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Quadratic Residues

Definition: The numbers 02, 12, 22, . . . , (n−1)2modn, are called quadratic
residues modulo n. Numbers which are not quadratic residues modulo n are
called quadratic non-residues modulo n.

Example: Modulo 11:

i 0 1 2 3 4 5 6 7 8 9 10
i2mod 11 0 1 4 9 5 3 3 5 9 4 1

There are six quadratic residues modulo 11: 0, 1, 3, 4, 5, and 9.
There are five quadratic non-residues modulo 11: 2, 6, 7, 8, 10.
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Quadratic Residues (cont.)

Lemma: Let p be prime. Exactly half of the numbers in Z∗
p are quadratic

residues. With 0, exactly p+1
2

numbers in Zp are quadratic residues.

Proof: There are at most p+1
2

quadratic residues, since

02

12 ≡ (p− 1)2 (mod p)

22 ≡ (p− 2)2 (mod p)
...

i2 ≡ (p− i)2 (mod p) ∀i
...

Thus, all the elements in Zp span at most p+1
2 quadratic residues.

There are at least p+1
2 quadratic residues, otherwise, for some i 6= j ≤ p−1

/ 2 it

holds that i2 = (p− i)2 = j2 = (p− j)2, in contrast to Lagrange theorem that
states that the equation x2 − i2 = 0 has at most two solutions (mod p).
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Quadratic Residues (cont.)

Since Z∗
p is cyclic, there is a generator. Let g be a generator of Z∗

p .

1. g is a quadratic non-residue modulo p, since otherwise there is some b such

that b2 ≡ g (mod p). Clearly, bp−1 ≡ 1 (mod p), and thus g
p−1

2 ≡
bp−1 ≡ 1 (mod p). However, the order of g is p− 1. Contradiction.

2. g2, g4, . . . , g(p−1)mod p are quadratic residues, and are distinct, therefore,
there are at least p−1

2 quadratic residues.

3. g, g3, g5, . . . , g(p−2)mod p are quadratic non-residues, since if any of them
is a quadratic residue, g is also a quadratic residue.

QED

c© Eli Biham - April 12, 2011 286 Introduction to Number Theory 2



Euler’s Criterion

Theorem: Let p 6= 2 be a prime, and let a ∈ Z∗
p . Then, a is a quadratic

residue modulo p iff a
p−1

2 ≡ 1 (mod p).
Proof:
(⇒) If a is a quadratic residue, there is some b such that a ≡ b2 (mod p).
Thus,

a
p−1

2 ≡ (b2)
p−1

2 ≡ bp−1 ≡ 1 (mod p).
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Euler’s Criterion (cont.)

(⇐) If a is a quadratic non-residue: For any r there is a unique s such that
rs ≡ a (mod p), i.e., s = ar−1, and there is no r∗ 6= r such that s = ar∗−1.
Since a is a quadratic non-residue, r 6≡ s (mod p).
Thus, the numbers 1, 2, 3, . . . , p− 1 are divided into p−1

2
distinct pairs (r1, s1),

(r2, s2), . . . , (rp−1

2

, sp−1

2

), such that risi = a, and we get

a
p−1

2 ≡ r1s1r2s2 . . . rp−1

2

sp−1

2

≡

≡ 1 · 2 · . . . · (p− 1) ≡ −1 (mod p)

by Wilson’s theorem. QED
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Quadratic Residues Modulo n = pq

Let p and q be large primes and let n = pq (as in RSA).
Theorem: Let m ∈ Z∗

n. If m is a quadratic residue modulo n, then m has
exactly four square roots modulo n in Z∗

n.
Proof: Assume α2 ≡ m (mod n). Then
gcd(m,n) = 1 ⇒ gcd(α2, n) = 1 ⇒ gcd(α, n) = 1 ⇒ α ∈ Z∗

n.
and since

m ≡ α2 (mod n)

then

m ≡ α2 (mod p)

m ≡ α2 (mod q)

m has two square roots modulo p (αmod p and −αmod p) and two square
roots modulo q (αmod q and −αmod q).
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Quadratic Residues Modulo n = pq (cont.)

Look at the systems of equations

x ≡ ±α (mod p)

x ≡ ±α (mod q)

which represent four systems (one of each possible choice of ±). Each system
has an unique solution modulo n which satisfies

x2 ≡ m (mod p)

x2 ≡ m (mod q)

and thus satisfies

x2 ≡ m (mod n)

All the four solutions are roots of m modulo n.
These are all the roots. Otherwise there must be more than two roots either
modulo p or modulo q.
QED
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Quadratic Residues Modulo n = pq (cont.)

Conclusion: Exactly a quarter of the numbers in Z∗
n are quadratic residues

modulo n.
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Legendre’s Symbol

Definition: Let p be a prime such that p 6 |a. Legendre’s symbol of a
over p is

(
a

p

)

∆
=
{
+1, if a is a quadratic residue modulo p;
−1, if a is a quadratic non-residue modulo p.

By Euler: (
a

p

)

≡ a
p−1

2 (mod p).
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Legendre’s Symbol (cont.)

Properties of Legendre’s symbol:

1. a ≡ a′ (mod p) ⇒
(
a
p

)

=
(
a′

p

)

.

2.
(
1
p

)

=
(
c2

p

)

= 1 ∀c.

3.
(
−1
p

)

=
{
1, if p = 4k + 1;
−1, if p = 4k + 3.

Proof:
(
−1

p

)

≡ (−1)
p−1

2 (mod p)

≡

{

(−1)
4k+1−1

2 ≡ (−1)2k ≡ 1, if p = 4k + 1;

(−1)
4k+3−1

2 ≡ (−1)2k+1 ≡ −1, if p = 4k + 3.
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Legendre’s Symbol (cont.)

4.
(
2
p

)

= (−1)
p2−1

8 .

(given without a proof).

5.
(
ab
p

)

=
(
a
p

)(
b
p

)

.

Proof:

Let g be a generator modulo p. Then, ∃i, a ≡ gi (mod p) and ∃j, b ≡ gj

(mod p). a is a quadratic residue iff i is even, b is a quadratic residue iff
j is even, and ab is a quadratic residue iff i + j is even. Thus, by Euler:

(
ab

p

)

≡ (−1)i+j ≡ (−1)i(−1)j ≡

(
a

p

)(
b

p

)

(mod p).
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Legendre’s Symbol (cont.)

6. The reciprocity law: if p 6= q are both odd primes then

(
p

q

)

= (−1)
p−1

2

q−1

2

(
q

p

)

.

(given without a proof).
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Jacobi’s Symbol

Jacobi’s symbol is a generalization of Legendre’s symbol to composite numbers.

Definition: Let n be odd, and let p1, p2, . . . , pk be the prime factors of n
(not necessarily distinct) such that n = p1p2 · · · pk. Let a be coprime to n.
Jacobi’s symbol of a over n is

(a

n

)
∆
=

(
a

p1

)(
a

p2

)

· · ·

(
a

pk

)

.

In particular, for n = pq

(a

n

)

=

(
a

pq

)

=

(
a

p

)(
a

q

)

.

c© Eli Biham - April 12, 2011 296 Introduction to Number Theory 2



Jacobi’s Symbol (cont.)

Remarks:

1. a ∈ Z∗
n is a quadratic residue modulo n iff the Legendre’s symbols over

all the prime factors are 1.

2. When Jacobi’s symbol is 1, a is not necessarily a quadratic residue.

3. When Jacobi’s symbol is -1, a is necessarily a quadratic non-residue.
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Jacobi’s Symbol (cont.)

Properties of Jacobi’s symbol:
Let m and n be integers, and let a and b be coprime to m and n. Assume that
n is odd and that the factorization of n is n = p1p2 · · · pk.

1. a ≡ b (mod n) ⇒
(
a
n

)
=
(
b
n

)
.

2.
(
1
n

)
= 1 ∀n (1 is a quadratic residue modulo any n).

3.
(
−1
n

)
= (−1)

n−1

2 .

Proof:

n = p1p2 · · · pk
= ((p1 − 1) + 1)((p2 − 1) + 1) · · · ((pk − 1) + 1)

opening parentheses:

=
∑

S⊆{1,2,...,k}

∏

i∈S

(pi − 1)
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Jacobi’s Symbol (cont.)

=







∑

S⊆{1,2,...,k}

|S|≥2

∏

i∈S

(pi − 1)






+

∑

i∈{1,2,...,k}

(pi − 1) + 1

= [(p1 − 1)(p2 − 1) · · · (pk − 1) + . . .] +

(p1 − 1) + (p2 − 1) + . . . + (pk − 1) + 1

where all the terms with |S| ≥ 2 (in the brackets) are multiples of four,
and all the pi − 1 are even. Thus,

n− 1

2
≡

(p1 − 1)

2
+

(p2 − 1)

2
+ . . . +

(pk − 1)

2
(mod 2),
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Jacobi’s Symbol (cont.)

We conclude that
(
−1

n

)

=

(
−1

p1

)(
−1

p2

)

· · ·

(
−1

pk

)

= (−1)(p1−1)/2(−1)(p2−1)/2 · · · (−1)(pk−1)/2

= (−1)(p1−1)/2+(p2−1)/2+...+(pk−1)/2 = (−1)(n−1)/2.
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Jacobi’s Symbol (cont.)

4.
(
2
n

)
= (−1)

n2−1

8 .

Proof:

We saw that
(
2
p

)

= (−1)
p2−1

8 , thus:

(
2

n

)

=

(
2

p1

)(
2

p2

)

· · ·

(
2

pk

)

= (−1)
p2
1
−1

8
+

p2
2
−1

8
+···+

p2
k
−1

8

It remains to show that

n2 − 1

8
≡

p21 − 1

8
+
p22 − 1

8
+ · · · +

p2k − 1

8
(mod 2)

q21q
2
2 = (1 + (q21 − 1))(1 + (q22 − 1))

= 1 + (q21 − 1) + (q22 − 1) + (q21 − 1)(q22 − 1)

But 8|(q21 − 1) and 8|(q22 − 1), thus 64|(q21 − 1)(q22 − 1). Therefore,

q21q
2
2 ≡ 1 + (q21 − 1) + (q22 − 1) (mod 16)
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Jacobi’s Symbol (cont.)

And,

q21q
2
2q

2
3 ≡ (1 + (q21 − 1))(1 + (q22 − 1))(1 + (q23 − 1)) (mod 16)

≡ 1 + (q21 − 1) + (q22 − 1) + (q23 − 1) (mod 16)

etc., thus,

n2 ≡ 1 + (q21 − 1) + (q22 − 1) + · · · + (q2k − 1) (mod 16)

n2 − 1

8
≡

p21 − 1

8
+
p22 − 1

8
+ · · · +

p2k − 1

8
(mod 2)
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Jacobi’s Symbol (cont.)

5. The first multiplication property:
(

a
mn

)
=
(
a
m

) (
a
n

)
.

(if a is coprime to mn it is coprime to m and to n; the rest is derived
directly from the definition).

6. The second multiplication property:
(
ab
n

)
=
(
a
n

) (
b
n

)
.

(if ab is coprime to n, the both a and b are coprime to n; the rest is
derived since this property holds for Legendre’s symbol).
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Jacobi’s Symbol (cont.)

7. The reciprocity law: if m, n are coprime and odd then

( n

m

)

= (−1)
m−1

2

n−1

2

(m

n

)

.

Proof:

First assume that m = q is a prime, thus,

(
n

q

)

=

(
p1
q

)(
p2
q

)

· · ·

(
pk
q

)

.

By the reciprocity law of Legendre’s symbol we know that

(
pi
q

)

= (−1)
pi−1

2

q−1

2

(
q

pi

)

.
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Jacobi’s Symbol (cont.)

Thus,

(
n

q

)

= (−1)
q−1

2
(
p1−1

2
+...+

pk−1

2
)

(
q

p1

)(
q

p2

)

· · ·

(
q

pk

)

︸ ︷︷ ︸

( qn)

.

We saw in property 3 that,

n− 1

2
≡

(p1 − 1)

2
+

(p2 − 1)

2
+ . . . +

(pk − 1)

2
(mod 2),

thus, (
n

q

)

= (−1)
q−1

2

n−1

2

(q

n

)

.

Now for any odd m:

( n

m

)

=

(
n

q1

)(
n

q2

)

· · ·

(
n

qℓ

)
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Jacobi’s Symbol (cont.)

=
(q1
n

)(q2
n

)

· · ·
(qℓ
n

)

(−1)
n−1

2
(
q1−1

2
+...+

qℓ−1

2
)

= (−1)
m−1

2

n−1

2

(m

n

)

QED
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Jacobi’s Symbol (cont.)

Application of Jacobi’s Symbol:
Using the properties of Jacobi’s symbol, it is easy to calculate Legendre’s sym-
bols in polynomial time.
Example:

(
117

271

)

=
7 ↑

+1 ·

(
271

117

)

=
1 ↑

(
37

117

)

=
7 ↑

(
117

37

)

=
1 ↑

(
6

37

)

=
6 ↑

(
2

37

)(
3

37

)

=
4 ↑

(−1)

(
3

37

)

=
7 ↑

(−1)(+1)

(
37

3

)

=
1 ↑

(−1)(+1)

(
1

3

)

=
2 ↑

(−1)(+1)1 = −1

271 is prime, therefore
(
117
271

)
can also be computed by:

(
117

271

)

≡ 117
271−1

2 ≡ 117135 ≡ −1 (mod 271).
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Jacobi’s Symbol (cont.)

Complexity:
The only required arithmetic operations are modular reductions and division
by powers of two.
Clearly, a division (rule 6) reduces the “numerator” by a factor of two. A
modular reduction (using rule 7 and then rule 1), reduces the number by at
least two: as if a > b then a = qb + r ≥ b + r > r + r, thus r < a/2, i.e,
amod b < a/2.
Therefore, at most O(logn) modular reductions/divisions are performed, each
of which takes O((logn)2) time. This shows that the complexity is O((log n)3),
which is polynomial in log n.
A more precise analysis of this algorithm shows that the complexity can be
reduced to O((logn)2).
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Algorithms for Public Key Cryptography
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Computing Square Roots Modulo a Prime

We have already seen how to compute square roots modulo primes of the form
p = 4k + 3:
Let α be a quadratic residue modulo p. Then

β ≡ α
p+1

4 ≡ αk+1 (mod p)

is a square root of α:

β2 ≡ α
p+1

2 ≡ αα
p−1

2 ≡ α1 ≡ α (mod p).

Note that −β is also a square root of α.

Example: Compute the square root of α = 3 modulo p = 11.

β ≡ α
p+1

4 ≡ 33 ≡ 27 ≡ 5 (mod 11)
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Computing Square Roots Modulo a Prime (cont.)

We now show a probabilistic algorithm to compute square roots modulo primes
of the form p = 4k + 1.

Theorem: −1 is a quadratic residue modulo p = 4k + 1.

Proof: (already given in the course) The Legendre symbol
(
−1
p

)

is

(
−1

p

)

≡ (−1)(p−1)/2 ≡ (−1)(4k+1−1)/2 ≡

≡ (−1)2k ≡ 1k ≡ 1 (mod p)

QED
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Computing Square Roots Modulo a Prime (cont.)

Claim: For any a, both a and −a have the same Legendre symbol modulo
p = 4k + 1 (thus they are both quadratic residues or both quadratic non-
residues).
Proof: By Legendre we get

(
−a

p

)

=

(
−1

p

)

·

(
a

p

)

= 1 ·

(
a

p

)

=

(
a

p

)

.

QED
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Computing Square Roots Modulo a Prime (cont.)

Let m be a quadratic residue modulo p and let r2 ≡ m (mod p).
Assume WLG that m 6≡ 0 (mod p) (otherwise r ≡ 0 (mod p)). Then,
r 6≡ 0 (mod p).
The solutions of x2 ≡ m (mod p) are x ≡ ±r (mod p).
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Computing Square Roots Modulo a Prime (cont.)

Fact: Let 0 ≤ δ < p, δ 6≡ r. Then δ + r and δ − r have the same Legendre
symbol iff

(δ + r)/(δ − r)
∆
= (δ + r)(δ − r)−1

is a quadratic residue modulo p.
Claim: When δ gets all its possible values 0 ≤ δ < p, except δ ≡ r, the ratio
(δ + r)/(δ − r) gets all the values 0 ≤ γ < p, except for γ ≡ 1.
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Computing Square Roots Modulo a Prime (cont.)

Proof:

(a) Assume that some γ is received from two distinct δ’s: δ1 6≡ δ2 (mod p).
Then,

(δ1 + r)/(δ1 − r) ≡ (δ2 + r)/(δ2 − r) (mod p)

From which the following equations are derived:
(δ1 + r)(δ2 − r) ≡ (δ2 + r)(δ1 − r) (mod p)

δ1δ2 + rδ2 − rδ1 − r2 ≡ δ1δ2 + rδ1 − rδ2 − r2 (mod p)

r(δ2 − δ1) ≡ −r(δ2 − δ1) (mod p)

2r(δ2 − δ1) ≡ 0 (mod p)

Since r 6≡ 0 (mod p), we get:
δ1 ≡ δ2 (mod p).

Contradiction. Thus, all the received γ’s are distinct.
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Computing Square Roots Modulo a Prime (cont.)

(b) It remains only to show that γ 6≡ 1 (mod p):

But, if (δ + r)/(δ − r) ≡ 1 (mod p) then (δ + r) ≡ (δ − r) (mod p),
and thus r ≡ 0 (mod p). Contradiction.

QED
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Computing Square Roots Modulo a Prime (cont.)

Conclusion: Exactly half of the values of δ satisfy that (δ + r) and (δ − r)
have the same Legendre symbol.
Proof: Exactly half of the values γ = 1, . . . , p− 1 are quadratic residues, and
all of them, except 1 are received by various δ’s. The value 1 is a quadratic
residue that is not received, but instead the quadratic residue 0 is received.
QED
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Computing Square Roots Modulo a Prime (cont.)

The Algorithm:
Concentrate on the polynomial

f(x) ≡ x2 −m ≡ (x + r)(x− r) (mod p).

Then

f(x− δ) ≡ (x + r − δ)(x− r − δ) ≡ (x− (δ − r))(x− (δ + r)) (mod p).

Exactly for half of the values of δ, only one of δ + r and δ − r is a quadratic
residue, and the other is a quadratic non-residue. From now on, we concentrate
only on these values of δ. Thus, only one of the roots δ+r and δ−r of f(x−δ)
is a quadratic residue.
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Computing Square Roots Modulo a Prime (cont.)

The polynomial x(p−1)/2− 1 (mod p) is of degree (p− 1)/2, and whose roots
are exactly all the quadratic residues modulo p. By denoting all the quadratic
residues by ρ1, ρ2, . . . , ρ(p−1)/2, we get

x(p−1)/2 − 1 ≡ (x− ρ1)(x− ρ2) . . . (x− ρ(p−1)/2) (mod p).

Since only one of the roots of f(x− δ) is a quadratic residue, only this root is
also a root of x(p−1)/2− 1 (mod p) — thus only one of δ± r is one of the ρi’s.

We can find it by computing gcd of polynomials:

gcd(x(p−1)/2 − 1, f(x− δ)) = x− ρi = x + r − δ or x− r − δ.

On average, two trials of δ are required to find the square root.
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Computing Square Roots Modulo a Prime (cont.)

Example: Compute the square root of 3 modulo 13.

• Choose δ = 7: Then

f(x− δ) ≡ (x− 7)2 − 3 ≡ x2 − 14x + 49− 3 ≡

≡ x2 − x + 7 (mod 13)

x(p−1)/2 − 1 ≡ x6 − 1 (mod 13)

By computing the gcd we get:

gcd(x2 − x + 7, x6 − 1) = x− 3

Thus,

x− δ ± r ≡ x− 3

±r ≡ −3 + δ ≡ 4 (mod 13)

r ≡ ±4 (mod 13)
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Computing Square Roots Modulo a Prime (cont.)

• If we choose δ = 5 we get

f(x− δ) ≡ (x− 5)2 − 3 ≡ x2 − 10x + 25− 3 ≡

≡ x2 − 10x− 4 (mod 13)

By computing the gcd we get:

gcd(x2 − 10x− 4, x6 − 1) = x2 − 10x− 4

so that both roots are quadratic residues, and really 5+r = 9 and 5−r = 1
(we already found that r = ±4).

c© Eli Biham - April 12, 2011 321 Algorithms for Public Key Cryptography



Computing Square Roots Modulo a Prime (cont.)

• If we choose δ = 2 we get

f(x− δ) ≡ (x− 2)2 − 3 ≡ x2 − 4x + 4− 3 ≡

≡ x2 − 4x + 1 (mod 13)

By computing the gcd we get:

gcd(x2 − 4x + 1, x6 − 1) = 1

and thus both roots are quadratic non-residues.
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Computing Square Roots Modulo n = pq

Example: Compute the square root of 3 modulo 11 · 13.
We have seen that:

• ±5 are the square roots of 3 (mod 11).

• ±4 are the square roots of 3 (mod 13).

The 4 solutions of: {
u ≡ ±5 (mod 11)
u ≡ ±4 (mod 13)

are the square roots of 3 modulo 11 · 13.
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Computing Square Roots Modulo n = pq (cont.)

by using the Chinese remainder theorem:

u1 ≡ 4 · 6 · 11 + 5 · 6 · 13 ≡ 82 (mod 11 · 13)

u2 ≡ −4 · 6 · 11 + 5 · 6 · 13 ≡ 126 (mod 11 · 13)

u3 ≡ −u2 ≡ 4 · 6 · 11− 5 · 6 · 13 ≡ 17 (mod 11 · 13)

u4 ≡ −u1 ≡ −4 · 6 · 11− 5 · 6 · 13 ≡ 61 (mod 11 · 13)

Note that:

13−1 ≡ 6 (mod 11)

11−1 ≡ 6 (mod 13)
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The Density of Prime Numbers

For many applications, we need to find large “random” primes. Fortunately,
large primes are not too rare, so it is not too time consuming to test random
integers of the appropriate size until a prime is found.
The prime number function π(n) specifies the number of primes that are
less than or equal n.
Examples: π(10) = 4.
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The Density of Prime Numbers (cont.)

Prime Number Theorem:

lim
n→∞

π(n)

n/ lnn
= 1

We can use the prime number theorem to estimate the probability that a ran-
domly chosen integer n is a prime as 1

lnn
. Thus, we need to examine approx-

imately lnn integers chosen randomly near n in order to find a prime that is
of the same length as n (this figure can be cut in half by choosing only odd
integers).
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Primality Tests

We want to know whether a given number n is prime.

Primes = {n : n is a prime number in binary representation}

• It is easy to show that Primes ∈ coNP.
Primes ∈ NP (Pratt 75).

• Primes ∈ coRP (Solovay-Strassen 77, Rabin 80).
Primes ∈ RP.
Thus, Primes ∈ ZPP = RP

⋂
coRP.

In 2002, Agrawal, Kayal and Saxena have shown that Primes ∈ P . However,
the time complexity of their algorithm is O(log12(n)).
Note:
Monte Carlo algorithms - BPP (RP,coRP ⊆ BPP).
Las Vegas algorithms - ZPP.
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Primality Tests (cont.)

The following is a simple primality test, based on Euler’s theorem.
Choose some 0 < a < n, and test whether

an−1 ≡ 1 (mod n).

By Fermat’s theorem, the equation holds for any prime number n, and for any
a.
Thus, if this equation does not hold: n is composite. If the equations holds:
try another a.
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Primality Tests (cont.)

Does such a test suffice? Can we conclude that if we even tried many a’s
in 0 < a < n, and the equations hold, then n is a prime?
No!
There are composite numbers for which for any a coprime to n, an−1 ≡ 1
(mod n). These numbers are called Carmichael numbers.
The smallest Carmichael number is 561 = 3 · 11 · 17, for which

lcm(3− 1, 11− 1, 17− 1) = 80|560 = 561− 1.

Indeed, 





a560 ≡ 1 (mod 3)
a560 ≡ 1 (mod 11)
a560 ≡ 1 (mod 17)
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Solovay-Strassen Primality Test

Ref: A Fast Monte-Carlo Test for Primality, SIAM Journal of Computing, V. 6,
No. 1, March 1977. Correction in V. 7, No. 1, February 1978.

The Algorithm:

1. Let n be some odd number. We wish to test whether n is prime.

2. Choose some random number a, 1 < a < n. If gcd(a, n) 6= 1 then n is
not prime.

3. Compute the values

ǫ ≡ a(n−1)/2 (mod n)

δ ≡
(a

n

)

(Jacobi symbol)

4. If gcd(a, n) > 1 or ǫ 6= δ then n is necessarily composite.

5. Otherwise n is probably a prime with probability ≥ 1/2.
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Solovay-Strassen Primality Test (cont.)

6. Execute the above test m times:

(a) If the algorithm outputs ‘Composite’ at least once: output ‘Com-
posite’.

(b) If the algorithm output ‘Possibly Prime’ in all the m trials: output
‘Prime’.
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Solovay-Strassen Primality Test (cont.)

Theorem: If n is an odd prime, the algorithm always outputs ‘Prime’, i.e.,
for any a

a(n−1)/2 ≡
(a

n

)

(mod n).

Proof: By Euler’s criterion and the definition of Legendre’s symbol. QED
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Solovay-Strassen Primality Test (cont.)

The following theorem states that at least half of the a’s are witnesses to the
fact that n is composite.
Theorem: If n is an odd composite, at most half of the numbers a ∈ Z∗

n

satisfy

a(n−1)/2 ≡
(a

n

)

(mod n).

Proof: First we show that there exists some b such that

b(n−1)/2 6≡

(
b

n

)

(mod n).
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Solovay-Strassen Primality Test (cont.)

1. If n is divisible by some prime power pe (p > 2, e ≥ 2, pe+1 6 |n), we
choose

b = 1 +
n

p
.

Note that p|ϕ(n) because ϕ(pe) = (p− 1)pe−1.

Also note that gcd(b, np) = 1, which implies gcd(b, n) = 1.

Denote n = peq1q2 . . . qk, where the qi’s are not necessarily distinct.

Then,

(
b

n

)

=

(
b

n/pe

)(
b

p

)e

=

(
b

q1

)(
b

q2

)

. . .

(
b

qk

)(
b

p

)e

but b ≡ 1 (mod qi) for any qi, and b ≡ 1 (mod p). Thus,

(
b

n

)

= 1.
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Solovay-Strassen Primality Test (cont.)

On the other hand,
b(n−1)/2 6≡ 1 (mod n)

since if we assume the contrary, and denote the order of b modulo pe by
d (bd ≡ 1 (mod pe)), then d|(n−1)

2
, and

d|n− 1.

Denoting b ≡ 1 + kpe−1 (mod pe), for k = n/pe, we get by the Binom
that

1 ≡ bd ≡ 1 + dkpe−1 + Some multiple of pe (mod pe).

Therefore, dkpe−1 ≡ 0 (mod pe), from which we get p|dk. Since gcd(k, p) =
1, we conclude that p|d. Recall that d|n− 1, therefore,

p|n− 1

c© Eli Biham - April 12, 2011 335 Algorithms for Public Key Cryptography



Solovay-Strassen Primality Test (cont.)

But
p|n.

Therefore, p|1, i.e., p = 1. Contradiction.
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Solovay-Strassen Primality Test (cont.)

2. If n is a product of distinct primes, and is not divisible by any square of
a prime:

Let p be any prime factor of n, and denote n = pq1q2 . . . qk, where p and
the qi’s are all distinct.

Choose a quadratic non-residue s modulo p, and choose b by the Chinese
remainder theorem:

b ≡ s (mod p)

b ≡ 1 (mod n/p)

Then,

(
b

n

)

=

(
b

p

)(
b

q1

)(
b

q2

)

. . .

(
b

qk

)

= (−1) · 1 · 1 . . . · 1 = −1
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Solovay-Strassen Primality Test (cont.)

On the other hand:

b(n−1)/2 ≡ 1 (mod n/p)

and thus

b(n−1)/2 6≡ −1 (mod n/p)

b(n−1)/2 6≡ −1 (mod n)

We conclude that for any modulo n there is some b for which the equation
does not hold, and

b(n−1)/2 6≡

(
b

n

)

(mod n).
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Solovay-Strassen Primality Test (cont.)

3. We now show that at least half of the numbers do not satisfy the equation.

Let w1, w2, . . . , wt all the numbers in Z∗
n that satisfy

w
(n−1)/2
i ≡

(wi

n

)

(mod n).

Define u1, u2, . . . , ut by

ui ≡ bwimodn, i = 1, . . . , t.

All the numbers u1, u2, . . . , ut are distinct, and all of them are coprime
to n and in the range 0 < ui < n.

We claim that all the ui’s do not satisfy the equation, i.e., for any ui:

u
(n−1)/2
i 6≡

(ui
n

)

(mod n).
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Solovay-Strassen Primality Test (cont.)

Assume the contrary that the equation holds for some ui:

u
(n−1)/2
i ≡

(ui
n

)

(mod n).

Then,

b(n−1)/2w
(n−1)/2
i ≡

(
b

n

)(wi

n

)

(mod n).

But

w
(n−1)/2
i ≡

(wi

n

)

(mod n).

and thus

b(n−1)/2 ≡

(
b

n

)

(mod n).

Contradiction for the choice of b.
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Solovay-Strassen Primality Test (cont.)

Thus, all the ui’s do not satisfy the equation. Since they are all distinct, for
any number wi which satisfy the equation, there is at least one other number
which do not satisfy the equation. Thus, the probability that a random a do
not satisfy the equation is at least half.
QED
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Solovay-Strassen Primality Test (cont.)

Complexity of the Primality Test:

• gcd computation: O(log n) divisions.

• ǫ: O(logn) modular operations.

• δ: O(logn) divisions.

• In total: O(logn) for any choice of a.

• In order to get probability 2−m for an error (output ‘Prime’ for a com-
posite number) the algorithm tries m a’s. The total complexity is thus
O(m logn).

• If n is a composite, it is identified on average after trying two a’s. The
complexity in this case is O(2 logn) = O(logn).
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