of huge keys, and are thus impractical.
Therefore, public key schemes are not used directly for encryption.
Instead, public key schemes are used in conjunction with secret key schemes
where encryption is performed by the secret key schemes (e.g., Triple-DES) and
the agreement on the keys is performed by public key distribution schemes (e.g.,
using RSA or Diffie-Hellman).
This is similar to the case described in the public key signature schemes, where
the signature scheme does not sign the original message, but rather signs the
result of a fast hash function.
Moreover, in many application even the single public key signature on a message
is too cumbersome. In such cases, MACs are used, and their key is distributed
in advance by a public key distribution scheme.
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Recommended Key Sizes

In secret key schemes the trend changes from keys of 56–64 to keys of 128 bits.
Keys of 128 bits are large enough to thwart any practical attack, as long as the
cipher does not have weakness due to its design. Paranoids can use even longer
keys, which are supported by various ciphers.
The situation is different in public key schemes, where considerably longer keys
are required, as the keys are not uniformly selected from all the possible keys
with the same length. Therefore, the number of keys is (slightly) smaller than
the number of values of the same length as the keys.
However, the main reason that requires longer keys is the information inherited
in the key due to the properties of the cipher.
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Recommended Key Sizes (cont.)

In RSA, the public key is a product of two primes. The best known factoring
algorithms are the quadratic sieve and the number field sieve whose complexities
are about

Complexity(QS) = ec
√
lnn ln lnn ; Complexity(NFS) = ec(lnn)

1/3(ln lnn)2/3

Due to the different constant factors (and other smaller terms) the quadratic
sieve is faster when factoring up to about 129 decimal digits. The quadratic sieve
algorithm was used to factor the number RSA-129, proposed by the designers
of RSA in 1978 as an example of a number whose factoring will take about 40
quadrillion years. This factorization took a few months on several thousands
computers over the Internet.
Over a similar computer network the NFS can factor numbers up to about 140
digits. It is expected that within a decade numbers of up to 154 digits (512
bits) will be factorable.
Therefore, all new applications should use public keys of 1024 bits. Long-term
keys should have at least 2048 bits. Paranoids can use longer keys.
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Recommended Key Sizes (cont.)

Breaking DLOG-based schemes requires computation of discrete logarithms.
Advances in designing algorithms for computing DLOG were performed in par-
allel to the design of algorithms for factoring, and actually the best known
algorithms for computing DLOG are variants of those used for factoring.
Nowadays, 400-bit primes moduli are still secure for DLOG-based schemes.
However, it would better be that new applications use longer keys (e.g., 512
bits).
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Public Key Infrastructure

Public key cryptography provide a tool for secure communication between par-
ties by letting them trust messages encrypted or signed by the already known
public keys of the other parties.
However, no algorithmic scheme can solve the original trust problem of accept-
ing the identity of a party that you never met.
The usual face-to-face identification is by a trusted third party (a friend) who
presents the two parties to each other.
Such a presentation protocol is also required for cryptographic protocols.
The presenting party in the cryptographic environment is called a certifica-
tion authority, or briefly a CA. The management of the CA’s requires a
public key infrastructure (PKI).
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Certificates

During face-to-face presentation, the presenter gives the relation between the
name and the face of the presented party, together with some side information
(e.g., he is a friend of the presenter).
For cryptographic use the certification authority should give the relation be-
tween the public key and the identity of his owner.
This information should be transmitted authenticated from the CA to the re-
ceiver, e.g., signed under the widely known public key of the certification au-
thority.
Note that it is not necessary that the receiver communicate directly with the
CA. Instead, the CA signs all the required information, and gives the key owner,
who can then give it to anybody he wishes to communicate with, or publish
widely. This, the receiver should only verify the signature of the CA, rather
than to communicate with him for verifying every new key.
Such a signed information is called a certificate.
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Certificates (cont.)

A certificate includes

1. The CA name

2. Sequential number of the certificate

3. The public key of the user

4. The identity of the user

5. Date

6. Last validation date

7. signature of the CA on all the above
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Certificates (cont.)

It might happen that the secret key of some user become known to other, due to
theft, factoring, or other reasons. Therefore, certification authorities maintain
Certificate Revocation Lists (CRLs, blacklists) of canceled certificates
which must not be trusted. Users can ask to add their old certificates to the
blacklists if they suspect that their secret keys became known.
The last validation date field in the certificate ensures that the blacklists will
not have to keep such certificates for more than a selected time, as after the
last validation date, the certificates become invalid anyway, and the user should
select another key instead.
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The Legal Status of Digital Signatures

Several countries, including Israel, made special law to approve digital signa-
tures for legal purposes.
Under the Israeli law, there are three kinds of digital signatures:

1. Digital signature: Any kind of electronic data that is added to a
document to show the identity if the signer (e.g., a scanned hand-written
signature at the bottom of a document). This kind has no legal status.

2. Protected digital signature: A digital signature that allows verifi-
cation of the identity of the signer, and ensures that the signed message
is original and was not modified after the signature generation.

3. Certified digital signature: A protected digital signature, whose key
is certified by a certificate (signed by a CA).
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The Legal Status of Digital Signatures (cont.)

A CA should be approved by the CA registrar, sign the certificates with a long
key (at least 2048 bits in case of RSA), and satisfy many other security and
financial requirements.
Certified digital signatures can be used whenever a signature is required by
law (a few exceptions apply, e.g., wills), and courts accept certified digital
signatures (and with the proper evidence also protected digital signatures) as
valid signatures.
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The X.509 Public Key Hierarchy

The X.509 standard defines a tree hierarchy of CA’s. Each CA has some “par-
ent”, who signs the certifies the CA’s public key. The only required widely
known public key is the key of the root CA. All other public keys of CA can be
verifies using certificates.
Then, a receiver verifies a certificate of another user by verifying the certificate
of the CA first, and then verifying the signature of the CA on the certificate
of the user. In turn, verification of the certificate of the CA is performed by
verifying the certificate of his parent CA and the signature of the parent CA,
and so on. Only the public key of the root CA should not be verified, as it is
widely known.
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The PGP Hierarchy

The drawback of the X.509 hierarchy is that every user must trust all the CA’s.
If a user does not trust even one CA, he cannot trust the system at all. That
like “If you do not trust the government, you cannot trust your brother”.
In the PGP hierarchy every user is also a CA, and users can select which CA’s
they trust, and which they do not trust.
As a CA a user signs certificates to his friends. His signature ensure that he
recognizes the friend, and checked his identity. It does not mean that the friend
is trustworthy.
Each user then asks for certificates from many other users, and collects as many
as he wishes.
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The PGP Hierarchy (cont.)

When a user need to prove his identity, he publishes (or sends) the certificates
he collected to the other user, and the other user verify them.
The receiver can select his own trust scheme. He can decide to trust certificates
signed by some CA’s unconditionally, and not trust certificates signed by some
other CA’s. He can also decide to trust some CA with some medium trust, i.e.,
a certificate is only trusted if he got one (or more) additional certificates for the
same key from medium trust CA’s.

c© Eli Biham - May 2, 2011 409 Public Key Cryptography in Practice


	Public Key Cryptography 2
	  RSA
	  RSA --- the Key Generation
	  RSA --- Encryption/Decryption
	  RSA --- Correctness
	  RSA --- Efficiency
	  RSA --- Strength
	  Signatures using RSA
	  Rabin's RSA Variant
	  Difficulty of Computing Modular Square Roots
	  Rabin's Signature
	  Security
	  A Paradox
	  Rabin's RSA Variant -- Revisited
	  Rabin's Signature -- Revisited
	  A Weakness of Rabin/RSA with Small Exponents
	  How to use RSA Correctly?
	  The OAEP Scheme
	  ElGamal Signature Scheme
	  Schnorr's Signature Scheme
	  The Digital Signature Standard (DSS)
	Public Key Cryptography in Practice
	  How Cryptography is Used in Applications
	  Recommended Key Sizes
	  Public Key Infrastructure
	  Certificates
	  The Legal Status of Digital Signatures
	  The X.509 Public Key Hierarchy
	  The PGP Hierarchy

