Shannon's Theory of Secrecy Systems

See: C. E. Shannon, *Communication Theory of Secrecy Systems*, Bell Systems Technical Journal, Vol. 28, pp. 656–715, 1948.

Notation

Given a cryptosystem, denote

 \boldsymbol{M} a message (plaintext)

 \boldsymbol{C} a ciphertext

 \boldsymbol{K} a key

 $oldsymbol{E}$ be the encryption function $oldsymbol{C}=E_K(M)$

D be the decryption function $M = D_K(C)$

For any key K, $E_K(\cdot)$ and $D_K(\cdot)$ are 1-1, and $D_K(E_K(\cdot)) =$ Identity.

Shannon's Theory of Secrecy Systems (1949)

Let $\{M_1, M_2, \ldots, M_n\}$ be the message space. The messages M_1, M_2, \ldots, M_n are distributed with known probabilities $p(M_1), p(M_2), \ldots, p(M_n)$ (not necessarily uniform). Let $\{K_1, K_2, \ldots, K_l\}$ be the key space. The keys K_1, K_2, \ldots, K_l are distributed with known probabilities $p(K_1), p(K_2), \ldots, p(K_l)$. Usually (but not necessarily) the keys are uniformly distributed: $p(K_i) = 1/l$. Each key projects all the messages onto all the ciphertexts, giving a bipartite graph:

Perfect Ciphers

Definition: A cipher is **perfect** if for any M, C

p(M|C) = p(M)

(i.e., the ciphertext does not reveal any information on the plaintext). By this definition, a perfect cipher is immune against ciphertext only attacks, even if the attacker has infinite computational power (unconditional security in context of ciphertext only attacks). Note that

$$p(M)p(C|M) = p(M,C) = p(C)p(M|C).$$

Perfect Ciphers (cont.)

and thus it follows that **Theorem**: A cipher is perfect iff

 $\forall M, C \quad p(C) = p(C|M).$

Note that

$$p(C|M) = \sum_{\substack{K \\ E_K(M) = C}} p(K).$$

Therefore, a cipher is perfect iff

$$\forall C \quad \left(\sum_{\substack{K \\ E_K(M) = C}} p(K) \text{ is independent of } M \right)$$

Perfect Ciphers (cont.)

Theorem: A perfect cipher satisfies $l \ge n$ (#keys \ge #messages). **Proof:** Assume the contrary: l < n. Let C_0 be such that $p(C_0) > 0$. There exist l_0 ($1 \le l_0 \le l$) messages M such that $M = D_K(C_0)$ for some K. Let M_0 be a message not of the form $D_K(C_0)$ (there exist $n - l_0$ such messages). Thus,

$$p(C_0|M_0) = \sum_{\substack{K \\ E_K(M_0) = C_0}} p(K) = \sum_{K \in \emptyset} p(K) = 0$$

but in a perfect cipher

$$p(C_0|M_0) = p(C_0) > 0.$$

Contradiction. QED

Perfect Ciphers (cont.)

Example: Encrypting only one letter by Caesar cipher: l = n = 26, p(C) = p(C|M) = 1/26. But:

When encrypting two letters: l = 26, $n = 26^2$, $p(C) = 1/26^2$. Each M has only 26 possible values for C, and thus for those C's: p(C|M) = 1/26, while for the others C's p(C|M) = 0. In particular, p(C = XY|M = aa) = 0 for any $X \neq Y$.

Vernam is a Perfect Cipher

Theorem: Vernam is a perfect cipher.

Vernam is a Vigenere with keys as long as the message. Clearly, if the keys are even slightly shorter, the cipher is not perfect.

Proof: Clearly, in Vernam l = n. Given that the keys are uniformly selected at random, p(K) = 1/l = 1/n.

$$p(C|M) = p(K = C - M) = \frac{1}{n} = \frac{1}{l}.$$

Since p(C|M) = 1/l for any M and C, clearly also p(C|M) = p(C). QED

Entropy

Let S be a source of n elements distributed with the probabilities p_1, p_2, \ldots, p_n .

Definition: The **entropy** H(S) of S is

$$H(S) = \sum_{i=1}^{n} p_i \log \frac{1}{p_i} = -\sum_{i=1}^{n} p_i \log p_i$$

(log is used in all the course in base 2).

The entropy is measured in units of **bits**. It measures the amount of **unknown information** in S.

Example: English text: We already mentioned that the frequency of the letters in English texts are

Letter	Frequency	Letter	Frequency	Letter	Frequency
е	12.31%	1	4.03%	b	1.62%
\mathbf{t}	9.59%	d	3.65%	g	1.61%
a	8.05%	С	3.20%	V	0.93%
Ο	7.94%	u	3.10%	k	0.52%
n	7.19%	р	2.29%	q	0.20%
i	7.18%	f	2.28%	Х	0.20%
S	6.59%	m	2.25%	j	0.10%
r	6.03%	W	2.03%	\mathbf{Z}	0.09%
h	5.14%	У	1.88%		

The entropy of such a source of letters is then

 $H(S) = -0.1231 \log 0.1231 - 0.0959 \log 0.0959 - \ldots - 0.0009 \log 0.0009 \approx 4$

69

Example: Let S be uniformly distributed: $p_i = 1/n$. Then,

$$H(S) = -\sum_{i=1}^{n} \frac{1}{n} \log \frac{1}{n} = n \cdot \frac{1}{n} \cdot \log n = \log n.$$

In particular, if $n = 2^k$ then $H(S) = \log n = k$. If n = 26 then $H(S) = \log 26 = 4.7$. As we noticed, in English S is not uniformly distributed, and H(S) = 4.

Lemma: If the distribution is not uniform $H(S) < \log n$. (to be proven shortly).

In this case, a long string whose characters are distributed as in S can be compressed to H(S) bits.

Claim: $\ln x \leq x - 1$. **Proof**: Consider the function $\ln x - (x-1)$. Its derivative is $\frac{d(\ln x - (x-1))}{dx} = \frac{1}{x} - 1$, and thus the maximum is at x = 1 where $\ln x - (x - 1) = 0$. The figure shows the curves of x, of x - 1, and of $\ln x$:

QED

Lemma: $H(S) \leq \log n$ (equality iff S is uniformly distributed). **Proof**: Let p_i and q_i be two distributions, $\Sigma p_i = \Sigma q_i = 1$. Then

$$\sum p_i \log \frac{1}{p_i} - \sum p_i \log \frac{1}{q_i} = \sum p_i \log \frac{q_i}{p_i} =$$
$$= \frac{1}{\ln 2} \sum p_i \ln \frac{q_i}{p_i} \le \frac{1}{\ln 2} \sum p_i \left(\frac{q_i}{p_i} - 1\right) =$$
$$= \frac{1}{\ln 2} \left(\sum q_i - \sum p_i\right) = \frac{1}{\ln 2} \left(1 - 1\right) = 0$$

and thus,

$$\sum p_i \log \frac{1}{p_i} \le \sum p_i \log \frac{1}{q_i} \tag{*}$$

and in particular for $q_i \equiv 1/n$:

$$H(S) = \sum p_i \log \frac{1}{p_i} \le \sum p_i \log \frac{1}{q_i} =$$
$$= \sum p_i \log \frac{1}{1/n} = \log n.$$

QED

Properties of the Entropy

Let A and B be two independent sources with distributions p, q, respectively. **Theorem**: H(A, B) = H(A) + H(B). **Proof**:

$$-H(A, B) = \sum_{i,j} p_i q_j \log(p_i q_j)$$

=
$$\sum_j q_j \sum_i p_i \log p_i + \sum_i p_i \sum_j q_j \log q_j$$

=
$$\sum_i p_i \log p_i + \sum_j q_j \log q_j$$

=
$$-(H(A) + H(B)).$$

QED

Conditional Entropy

Let $p_{i,j}$ be the distribution of $i \in A, j \in B$ $(\sum_{i,j} p_{i,j} = 1)$. Let

$$p_{i} = \sum_{j} p_{i,j}$$

$$q_{j} = \sum_{i} p_{i,j}$$

$$q(j|i) = p_{i,j}/p_{i}$$
(Normalized in each row)

Example:

A special example is pairs of consecutive letters in English. The entry (Q,U) has probability 0, while (T,H) has probability above average.

Definition:

$$H(B|A_i) = -\sum_{j} q(j|i) \log q(j|i)$$

(the entropy of B given the exact value of A_i). The **Conditional Entropy** is defined to be

 $H(B|A) = \sum_{i} p_i H(B|A_i).$

Theorem: H(A, B) = H(A) + H(B|A). **Proof**:

$$-H(A, B) = \sum_{i,j} p_i q(j|i) \log(p_i q(j|i))$$

= $\sum_i p_i \log p_i \sum_j q(j|i) + \sum_i p_i [\sum_j q(j|i) \log q(j|i)]$
= $\sum_i p_i \log p_i + \sum_i p_i [-H(B|A_i)]$
= $-H(A) - H(B|A)$

QED Conclusion: $H(A, B) \ge H(A)$.

Theorem: $H(B|A) \leq H(B)$ (equality only if A and B are independent). **Proof**:

$$H(B|A) = \sum_{i} p_{i}H(B|A_{i}) = \sum_{i} p_{i}\sum_{j} q(j|i)\log\frac{1}{q(j|i)}$$

By (*):
$$\leq \sum_{i} p_{i}\sum_{j} q(j|i)\log\frac{1}{q_{j}} = \sum_{j} \left(\sum_{i} p_{i}q(j|i)\right)\log\frac{1}{q_{j}}$$
$$= \sum_{j} q_{j}\log\frac{1}{q_{j}} = H(B)$$

QED Similarly, $H(C|B, A) \le H(C|B)$.

Long Message Encryption

To encrypt a long message $M = M_1 M_2 \dots M_N$ (M is the full message, the M_i 's are the various letters) we encrypt each block M_i to $C_i = E_K(M_i)$ under the same key K, and concatenate the results $C = C_1 C_2 \dots C_N$. This cipher is not perfect since there is N such that #keys < #messages of length N (and since $p(XY|aa) = 0 \neq p(XY)$ when $X \neq Y$). Thus, we can gain information on the key or the message given the ciphertext only (for a given C there are only #keys possible messages, rather than #messages).

Long Message Encryption (cont.)

Theorem: for any $S \ge N$, and for any A,

- 1. $H(K|C_1C_2\ldots C_S) \leq H(K|C_1C_2\ldots C_N)$
- 2. $H(M_1M_2\dots M_A|C_1C_2\dots C_S) \leq H(M_1M_2\dots M_A|C_1C_2\dots C_N)$
- 3. $H(M_1M_2...M_N|C_1C_2...C_N) \le H(K|C_1C_2...C_N)$

Thus, when the size of C grows, the entropies of the message and the key are reduced.

Proof: Exercise.

Unicity Distance

How long should M and C be so we can identify the message M uniquely given the ciphertext C? We wish that $H(M|C) = H(M_1M_1 \dots M_N | C_1C_2 \dots C_N)$ be zero (or very small; we know that it reduces when N is increasing). Observe that some keys may be equivalent, and thus H(K) may be just an upper bound on the effective entropy of the key

H(C|M).

Unicity Distance (cont.)

Look at the equations:

H(C)+H(M|C)=H(M,C)=H(M)+H(C|M)

By moving terms we get:

$$H(C) - H(M) = H(C|M) - H(M|C)$$

Let $H(M') \triangleq H(M)/N$ and $H(C') \triangleq H(C)/N$, be the average additional entropy for each additional letter, where N is the message length, and assume that H(M|C) = 0 (as the message is unique given C). Then,

 $N\left(H(C') - H(M')\right) = H(C|M)$

Unicity Distance (cont.)

 $H(K), \ H(C'), \ {\rm and} \ H(M')$ are fixed. Thus, in order to get a unique key we need

$$N \geq \frac{H(C|M)}{H(C') - H(M')}.$$

 $H(K) \geq H(C|M)$ and thus it suffices to assume that we get a message of length

$$N \geq \frac{H(K)}{H(C') - H(M')}$$

(which is the unicity distance of identifying the key uniquely).

Unicity Distance (cont.)

Definition: the unicity distance N is

 $N = \frac{H(K)}{H(C') - H(M')}$

If H(C') = H(M'), then H(M|C) = H(C|M) > 0, then the message is never unique. In this case we say that $N = \infty$. Moreover, if $H(K) \not\leq H(M)$ then $H(M|C) = H(K) \geq H(M)$ so the ciphertext does not disclose any information on the message M if the key has sufficient entropy.

Conclusion: Compression of a message before encrypting reduces H(C') - H(M') and thus increases the unicity distance.

Random Ciphers

Assume that the message space and the ciphertext space are of size n (n different messages of size N).

The messages are redundant, i.e., not all the n messages are legal, or not all have the same probabilities.

Each key represents a random permutation of the letters, each with probability 1/n!. Thus,

$$p(C_1) = 1/n$$

$$H(C_1) = \log n$$

Random Ciphers (cont.)

Let H(C') and H(M') be $H(C') \triangleq H(C)/N$, and $H(M') \triangleq H(M)/N$. **Definition**: $D \triangleq H(C') - H(M')$ is called the **source redundancy**. **Definition**: The **unicity distance** is

$$N = \frac{H(K)}{H(C') - H(M')} = \frac{H(K)}{D}$$

Random Ciphers (cont.)

Example: In English $D = \log 26 - H(M')$. $\log 26 = 4.7$, H(M') = 1.5 (as letters are dependent in English). $D = \log 26 - H(M') = 4.7 - 1.5 = 3.2$. In Caesar's cipher (26 possible shifts), the unicity distance is thus

$$N = \frac{H(K)}{3.2} = \frac{\log 26}{3.2} = 1.5$$

In a substitution cipher

$$N = \frac{H(K)}{3.2} = \frac{\log 26!}{3.2} = \frac{88.4}{3.2} = 27.6$$

In a uniformly random letter distribution, whose frequencies are as in English, D = 4.7 - 4 = 0.7 and the unicity distances would be 7 and 126, respectively.