Shannon's Theory of Secrecy Systems

See:
C. E. Shannon, Communication Theory of Secrecy Systems, Bell Systems Technical Journal, Vol. 28, pp. 656-715, 1948.

Notation

Given a cryptosystem, denote
\boldsymbol{M} a message (plaintext)
C a ciphertext
\boldsymbol{K} a key
\boldsymbol{E} be the encryption function $\boldsymbol{C}=\boldsymbol{E}_{\boldsymbol{K}}(\boldsymbol{M})$
D be the decryption function $M=D_{K}(C)$
For any key $K, E_{K}(\cdot)$ and $D_{K}(\cdot)$ are 1-1, and $D_{K}\left(E_{K}(\cdot)\right)=$ Identity.

Shannon's Theory of Secrecy Systems (1949)

Let $\left\{M_{1}, M_{2}, \ldots, M_{n}\right\}$ be the message space.
The messages $M_{1}, M_{2}, \ldots, M_{n}$ are distributed with known probabilities $p\left(M_{1}\right), p\left(M_{2}\right), \ldots, p\left(M_{n}\right)$ (not necessarily uniform).
Let $\left\{K_{1}, K_{2}, \ldots, K_{l}\right\}$ be the key space. The keys $K_{1}, K_{2}, \ldots, K_{l}$ are distributed with known probabilities $p\left(K_{1}\right), p\left(K_{2}\right), \ldots, p\left(K_{l}\right)$. Usually (but not necessarily) the keys are uniformly distributed: $p\left(K_{i}\right)=1 / l$.
Each key projects all the messages onto all the ciphertexts, giving a bipartite graph:

Shannon's Theory of Secrecy Systems (1949) (cont.)

Perfect Ciphers

Definition: A cipher is perfect if for any M, C

$$
p(M \mid C)=p(M)
$$

(i.e., the ciphertext does not reveal any information on the plaintext).

By this definition, a perfect cipher is immune against ciphertext only attacks, even if the attacker has infinite computational power (unconditional security in context of ciphertext only attacks).
Note that

$$
p(M) p(C \mid M)=p(M, C)=p(C) p(M \mid C)
$$

Perfect Ciphers (cont.)

and thus it follows that
Theorem: A cipher is perfect iff

$$
\forall M, C \quad p(C)=p(C \mid M)
$$

Note that

$$
p(C \mid M)=\sum_{\substack{K \\ E_{K}(M)=C}} p(K) .
$$

Therefore, a cipher is perfect iff

$$
\forall C \quad\left(\sum_{E_{K}^{K}}^{E_{K}(M)=C}<1 p(K) \text { is independent of } M\right)
$$

Perfect Ciphers (cont.)

Theorem: A perfect cipher satisfies $l \geq n$ ($\#$ keys $\geq \#$ messages).
Proof: Assume the contrary: $l<n$. Let C_{0} be such that $p\left(C_{0}\right)>0$. There exist $l_{0}\left(1 \leq l_{0} \leq l\right)$ messages M such that $M=D_{K}\left(C_{0}\right)$ for some K. Let M_{0} be a message not of the form $D_{K}\left(C_{0}\right)$ (there exist $n-l_{0}$ such messages). Thus,

$$
p\left(C_{0} \mid M_{0}\right)=\sum_{\substack{K \\ E_{K}\left(M_{0}\right)=C_{0}}} p(K)=\sum_{K \in \emptyset} p(K)=0
$$

but in a perfect cipher

$$
p\left(C_{0} \mid M_{0}\right)=p\left(C_{0}\right)>0
$$

Contradiction. QED

Perfect Ciphers (cont.)

Example: Encrypting only one letter by Caesar cipher: $l=n=26, p(C)=$ $p(C \mid M)=1 / 26$.
But:
When encrypting two letters: $l=26, n=26^{2}, p(C)=1 / 26^{2}$.
Each M has only 26 possible values for C, and thus for those C^{\prime} 's: $p(C \mid M)=$ $1 / 26$, while for the others C 's $p(C \mid M)=0$.
In particular, $p(C=X Y \mid M=a a)=0$ for any $X \neq Y$.

Vernam is a Perfect Cipher

Theorem: Vernam is a perfect cipher.
Vernam is a Vigenere with keys as long as the message. Clearly, if the keys are even slightly shorter, the cipher is not perfect.
Proof: Clearly, in Vernam $l=n$. Given that the keys are uniformly selected at random, $p(K)=1 / l=1 / n$.

$$
p(C \mid M)=p(K=C-M)=\frac{1}{n}=\frac{1}{l} .
$$

Since $p(C \mid M)=1 / l$ for any M and C, clearly also $p(C \mid M)=p(C)$. QED

Entropy

Let S be a source of n elements distributed with the probabilities $p_{1}, p_{2}, \ldots, p_{n}$.
Definition: The entropy $H(S)$ of S is

$$
H(S)=\sum_{i=1}^{n} p_{i} \log \frac{1}{p_{i}}=-\sum_{i=1}^{n} p_{i} \log p_{i}
$$

(\log is used in all the course in base 2).
The entropy is measured in units of bits. It measures the amount of unknown information in S .

Entropy (cont.)

Example: English text: We already mentioned that the frequency of the letters in English texts are

Letter	Frequency	Letter	Frequency	Letter	Frequency
e	12.31%	l	4.03%	b	1.62%
t	9.59%	d	3.65%	g	1.61%
a	8.05%	c	3.20%	v	0.93%
o	7.94%	u	3.10%	k	0.52%
n	7.19%	p	2.29%	q	0.20%
i	7.18%	f	2.28%	x	0.20%
s	6.59%	m	2.25%	j	0.10%
r	6.03%	w	2.03%	z	0.09%
h	5.14%	y	1.88%		

The entropy of such a source of letters is then
$H(S)=-0.1231 \log 0.1231-0.0959 \log 0.0959-\ldots-0.0009 \log 0.0009 \approx 4$

Entropy (cont.)

Example: Let S be uniformly distributed: $p_{i}=1 / n$. Then,

$$
H(S)=-\sum_{i=1}^{n} \frac{1}{n} \log \frac{1}{n}=n \cdot \frac{1}{n} \cdot \log n=\log n .
$$

In particular, if $n=2^{k}$ then $H(S)=\log n=k$.
If $n=26$ then $H(S)=\log 26=4.7$. As we noticed, in English S is not uniformly distributed, and $H(S)=4$.
Lemma: If the distribution is not uniform $H(S)<\log n$. (to be proven shortly).
In this case, a long string whose characters are distributed as in S can be compressed to $H(S)$ bits.

Entropy (cont.)

Claim: $\ln x \leq x-1$.
Proof: Consider the function $\ln x-(x-1)$. Its derivative is $\frac{d(\ln x-(x-1))}{d x}=\frac{1}{x}-1$, and thus the maximum is at $x=1$ where $\ln x-(x-1)=0$. The figure shows the curves of x, of $x-1$, and of $\ln x$:

QED

Entropy (cont.)

Lemma: $H(S) \leq \log n$ (equality iff S is uniformly distributed). Proof: Let p_{i} and q_{i} be two distributions, $\Sigma p_{i}=\Sigma q_{i}=1$. Then

$$
\begin{aligned}
& \sum p_{i} \log \frac{1}{p_{i}}-\sum p_{i} \log \frac{1}{q_{i}}=\sum p_{i} \log \frac{q_{i}}{p_{i}}= \\
& =\frac{1}{\ln 2} \sum p_{i} \ln \frac{q_{i}}{p_{i}} \leq \frac{1}{\ln 2} \sum p_{i}\left(\frac{q_{i}}{p_{i}}-1\right)= \\
& =\frac{1}{\ln 2}\left(\sum q_{i}-\sum p_{i}\right)=\frac{1}{\ln 2}(1-1)=0
\end{aligned}
$$

and thus,

$$
\begin{equation*}
\sum p_{i} \log \frac{1}{p_{i}} \leq \sum p_{i} \log \frac{1}{q_{i}} \tag{*}
\end{equation*}
$$

Entropy (cont.)

and in particular for $q_{i} \equiv 1 / n$:

$$
\begin{aligned}
H(S) & =\sum p_{i} \log \frac{1}{p_{i}} \leq \sum p_{i} \log \frac{1}{q_{i}}= \\
& =\sum p_{i} \log \frac{1}{1 / n}=\log n
\end{aligned}
$$

QED

Properties of the Entropy

Let A and B be two independent sources with distributions p, q, respectively. Theorem: $H(A, B)=H(A)+H(B)$. Proof:

$$
\begin{aligned}
-H(A, B) & =\sum_{i, j} p_{i} q_{j} \log \left(p_{i} q_{j}\right) \\
& =\sum_{j} q_{j} \sum_{i} p_{i} \log p_{i}+\sum_{i} p_{i} \sum_{j} q_{j} \log q_{j} \\
& =\sum_{i} p_{i} \log p_{i}+\sum_{j} q_{j} \log q_{j} \\
& =-(H(A)+H(B))
\end{aligned}
$$

QED

Conditional Entropy

Let $p_{i, j}$ be the distribution of $i \in A, j \in B\left(\sum_{i, j} p_{i, j}=1\right)$.
Let

$$
\begin{aligned}
p_{i} & =\sum_{j} p_{i, j} \\
q_{j} & =\sum_{i} p_{i, j} \\
q(j \mid i) & =p_{i, j} / p_{i} \quad \text { (Normalized in each row) }
\end{aligned}
$$

Conditional Entropy (cont.)

Example:

A special example is pairs of consecutive letters in English. The entry (Q,U) has probability 0 , while (T, H) has probability above average.

Conditional Entropy (cont.)

Definition:

$$
H\left(B \mid A_{i}\right)=-\sum_{j} q(j \mid i) \log q(j \mid i)
$$

(the entropy of B given the exact value of A_{i}). The Conditional Entropy is defined to be

$$
H(B \mid A)=\sum_{i} p_{i} H\left(B \mid A_{i}\right)
$$

Conditional Entropy (cont.)

Theorem: $H(A, B)=H(A)+H(B \mid A)$.
Proof:

$$
\begin{aligned}
-H(A, B) & =\sum_{i, j} p_{i} q(j \mid i) \log \left(p_{i} q(j \mid i)\right) \\
& =\sum_{i} p_{i} \log p_{i} \sum_{j} q(j \mid i)+\sum_{i} p_{i}\left[\sum_{j} q(j \mid i) \log q(j \mid i)\right] \\
& =\sum_{i} p_{i} \log p_{i}+\sum_{i} p_{i}\left[-H\left(B \mid A_{i}\right)\right] \\
& =-H(A)-H(B \mid A)
\end{aligned}
$$

QED

Conclusion: $H(A, B) \geq H(A)$.

Conditional Entropy (cont.)

Theorem: $H(B \mid A) \leq H(B)$ (equality only if A and B are independent). Proof:

$$
H(B \mid A)=\sum_{i} p_{i} H\left(B \mid A_{i}\right)=\sum_{i} p_{i} \sum_{j} q(j \mid i) \log \frac{1}{q(j \mid i)}
$$

By (*):

$$
\begin{aligned}
& \leq \sum_{i} p_{i} \sum_{j} q(j \mid i) \log \frac{1}{q_{j}}=\sum_{j}\left(\sum_{i} p_{i} q(j \mid i)\right) \log \frac{1}{q_{j}} \\
& =\sum_{j} q_{j} \log \frac{1}{q_{j}}=H(B)
\end{aligned}
$$

QED
Similarly, $H(C \mid B, A) \leq H(C \mid B)$.

Long Message Encryption

To encrypt a long message $M=M_{1} M_{2} \ldots M_{N}$ (M is the full message, the M_{i} 's are the various letters) we encrypt each block M_{i} to $C_{i}=E_{K}\left(M_{i}\right)$ under the same key K, and concatenate the results $C=C_{1} C_{2} \ldots C_{N}$.
This cipher is not perfect since there is N such that \#keys $<\#$ messages of length N (and since $p(X Y \mid a a)=0 \neq p(X Y)$ when $X \neq Y)$.
Thus, we can gain information on the key or the message given the ciphertext only (for a given C there are only \#keys possible messages, rather than \#messages).

Long Message Encryption (cont.)

Theorem: for any $S \geq N$, and for any A,

1. $H\left(K \mid C_{1} C_{2} \ldots C_{S}\right) \leq H\left(K \mid C_{1} C_{2} \ldots C_{N}\right)$
2. $H\left(M_{1} M_{2} \ldots M_{A} \mid C_{1} C_{2} \ldots C_{S}\right) \leq$ $H\left(M_{1} M_{2} \ldots M_{A} \mid C_{1} C_{2} \ldots C_{N}\right)$
3. $H\left(M_{1} M_{2} \ldots M_{N} \mid C_{1} C_{2} \ldots C_{N}\right) \leq H\left(K \mid C_{1} C_{2} \ldots C_{N}\right)$

Thus, when the size of C grows, the entropies of the message and the key are reduced.
Proof: Exercise.

Unicity Distance

How long should M and C be so we can identify the message M uniquely given the ciphertext C ?
We wish that $H(M \mid C)=H\left(M_{1} M_{1} \ldots M_{N} \mid C_{1} C_{2} \ldots C_{N}\right)$ be zero (or very small; we know that it reduces when N is increasing).
Observe that some keys may be equivalent, and thus $H(K)$ may be just an upper bound on the effective entropy of the key

$$
H(C \mid M)
$$

Unicity Distance (cont.)

Look at the equations:

$$
H(C)+H(M \mid C)=H(M, C)=H(M)+H(C \mid M)
$$

By moving terms we get:

$$
H(C)-H(M)=H(C \mid M)-H(M \mid C)
$$

Let $H\left(M^{\prime}\right) \triangleq H(M) / N$ and $H\left(C^{\prime}\right) \triangleq H(C) / N$, be the average additional entropy for each additional letter, where N is the message length, and assume that $H(M \mid C)=0$ (as the message is unique given C).
Then,

$$
N\left(H\left(C^{\prime}\right)-H\left(M^{\prime}\right)\right)=H(C \mid M)
$$

Unicity Distance (cont.)

$H(K), H\left(C^{\prime}\right)$, and $H\left(M^{\prime}\right)$ are fixed. Thus, in order to get a unique key we need

$$
N \geq \frac{H(C \mid M)}{H\left(C^{\prime}\right)-H\left(M^{\prime}\right)}
$$

$H(K) \geq H(C \mid M)$ and thus it suffices to assume that we get a message of length

$$
N \geq \frac{H(K)}{H\left(C^{\prime}\right)-H\left(M^{\prime}\right)}
$$

(which is the unicity distance of identifying the key uniquely).

Unicity Distance (cont.)

Definition: the unicity distance N is

$$
N=\frac{H(K)}{H\left(C^{\prime}\right)-H\left(M^{\prime}\right)}
$$

If $H\left(C^{\prime}\right)=H\left(M^{\prime}\right)$, then $H(M \mid C)=H(C \mid M)>0$, then the message is never unique. In this case we say that $N=\infty$.
Moreover, if $H(K) \nless H(M)$ then $H(M \mid C)=H(K) \geq H(M)$ so the ciphertext does not disclose any information on the message M if the key has sufficient entropy.
Conclusion: Compression of a message before encrypting reduces $H\left(C^{\prime}\right)$ $H\left(M^{\prime}\right)$ and thus increases the unicity distance.

Random Ciphers

Assume that the message space and the ciphertext space are of size n (n different messages of size N).
The messages are redundant, i.e., not all the n messages are legal, or not all have the same probabilities.
Each key represents a random permutation of the letters, each with probability $1 / n$!. Thus,

$$
\begin{aligned}
p\left(C_{1}\right) & =1 / n \\
H\left(C_{1}\right) & =\log n
\end{aligned}
$$

Random Ciphers (cont.)

Let $H\left(C^{\prime}\right)$ and $H\left(M^{\prime}\right)$ be $H\left(C^{\prime}\right) \triangleq H(C) / N$, and $H\left(M^{\prime}\right) \triangleq H(M) / N$. Definition: $D \triangleq H\left(C^{\prime}\right)-H\left(M^{\prime}\right)$ is called the source redundancy. Definition: The unicity distance is

$$
N=\frac{H(K)}{H\left(C^{\prime}\right)-H\left(M^{\prime}\right)}=\frac{H(K)}{D}
$$

Random Ciphers (cont.)

Example: In English $D=\log 26-H\left(M^{\prime}\right) . \quad \log 26=4.7, H\left(M^{\prime}\right)=1.5($ as letters are dependent in English). $D=\log 26-H\left(M^{\prime}\right)=4.7-1.5=3.2$.
In Caesar's cipher (26 possible shifts), the unicity distance is thus

$$
N=\frac{H(K)}{3.2}=\frac{\log 26}{3.2}=1.5
$$

In a substitution cipher

$$
N=\frac{H(K)}{3.2}=\frac{\log 26!}{3.2}=\frac{88.4}{3.2}=27.6
$$

In a uniformly random letter distribution, whose frequencies are as in English, $D=4.7-4=0.7$ and the unicity distances would be 7 and 126 , respectively.

