
Hashing, One-Time Signatures, and MACs

c© Eli Biham - March 21, 2011 159 Hashing, One-Time Signatures, and MACs

Digital Signatures

A signature is (according to the Miriam-Webster dictionary):

1. (a) The act of signing one’s name to something

(b) the name of a person written with his or her own hand

2. a feature in the appearance or qualities of a natural object formerly held
to indicate its utility in medicine

3. (a) a letter or figure placed usually at the bottom of the first page on
each sheet of printed pages (as of a book) as a direction to the binder
in arranging and gathering the sheets

(b) one unit of a book comprising a group of printed sheets that are
folded and stitched together

4. the part of a medical prescription that contains the directions to the
patient

5. something (as a tune, style, or logo) that serves to set apart or identify;
also : a characteristic mark

c© Eli Biham - March 21, 2011 160 Hashing, One-Time Signatures, and MACs †

Digital Signatures (cont.)

Actually, signature encompases two functionalities:

• Writing the name of a person, in his own hands, as a confirmation.

• Commitment.

Distinguish between

• Identification: Assures the identity.

• Commitment: Assures the commitment.

c© Eli Biham - March 21, 2011 161 Hashing, One-Time Signatures, and MACs

Digital Signatures (cont.)

It is possible to have identification without commitment, and vice versa:

• An anonymous letter has neither.

• A company letter has an identifying title.

• A check is a commitment, even if it has no identification.

c© Eli Biham - March 21, 2011 162 Hashing, One-Time Signatures, and MACs

Digital Signatures (cont.)

A Digital signature S(M):

1. Computable by the signer for any message M .

2. Everybody (and the receiver in particular) can verify its originality.

3. It is impossible to forge a signature.

4. The signer cannot claim that a message he signed is forged.

c© Eli Biham - March 21, 2011 163 Hashing, One-Time Signatures, and MACs

One Way Functions

Informal Definition:A one way function Y = f(X) is a function which
is efficient to calculate but difficult to invert: for a given Y it is difficult to find
any X such that Y = f(X).
Note: There is no relationship between a one way function and an invertible
function.
Example:Y = f(X) = AESX(0) is a one way function, if there is no successful
attack on AES which finds the key X from the ciphertext Y .

c© Eli Biham - March 21, 2011 164 Hashing, One-Time Signatures, and MACs •

Lamport and Diffie’s Signature Scheme

Preparation:

1. A one way function Y = f(X) is selected.

2. Each user U chooses 2n random values X0, X1, . . . , X2n−1, and computes
Y0, Y1, . . . , Y2n−1 by Yi = f(Xi).

3. U publishes the vector Y = (Y0, Y1, . . . , Y2n−1) in a public file under his
name (i.e., in a newspaper, or in a public file maintained by a trusted
center).

4. U publishes in advance as many vectors as the number of signatures he is
expected to sign.

c© Eli Biham - March 21, 2011 165 Hashing, One-Time Signatures, and MACs

Lamport and Diffie’s Signature Scheme (cont.)

Signature generation:

1. A wants to sign an n-bit message M to B
(M = m0m1 . . .mn−1).

2. A chooses one of his unused vectors from the public file, and sends it to
B.

3. B verifies the existence of the vector in the public file.

4. A and B mark the vector as used in the public file.

5. A computes the signature S = S0S1 . . . Sn−1 by

Si =
{

X2i, if mi = 0;
X2i+1, if mi = 1

and sends the signature S to B.

c© Eli Biham - March 21, 2011 166 Hashing, One-Time Signatures, and MACs

Lamport and Diffie’s Signature Scheme (cont.)

Signature verification:

1. B verifies whether for all the i’s

f(Si) =
{

Y2i, if mi = 0;
Y2i+1, if mi = 1

c© Eli Biham - March 21, 2011 167 Hashing, One-Time Signatures, and MACs

Lamport and Diffie’s Signature Scheme (cont.)

Proof to a judge (and anybody else):

1. B sends the signature S and the vector Y to the judge.

2. The judge verifies that the vector Y appears in the public file as a vector
of A.

3. The judge verifies whether for all the i’s

f(Si) =
{

Y2i, if mi = 0;
Y2i+1, if mi = 1

c© Eli Biham - March 21, 2011 168 Hashing, One-Time Signatures, and MACs

Lamport and Diffie’s Signature Scheme (cont.)

Security:
If B can forge A’s signature, he can invert the one way function f !
Even if he is already given a signature of some message using some vector, still
he needs to invert the one way function f in order to forge a different message
using the same vector.

c© Eli Biham - March 21, 2011 169 Hashing, One-Time Signatures, and MACs †

Hashing

Problem:To sign a long message of 1,000,000 bits, a vector of 2,000,000 f(Xi)
should be prepared in advance. The length of the signature is 128,000,000 bits
if f(X) = AESX(0).
Solution:Hashing.

c© Eli Biham - March 21, 2011 170 Hashing, One-Time Signatures, and MACs

Hashing (cont.)

Definition:A cryptographic hash function, or briefly a hash function,
is a function H : {0, 1}∗ → {0, 1}n for some constant n, which satisfies:

1. It is easy to compute H(M) for any M .

2. Given h ∈ {0, 1}n, it is computationally difficult to find a preimage: a
message M ∈ {0, 1}∗ such that h = H(M).

3. It is computationally difficult to find a collision: a pair of messages M1

and M2 such that H(M1) = H(M2).

c© Eli Biham - March 21, 2011 171 Hashing, One-Time Signatures, and MACs

Hashing (cont.)

Usage:Given a long message M , we sign H(M).
Other Applications of Hash Functions:

• Keeping H(M) can protect a long message M against modification.

• The “one-wayness” property can be used in protocols, where it is required
that nobody can invert the function.

• Publishing H(M) can be used as a commitment on M .

c© Eli Biham - March 21, 2011 172 Hashing, One-Time Signatures, and MACs

Hashing (cont.)

Claim:Forging a signature S(H(M)) is difficult.

1. If the attacker chooses M , he can compute H(M) but cannot sign it.

2. If he chooses H(M), he can neither sign, nor find M .

3. If he has a valid signature on M1, he knows H(M1) and the signature
S(H(M1)). If he can find another messageM such thatH(M) = H(M1),
he has M ’s signature, but it is difficult to find such an M .

c© Eli Biham - March 21, 2011 173 Hashing, One-Time Signatures, and MACs †

Rabin’s Hashing using DES

Let a message M = m1m2 . . . ml, where each mi is 56-bit long. Let S0 be some
standard constant.

n1 = DESm1(S0)

n2 = DESm2(n1)

n3 = DESm3(n2)
...

nl = DESml
(nl−1)

H(M)
∆
= nl

c© Eli Biham - March 21, 2011 174 Hashing, One-Time Signatures, and MACs

Rabin’s Hashing using DES (cont.)

Drawback:This function changes the DES key every block. Changing DES
keys is inefficient in most DES hardware and software.
Security:This hash function is not secure (using DES).

• It is easy to find a collision: in about 232 messages, the birthday para-
dox predicts that with probability higher than half there are two distinct
messages hashing to the same value.

• Preimages X can be found for any hash value h. (Hint: build X from
two halves, and use the birthday paradox).

• Rabin’s hashing is secure when used with (secure) ciphers whose block
size is at least 128 bits (e.g., AES).

c© Eli Biham - March 21, 2011 175 Hashing, One-Time Signatures, and MACs

The Required Hash Size

This method suggests that the hash function should be collision free (paragraph
3 in the definition should hold).

1. B chooses a pair of messages M1 and M2 satisfying H(M1) = H(M2),
where M1 is a message that A will accept and sign, and M2 is a message
which B prefers, but A will not agree to sign.

2. B requests A to sign H(M1).

3. A signs S(H(M1)).

4. B receives S(H(M1)), and then concludes that the signature on M2 is
S(H(M2)) = S(H(M1)).

5. B can claim in court that A signed on M2.

Alternatively, A can choose such two messages, sign one of them, and later
claim in court that he signed the other message.

c© Eli Biham - March 21, 2011 176 Hashing, One-Time Signatures, and MACs

The Required Hash Size (cont.)

How to find a pair of messages satisfying H(M1) = H(M2)?
Assume the hash value size is n = 64 bits.
B chooses 232 messages which A will accept M1,. . . ,M232, and 232 messages
which A will not accept M ′

1,. . . ,M
′
232
.

c© Eli Biham - March 21, 2011 177 Hashing, One-Time Signatures, and MACs

The Required Hash Size (cont.)

For example, B chooses 232 messages Mi, which differ in 32 words, each of them
has two choices:

The bank A
{

will
promises to

}{

give
let

}

B an amount of 100
{

US
American

}

dollars
{

before
until

}

April 2011.
{

Then,
Later,

}

B will
{

use
invest

}

this amount

for . . .

and 232 messages M ′
j of the form:

The bank A
{

will
promises to

} {

give
let

}

B the amount of at least
{

twenty
forty

} {

million
billion

} {

US
American

}

dollars
{

which
that

}

are given as

present, and
{

should
will

}

not be returned . . .

c© Eli Biham - March 21, 2011 178 Hashing, One-Time Signatures, and MACs

The Required Hash Size (cont.)

By the birthday paradox, there is a high probability that there is some pair
of message Mi and M ′

j such that H(Mi) = H(M ′
j). Both messages have the

same signature.
Conclusion:The hash value size must be at least n = 128 bits, for which the
birthday paradox requires about 264 complexity to find such a pair.
Notice also that by the birthday paradox there is a high probability for a collision
of two elements of the same set when the size of the set is about the square
root of the number of different possible elements.

c© Eli Biham - March 21, 2011 179 Hashing, One-Time Signatures, and MACs

The Birthday Paradox

Assume thatH can havem distinct outputs (m = 2n), and assume that for each
input value H choose the output at random, independently from the output of
the other inputs.
We can look at H as a function which throw a ball into a set of m boxes, and
the ball enters to one of the boxes at random (to the box H(i)).
If we throw k balls, we receive mk assignments of the balls into the boxes. Only
m(m − 1)(m − 2) · · · (m − k + 1) of them do not include any pair of balls in
the same box.
Thus, the probability that there will not be any collision is

m!

(m− k)!mk

c© Eli Biham - March 21, 2011 180 Hashing, One-Time Signatures, and MACs

The Birthday Paradox (cont.)

and the probability of one or more collisions is

p(m, k) = 1− m!

(m− k)!mk

= 1− (m− 1)(m− 2) · · · (m− k + 1)

mk−1

= 1−
(

1− 1

m

)(

1− 2

m

)

· · ·
(

1− k − 1

m

)

but for any 0 < X < 1,

1−X < 1−X +X2

(

1− X

3

)

/2 +X4

(

1− X

5

)

/24 + . . . = e−X

c© Eli Biham - March 21, 2011 181 Hashing, One-Time Signatures, and MACs

The Birthday Paradox (cont.)

and thus (1− i
m) < e−

i
m :

p(m, k) = 1−
(

1− 1

m

)(

1− 2

m

)

· · ·
(

1− k − 1

m

)

> 1− e−
1
me−

2
m · · · e−k−1

m

= 1− e−
1+2+...+(k−1)

m = 1− e−
k(k−1)
2m

For a large k, in order to get p(m, k) > 1
2
:

k ≥
√
2m ln 2 = 1.17

√
m.

c© Eli Biham - March 21, 2011 182 Hashing, One-Time Signatures, and MACs

The Birthday Paradox (cont.)

When we deal with two distinct subsets of a global set, and one of these subsets
is chosen randomly from the global set, a similar result holds:
Let X by the global set with N elements. Let S1 be a subset of X (chosen
either in deterministic or random way) of size

√
N , and let S2 be a subset of

X with
√
N elements chosen randomly. Then, with probability 1− 1

e = 63.2%
there is at least one element s such that s ∈ S1 and s ∈ S2.

Exercise:Prove the above claim.
Find the minimal value t satisfying that if |S1| = |S2| = t then there is an
element in the two subsets with probability at least 50%.

c© Eli Biham - March 21, 2011 183 Hashing, One-Time Signatures, and MACs

The Birthday Paradox (cont.)

Example:A birth date: there are 365 days in a year, thus in a group of√
2 · 365 · ln 2 = 22.5 children, there are two children with the same birthday

with probability about half.
Example:A hash function with 64-bit hash value: n = 64, m = 264. We
should compute about

√
2 · 264 · ln 2 = 1.17 · 232 hashes to find a collision with

probability about half.
If m = 2128, 1.17 · 264 hashes are required.
Example:Out of n users of a system, about

√
n are dishonest. A system

administrator picks users at random and check whether they are dishonest. It
is expected that after checking

√
n users he would find at least one dishonest

user with probability about 63%.

c© Eli Biham - March 21, 2011 184 Hashing, One-Time Signatures, and MACs •

Hash Functions

Most practical hash functions h(M) divide the messages M into fixed-length
blocks M1, M2, etc., pad the last block and append the message length to
the last block. The resultant last block (after all paddings) is denoted by Mn.
Then, the hash function applies a collision free function H on each of the blocks
sequentially.

IV H H H H H H H

Length

Output

Message

The functionH takes as inputs the result of the application ofH on the previous
block (or a fixed initial value in the first block), and the block itself, and results
with a hash value. The hash value is an input to the application of H on the
next block.

c© Eli Biham - March 21, 2011 185 Hashing, One-Time Signatures, and MACs

Hash Functions (cont.)

The result of H on the last block is the hashed value of the message h(M).

h0 = IV = a fixed initial value

h1 = H(h0,M1)
...

hi = H(hi−1,Mi)
...

hn = H(hn−1,Mn)

h(M)
∆
= hn

c© Eli Biham - March 21, 2011 186 Hashing, One-Time Signatures, and MACs

Hash Functions (cont.)

Theorem:If H is collision free, then also h is collision free.
Proof:By contradiction. Assume the contrary. Thus, either

1. For a given Y , it is possible to find a message M such that h(M) = Y .
In this case also H(hn−1,Mn) = Y , and thus H is not collision free.
Contradiction.

c© Eli Biham - March 21, 2011 187 Hashing, One-Time Signatures, and MACs

Hash Functions (cont.)

2. It is possible to find two distinct messages M and M ∗ such that
h(M) = h(M ∗). Let k be the smallest integer k > 0 such that either
hn−k−1 6= h∗

n∗−k−1 or Mn−k 6= M ∗
n∗−k. In both cases hn−k = h∗

n∗−k, and
thus H(hn−k−1,Mn−k) = H(h∗

n∗−k−1,M
∗
n∗−k), and thus H is not collision

free.

We remain with the case in which one message (without loss of generality)
M ∗ is a postfix of the second message M , and hn∗−n = IV . However, in
this case we actually find H(hn∗−n−1,Mn∗−n) = IV , which is impossible
for collision free functions. Contradiction.

QED

c© Eli Biham - March 21, 2011 188 Hashing, One-Time Signatures, and MACs

Practical Hash Functions

Two approaches for the design of hash functions are:

1. To base the function H on a block cipher.

2. To design a special function H , not based on a block cipher.

The second approach is the more popular nowadays.

c© Eli Biham - March 21, 2011 189 Hashing, One-Time Signatures, and MACs

Practical Hash Functions (cont.)

Hash function of the second approach include:

1. Snefru (128–224 bits) (broken, 1990).

2. MD4 (128 bits) (broken, 1995).

3. MD5 (128 bits) (broken, 2004).

4. The Secure Hash Standard (SHA, SHA-1) (160 bits) (broken, 2004, 2005).

5. The Secure Hash Standard SHA-224, SHA-256, SHA-384, and SHA-512
(224, 256, 384, 512 bits, respectively)

6. RIPEMD (160 bits).

7. Tiger (192 bits).

MD5, RIPEMD, and all SHA’s are based on the structure of MD4 with various
improvements.

c© Eli Biham - March 21, 2011 190 Hashing, One-Time Signatures, and MACs

SHA-1

The Secure Hash Standard was designed by the NSA, following the structure
of Rivest’s MD4 and MD5. The first standard was SHA (now called SHA-0).
It was later changed slightly to SHA-1, due to some unknown weakness found
by the NSA.
Step 1:Append padding bits: Given an m-bit message, a single bit “1” is
appended as the m+1th bit and then (448− (m+1))mod 512 (between 0 and
511) zero bits are appended. As a result, the message becomes 64-bit shy of
being a multiple of 512 bits long.
Step 2:Append length: A 64-bit representation of the message length m is
appended, making the result a multiple of 512 bits long.
The result is divided into 512-bit blocks, denoted by M1, M2, . . . , Mn.

c© Eli Biham - March 21, 2011 191 Hashing, One-Time Signatures, and MACs

SHA-1 (cont.)

Step 3:The five 32-bit words A, B, C, D and E are used to keep the 160-bit
hash values hi.
Their initial value (h0) is (in hexadecimal)

A = 67452301

B = EFCDAB89

C = 98BADCFE

D = 10325476

E = C3D2E1F0.

Step 4:For each block X = Mi, the function H(hi−1, X) is applied on the
previous value of hi−1 = (A,B,C,D,E) and the block. The result remains in
hi = (A,B,C,D,E).
Step 5:The hash value is the 160-bit value hn = (A,B,C,D,E).

c© Eli Biham - March 21, 2011 192 Hashing, One-Time Signatures, and MACs

The Function H of SHA-1

1. Divide X = Mi into 16 32-bit words: W0, W1, W2, . . . , W15.

2. for t = 16 to 79 compute Wt = (Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16) ≪ 1,
where X ≪ Y (cyclicly) rotates X to the left by Y bits.

Remark:The one-bit rotate in computing Wt was not included in SHA,
and is the only difference between SHA and SHA-1.

3. Save A as AA, B as BB, C as CC, D as DD, and E as EE.

4. For t = 0 to 79 do

(a) T = A ≪ 5 + ft(B,C,D) + E +Wt +Kt.

(b) E = D, D = C, C = B ≪ 30, B = A, A = T .

5. Perform A = A+AA, B = B +BB, C = C +CC, D = D+DD, and
E = E + EE (modulo 232).

c© Eli Biham - March 21, 2011 193 Hashing, One-Time Signatures, and MACs

The Function H of SHA-1 (cont.)

6. The function ft and the values Kt used above are:

0 ≤ t ≤ 19: ft(X,Y, Z) = XY ∨ (¬X)Z Kt = 5A827999

20 ≤ t ≤ 39: ft(X,Y, Z) = X ⊕ Y ⊕ Z Kt = 6ED9EBA1

40 ≤ t ≤ 59: ft(X,Y, Z) = XY ∨XZ ∨ Y Z Kt = 8F1BBCDC

60 ≤ t ≤ 79: ft(X,Y, Z) = X ⊕ Y ⊕ Z Kt = CA62C1D6

c© Eli Biham - March 21, 2011 194 Hashing, One-Time Signatures, and MACs

The Function H of SHA-1 (cont.)

A0 B0 C0 D0 E0

≪ 30

≪5

⊞
K1 ⊞
W1 ⊞

f1

⊞

≪ 30

≪5

⊞
Ki ⊞
Wi ⊞

fi

⊞

Feed Forward

c© Eli Biham - March 21, 2011 195 Hashing, One-Time Signatures, and MACs

Message Authentication Codes

Message authentication codes (MAC) are used to protect information against
modification. They mix the messages cryptographically under a secret key,
and the result (the MAC) is appended to the message. The receiver can then
recompute the MAC and verify its correctness. It should be impossible for
an attacker to forge a message and still be able to compute the correct MAC
without knowing the secret key.
The purpose is similar to signing messages against forging, however, usually
signature schemes are much slower, and MAC schemes are as fast as symmetric
encryption.

c© Eli Biham - March 21, 2011 196 Hashing, One-Time Signatures, and MACs

CBC MAC

One very useful MAC function used in the industry (and adopted by standard
committees) is the CBC-MAC.
This MAC computes a CBC mode on the data (under a key designated for
authentication),

Ci = EK(Mi ⊕ Ci−1),

and takes the last block (or two blocks, or half a block) as the MAC value.

IV

M1

C1

E

M2

C2

E

M3

C3

E

M4

C4

E

M5

C5

E

c© Eli Biham - March 21, 2011 197 Hashing, One-Time Signatures, and MACs

Example: PCBC MAC

Another MAC which was used by early versions of Kerberos was PCBC, which
was intended to unify encryption and MAC together. (CBC cannot be used for
encryption and MAC with the same key, as forgers can keep the last ciphertext
blocks unchanged; therefore it requires two CBC mode computations: one for
encryption and another for MAC).

c© Eli Biham - March 21, 2011 198 Hashing, One-Time Signatures, and MACs

Example: PCBC MAC (cont.)

PCBC is similar to the CBC mode, but also feeds the previous message block
into the next one, increasing the mixing of the data.
PCBC computes

Ci = EK(Mi ⊕Mi−1 ⊕ Ci−1).

IV

M1

C1

E

M2

C2

E

M3

C3

E

M4

C4

E

M5

C5

E

It seems that this MAC is even better than the CBCMAC, due to the additional
mixing, that ensures that errors in ciphertext transmission propagate further.

c© Eli Biham - March 21, 2011 199 Hashing, One-Time Signatures, and MACs

Example: PCBC MAC (cont.)

However, it was later found that exchanging the order of the ciphertext blocks
(thus modifying the rest of the message blocks in some unpredictable way):

DK(Ci)⊕Mi = Mi−1 ⊕ Ci−1.

And thus
Mi ⊕ Ci = (Ci ⊕DK(Ci))⊕Mi−1 ⊕ Ci−1

from which we get

Mn ⊕ Cn = IV ⊕
n

∑

j=1

Ci ⊕DK(Ci)

where IV is the initial value (i.e., IV = M0 ⊕ C0).
From this equation it is easy to see that the order of the ciphertext blocks does
not change the final MAC value.

c© Eli Biham - March 21, 2011 200 Hashing, One-Time Signatures, and MACs

MACs Using Hash Functions

MACs can be built using hash functions. One such possibility can be to prepend
the key to the message and to hash them together:

MAC1K(M) = H(K‖M).

In this construction, it is easy to append data to the end of a message and
predict the MAC of the longer message without knowing the key.
A better solution is

MAC2K(M) = H(K‖M‖K).

Even better solutions require using the hash function twice.

c© Eli Biham - March 21, 2011 201 Hashing, One-Time Signatures, and MACs

HMAC

HMAC is a generic MAC which use an hash function to compute a MAC.

HMAC-HK(M) = H (K ⊕ opad‖H ((K ⊕ ipad)‖M)) ,

where opad is a block of 64 bytes 36x and ipad is a block of 64 bytes 5cx. It
accepts a variable length key K, to which zeroes are appended to form a full
block.
The instance using a hash function H it is called HMAC-H.
The most known MAC in the HMAC family is HMAC-MD5, which serves as
the standard MAC in the Internet, including in IPSEC. HMAC-SHA-1 is also
used.
Remark:MD5 is similar to SHA-1, but with 4 words only (A,B,C,D), smaller
number of rounds (64), and slightly different round functions.

c© Eli Biham - March 21, 2011 202 Hashing, One-Time Signatures, and MACs

	Hashing, One-Time Signatures, and MACs
	 Digital Signatures
	 One Way Functions
	 Lamport and Diffie's Signature Scheme
	 Hashing
	 Rabin's Hashing using DES
	 The Required Hash Size
	 The Birthday Paradox
	 Hash Functions
	 Practical Hash Functions
	 SHA-1
	 The Function H of SHA-1
	 Message Authentication Codes
	 CBC MAC
	 Example: PCBC MAC
	 MACs Using Hash Functions
	 HMAC

