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Notation

Given a cryptosystem, denote

M a message (plaintext)

C a ciphertext

K a key

E be the encryption function C = EK(M)

D be the decryption function M = DK(C)

For any key K, EK(·) and DK(·) are 1-1, and DK(EK(·)) =Identity.
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Shannon’s Theory of Secrecy Systems (1949)

Let {M1,M2, . . . ,Mn} be the message space.
The messages M1,M2, . . . ,Mn are distributed with known probabilities
p(M1), p(M2), . . . , p(Mn) (not necessarily uniform).
Let {K1, K2, . . . , Kl} be the key space. The keys K1, K2, . . . ,Kl are dis-
tributed with known probabilities p(K1), p(K2), . . . , p(Kl). Usually (but not
necessarily) the keys are uniformly distributed: p(Ki) = 1/l.
Each key projects all the messages onto all the ciphertexts, giving a bipartite
graph:

c© Eli Biham - March 1, 2011 61 Shannon’s Theory of Secrecy Systems †



Shannon’s Theory of Secrecy Systems (1949) (cont.)
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Perfect Ciphers

Definition: A cipher is perfect if for any M,C

p(M |C) = p(M)

(i.e., the ciphertext does not reveal any information on the plaintext).
By this definition, a perfect cipher is immune against ciphertext only attacks,
even if the attacker has infinite computational power (unconditional security in
context of ciphertext only attacks).
Note that

p(M)p(C|M) = p(M,C) = p(C)p(M |C).
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Perfect Ciphers (cont.)

and thus it follows that
Theorem: A cipher is perfect iff

∀M,C p(C) = p(C|M).

Note that
p(C|M) =

∑

K

EK(M)=C

p(K).

Therefore, a cipher is perfect iff

∀C

















∑
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EK(M)=C

p(K) is independent of M












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
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Perfect Ciphers (cont.)

Theorem: A perfect cipher satisfies l ≥ n (#keys ≥ #messages).
Proof: Assume the contrary: l < n. Let C0 be such that p(C0) > 0. There
exist l0 (1 ≤ l0 ≤ l) messages M such that M = DK(C0) for some K. Let M0

be a message not of the form DK(C0) (there exist n− l0 such messages). Thus,

p(C0|M0) =
∑

K

EK(M0)=C0

p(K) =
∑

K∈∅
p(K) = 0

but in a perfect cipher
p(C0|M0) = p(C0) > 0.

Contradiction. QED
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Perfect Ciphers (cont.)

Example: Encrypting only one letter by Caesar cipher: l = n = 26, p(C) =
p(C|M) = 1/26.
But:
When encrypting two letters: l = 26, n = 262, p(C) = 1/262.
Each M has only 26 possible values for C, and thus for those C’s: p(C|M) =
1/26, while for the others C’s p(C|M) = 0.
In particular, p(C = XY |M = aa) = 0 for any X 6= Y .
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Vernam is a Perfect Cipher

Theorem: Vernam is a perfect cipher.
Vernam is a Vigenere with keys as long as the message. Clearly, if the keys are
even slightly shorter, the cipher is not perfect.
Proof: Clearly, in Vernam l = n. Given that the keys are uniformly selected
at random, p(K) = 1/l = 1/n.

p(C|M) = p(K = C −M) =
1

n
=

1

l
.

Since p(C|M) = 1/l for any M and C, clearly also p(C|M) = p(C). QED
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Entropy

Let S be a source of n elements distributed with the probabilities p1, p2, . . . , pn.

Definition: The entropy H(S) of S is

H(S) =
n
∑

i=1
pi log

1

pi
= −

n
∑

i=1
pi log pi

(log is used in all the course in base 2).
The entropy is measured in units of bits. It measures the amount of unknown
information in S.
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Entropy (cont.)

Example: English text: We already mentioned that the frequency of the
letters in English texts are

Letter Frequency Letter Frequency Letter Frequency

e 12.31% l 4.03% b 1.62%
t 9.59% d 3.65% g 1.61%
a 8.05% c 3.20% v 0.93%
o 7.94% u 3.10% k 0.52%
n 7.19% p 2.29% q 0.20%
i 7.18% f 2.28% x 0.20%
s 6.59% m 2.25% j 0.10%
r 6.03% w 2.03% z 0.09%
h 5.14% y 1.88%

The entropy of such a source of letters is then

H(S) = −0.1231 log 0.1231− 0.0959 log 0.0959− . . .− 0.0009 log 0.0009 ≈ 4
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Entropy (cont.)

Example: Let S be uniformly distributed: pi = 1/n. Then,

H(S) = −
n
∑

i=1

1

n
log

1

n
= n ·

1

n
· log n = logn.

In particular, if n = 2k then H(S) = log n = k.
If n = 26 then H(S) = log 26 = 4.7. As we noticed, in English S is not
uniformly distributed, and H(S) = 4.
Lemma: If the distribution is not uniform H(S) < log n. (to be proven
shortly).
In this case, a long string whose characters are distributed as in S can be
compressed to H(S) bits.
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Entropy (cont.)

Claim: ln x ≤ x− 1.
Proof: Consider the function lnx−(x−1). Its derivative is d(lnx−(x−1))

dx
= 1

x
−1,

and thus the maximum is at x = 1 where lnx− (x− 1) = 0.
The figure shows the curves of x, of x− 1, and of lnx:
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QED
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Entropy (cont.)

Lemma: H(S) ≤ log n (equality iff S is uniformly distributed).
Proof: Let pi and qi be two distributions,

∑ pi =
∑ qi = 1. Then

∑

pi log
1

pi
−

∑

pi log
1

qi
=

∑

pi log
qi
pi

=

=
1

ln 2

∑

pi ln
qi
pi

≤
1

ln 2

∑

pi









qi
pi

− 1








=

=
1

ln 2
(
∑

qi −
∑

pi) =
1

ln 2
(1− 1) = 0

and thus,
∑

pi log
1

pi
≤

∑

pi log
1

qi
(*)
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Entropy (cont.)

and in particular for qi ≡ 1/n:

H(S) =
∑

pi log
1

pi
≤

∑

pi log
1

qi
=

=
∑

pi log
1

1/n
= log n.

QED
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Properties of the Entropy

Let A and B be two independent sources with distributions p, q, respectively.
Theorem: H(A,B) = H(A) +H(B).
Proof:

−H(A,B) =
∑

i,j
piqj log(piqj)

=
∑

j
qj

∑

i
pi log pi +

∑

i
pi

∑

j
qj log qj

=
∑

i
pi log pi +

∑

j
qj log qj

= −(H(A) +H(B)).

QED
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Conditional Entropy

Let pi,j be the distribution of i ∈ A, j ∈ B (
∑

i,j
pi,j = 1).

Let

pi =
∑

j
pi,j

qj =
∑

i
pi,j

q(j|i) = pi,j/pi (Normalized in each row)
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Conditional Entropy (cont.)

Example:

B1 B2 Bj Sum
A1 p1,1 p1,2 p1,j p1
A2 p2,1 p2,2 p2,j p2

Ai pi,1 pi,2 pi,j pi

Sum q1 q2 qj 1

A special example is pairs of consecutive letters in English. The entry (Q,U)
has probability 0, while (T,H) has probability above average.
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Conditional Entropy (cont.)

Definition:
H(B|Ai) = −

∑

j
q(j|i) log q(j|i)

(the entropy of B given the exact value of Ai).
The Conditional Entropy is defined to be

H(B|A) =
∑

i
piH(B|Ai).
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Conditional Entropy (cont.)

Theorem: H(A,B) = H(A) +H(B|A).
Proof:

−H(A,B) =
∑

i,j
piq(j|i) log(piq(j|i))

=
∑

i
pi log pi

∑

j
q(j|i) +

∑

i
pi[

∑

j
q(j|i) log q(j|i)]

=
∑

i
pi log pi +

∑

i
pi[−H(B|Ai)]

= −H(A)−H(B|A)

QED
Conclusion: H(A,B) ≥ H(A).
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Conditional Entropy (cont.)

Theorem: H(B|A) ≤ H(B) (equality only if A and B are independent).
Proof:

H(B|A) =
∑

i
piH(B|Ai) =

∑

i
pi

∑

j
q(j|i) log

1

q(j|i)
By (*):

≤
∑

i
pi

∑

j
q(j|i) log

1

qj
=

∑

j







∑

i
piq(j|i)





 log
1

qj

=
∑

j
qj log

1

qj
= H(B)

QED
Similarly, H(C|B,A) ≤ H(C|B).
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Long Message Encryption

To encrypt a long message M = M1M2 . . .MN (M is the full message, the
Mi’s are the various letters) we encrypt each block Mi to Ci = EK(Mi) under
the same key K, and concatenate the results C = C1C2 . . . CN .
This cipher is not perfect since there is N such that #keys < #messages of
length N (and since p(XY |aa) = 0 6= p(XY ) when X 6= Y ).
Thus, we can gain information on the key or the message given the cipher-
text only (for a given C there are only #keys possible messages, rather than
#messages).
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Long Message Encryption (cont.)

Theorem: for any S ≥ N , and for any A,

1. H(K|C1C2 . . . CS) ≤ H(K|C1C2 . . . CN)

2. H(M1M2 . . .MA|C1C2 . . . CS) ≤
H(M1M2 . . .MA|C1C2 . . . CN)

3. H(M1M2 . . .MN |C1C2 . . . CN) ≤ H(K|C1C2 . . . CN)

Thus, when the size of C grows, the entropies of the message and the key are
reduced.
Proof: Exercise.
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Unicity Distance

How long should M and C be so we can identify the messageM uniquely given
the ciphertext C?
We wish that H(M |C) = H(M1M1 . . .MN |C1C2 . . . CN) be zero (or very
small; we know that it reduces when N is increasing).
Observe that some keys may be equivalent, and thus H(K) may be just an
upper bound on the effective entropy of the key

H(C|M).
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Unicity Distance (cont.)

Look at the equations:

H(C) +H(M |C) = H(M,C) = H(M) +H(C|M)

By moving terms we get:

H(C)−H(M) = H(C|M)−H(M |C)

Let H(M ′) ∆= H(M)/N and H(C ′) ∆= H(C)/N , be the average additional
entropy for each additional letter, where N is the message length, and assume
that H(M |C) = 0 (as the message is unique given C).
Then,

N (H(C ′)−H(M ′)) = H(C|M)
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Unicity Distance (cont.)

H(K), H(C ′), and H(M ′) are fixed. Thus, in order to get a unique key we
need

N ≥
H(C|M)

H(C ′)−H(M ′)
.

H(K) ≥ H(C|M) and thus it suffices to assume that we get a message of
length

N ≥
H(K)

H(C ′)−H(M ′)

(which is the unicity distance of identifying the key uniquely).
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Unicity Distance (cont.)

Definition: the unicity distance N is

N =
H(K)

H(C ′)−H(M ′)

If H(C ′) = H(M ′), then H(M |C) = H(C|M) > 0, then the message is never
unique. In this case we say that N = ∞.
Moreover, if H(K) 6< H(M) then H(M |C) = H(K) ≥ H(M) so the ci-
phertext does not disclose any information on the message M if the key has
sufficient entropy.
Conclusion: Compression of a message before encrypting reduces H(C ′) −
H(M ′) and thus increases the unicity distance.
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Random Ciphers

Assume that the message space and the ciphertext space are of size n (n different
messages of size N).
The messages are redundant, i.e., not all the n messages are legal, or not all
have the same probabilities.
Each key represents a random permutation of the letters, each with probability
1/n!. Thus,

p(C1) = 1/n

H(C1) = log n
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Random Ciphers (cont.)

Let H(C ′) and H(M ′) be H(C ′) ∆= H(C)/N , and H(M ′) ∆= H(M)/N .

Definition: D ∆= H(C ′)−H(M ′) is called the source redundancy.
Definition: The unicity distance is

N =
H(K)

H(C ′)−H(M ′)
=

H(K)

D
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Random Ciphers (cont.)

Example: In English D = log 26−H(M ′). log 26 = 4.7, H(M ′) = 1.5 (as
letters are dependent in English). D = log 26−H(M ′) = 4.7− 1.5 = 3.2.
In Caesar’s cipher (26 possible shifts), the unicity distance is thus

N =
H(K)

3.2
=

log 26

3.2
= 1.5

In a substitution cipher

N =
H(K)

3.2
=

log 26!

3.2
=

88.4

3.2
= 27.6

In a uniformly random letter distribution, whose frequencies are as in English,
D = 4.7− 4 = 0.7 and the unicity distances would be 7 and 126, respectively.
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