Shannon’s Theory of Secrecy Systems
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Vol. 28, pp. 656715, 1948.
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Notation

Given a cryptosystem, denote
M a message (plaintext)

C' a ciphertext
K a key

E be the encryption function C = Eg (M)
D be the decryption function M = Dg(C)

For any key K, Ex(-) and Dg(-) are 1-1, and Dg(FEk(-)) =Identity.
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Shannon’s Theory of Secrecy Systems (1949)

Let {My, M>, ..., M,} be the message space.

The messages My, M, ..., M, are distributed with known probabilities
p(My), p(Ms), ..., p(M,) (not necessarily uniform).

Let {Ki, Ky, ..., K;} be the key space. The keys Ky, Ko, ..., K; are dis-
tributed with known probabilities p(K7), p(Ks), ..., p(K;). Usually (but not
necessarily) the keys are uniformly distributed: p(K;) = 1/1.

Each key projects all the messages onto all the ciphertexts, giving a bipartite
oraph:

(© Eli Biham - March 1, 2011 61 Shannon’s Theory of Secrecy Systems |



Shannon’s Theory of Secrecy Systems (1949) (cont.)

pP1=p(M1)

pPo=p(M>)

pP3=p(M3)

P=P(My)
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Perfect Ciphers

Definition: A cipher is perfect if for any M, C
p(M|C) = p(M)

(i.e., the ciphertext does not reveal any information on the plaintext).

By this definition, a perfect cipher is immune against ciphertext only attacks,
even if the attacker has infinite computational power (unconditional security in
context of ciphertext only attacks).

Note that
p(M)p(C|M) = p(M,C) = p(C)p(M|C).
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Perfect Ciphers (cont.)

and thus it follows that
Theorem: A cipher is perfect iff

YM,C p(C) = p(CIM).

Note that
p(C|M) =

Therefore, a cipher is perfect ift

vC
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Perfect Ciphers (cont.)

Theorem: A perfect cipher satisfies [ > n (#keys > #messages).
Proof: Assume the contrary: [ < n. Let Cy be such that p(Cy) > 0. There
exist Iy (1 <y <) messages M such that M = Dg(Cp) for some K. Let M

be a message not of the form Dy (Cy) (there exist n — [y such messages). Thus,

p(ColMy) = X p(K)= % p(K)=0
K Kel
Ex(My)=Cy

but in a perfect cipher
p(CO|M0> = p(C()) > ().

Contradiction. QED
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Perfect Ciphers (cont.)

Example: Encrypting only one letter by Caesar cipher: [ = n = 26, p(C') =
p(C|M) = 1/26.

But:

When encrypting two letters: [ = 26, n = 26%, p(C') = 1/262.

FEach M has only 26 possible values for C', and thus for those C's: p(C|M) =
1/26, while for the others C’s p(C|M) = 0.

In particular, p(C'= XY |M = aa) =0 for any X # Y.
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Vernam is a Perfect Cipher

Theorem: Vernam is a perfect cipher.

Vernam is a Vigenere with keys as long as the message. Clearly, if the keys are
even slightly shorter, the cipher is not perfect.

Proof: Clearly, in Vernam [ = n. Given that the keys are uniformly selected
at random, p(K) =1/l = 1/n.

p(CIM)=p(K =C~M)=" =7,

Since p(C'|M) = 1/l for any M and C, clearly also p(C|M) = p(C). QED
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Entropy

Let S be a source of n elements distributed with the probabilities py, po, . .., py.

Definition: The entropy H(S) of S is

n 1 n
H(S) = > pilog = — 3 pilogp;

7

(log is used in all the course in base 2).

The entropy is measured in units of bits. It measures the amount of unknown
information in S.
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Entropy (cont.)

Example: English text: We already mentioned that the frequency of the
letters in English texts are

Letter Frequency Letter Frequency Letter Frequency

e 12.31% 1 4.03% b 1.62%
t 9.59% d 3.65% g 1.61%
a 8.05% C 3.20% v 0.93%
0 7.94% u 3.10% k 0.52%
n 7.19% D 2.29% q 0.20%
i 7.18% f 2.28% X 0.20%
S 6.59% m 2.25% ] 0.10%
r 6.03% W 2.03% Z 0.09%
h 5.14% y 1.88%

The entropy of such a source of letters is then

H(S)=—0.123110g 0.1231 — 0.0959log 0.0959 — ... — 0.0009 log 0.0009 =~ 4
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Entropy (cont.)

Example: Let S be uniformly distributed: p; = 1/n. Then,

n 1 1 1
HS) == e, =m0

-logn = logn.

In particular, if n = 2% then H(S) = logn = k.

If n = 26 then H(S) = log26 = 4.7. As we noticed, in English S is not
uniformly distributed, and H(S) = 4.

Lemma: If the distribution is not uniform H(S) < logn. (to be proven
shortly).

In this case, a long string whose characters are distributed as in S can be
compressed to H(.S) bits.
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Entropy (cont.)

Claim: nz <z — 1.
Proof: Consider the function In x—(z—1). Its derivative is d(lnx;f—l)) =1_1
and thus the maximum is at x = 1 where Inx — (z — 1) = 0.

The figure shows the curves of =, of x — 1, and of In x:

QED
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Entropy (cont.)

Lemma: H(S) <logn (equality iff S is uniformly distributed).
Proof: Let p; and ¢; be two distributions, ¥ p; =~ ¢; = 1. Then

1 1 i
Zpilogf —Zpilogf = Zpilogi =

i q; Di

and thus,
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Entropy (cont.)

and in particular for ¢; = 1/n:

1 1
H(S) = ZpilongZpiloggz
> pil ! |
= Y. p;log —— = logn.

QED
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Properties of the Entropy

Let A and B be two independent sources with distributions p, ¢, respectively.

Theorem: H(A, B) = H(A)+ H(B).

Proof:
—H(A,B) = > pit log(pig;)
= 242D log p; + XPi g log q;
= Ypilogpi + >4 log g;
= —(H(A)+ H(B)).
QED
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Conditional Entropy

Let p; ; be the distribution of i € A, 5 € B (X p;; = 1).
.
Let

q(jlt) = pij/pi (Normalized in each row)
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Conditional Entropy (cont.)

Example:

Sum

A special example is pairs of consecutive letters in English. The entry (Q,U)

Bl BQ Bj Sum
P11 | P12 P1,j P1
P21 | P22 D24 P2
Pi1 | DPi2 Di j Pi
d1 q2 q; 1

has probability 0, while (T,H) has probability above average.
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Conditional Entropy (cont.)

Definition:
H(B|A;) = —%q(jli)log q(j|)

J

(the entropy of B given the exact value of A;).
The Conditional Entropy is defined to be

H(B|A) = %piH(BMz)-
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Conditional Entropy (cont.)

Theorem: H(A, B) = H(A)+ H(BJA).

Proof:
—H(A,B) = Z,inpzq(jl’i) log(piq(j]7))
— %pi 1ogpz-§jjq(j\i) T i pd?q(ﬂ%) log q(j17)]
= xp;logp, +§pi[—H(B\A¢)]
— —H(A)— H(B|A)
QED

Conclusion: H(A, B) > H(A).
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Conditional Entropy (cont.)

Theorem: H(B|A) < H(B) (equality only if A and B are independent).
Proof:

- 1
H(B|A) = S piH(B|A;) =~ pi¥q(jli)log ——
i i q(7]%)
By (*): 1 1
< Xpixq(jli)log— =% (sz-q(j\i)) log —
) 7 q]‘ Ji ) Qj
1
= X qjlog —= H(B)
J q;
QED

Similarly, H(C|B, A) < H(C|B).
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Long Message Encryption

To encrypt a long message M = MM, ... My (M is the full message, the
M;’s are the various letters) we encrypt each block M; to C; = E(M;) under
the same key K, and concatenate the results C' = C1C5...Cy.

This cipher is not perfect since there is N such that #keys < #messages of
length N (and since p(XY|aa) =0 # p(XY) when X #Y).

Thus, we can gain information on the key or the message given the cipher-
text only (for a given C' there are only #keys possible messages, rather than
FHmessages).
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Long Message Encryption (cont.)

Theorem: for any S > N, and for any A,
1. HKI|CiCy...Cq) < HK|C1Cs...Cy)

2. H(M;M,. .. M4|CiCs...Cg) <
H(MM,... MA|CiCs...Cy)

3. H(MyM,... My|CiCy...Cy) < H(K|CLCy ... C)

Thus, when the size of C' grows, the entropies of the message and the key are
reduced.
Proof: Exercise.

(© Eli Biham - March 1, 2011 81 Shannon’s Theory of Secrecy Systems *®



Unicity Distance

How long should M and C' be so we can identify the message M uniquely given
the ciphertext C'?

We wish that H(M|C) = H(MiM; ... My|C1Cs...Cy) be zero (or very
small; we know that it reduces when N is increasing).

Observe that some keys may be equivalent, and thus H(K) may be just an
upper bound on the effective entropy of the key

H(C|M).
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Unicity Distance (cont.)

Look at the equations:

By moving terms we get:

H(C) — H(M) = H(C|M) — H(M|C)

Let H(M') & H(M)/N and H(C") & H(C)/N, be the average additional
entropy for each additional letter, where N is the message length, and assume
that H(M|C') = 0 (as the message is unique given C').

Then,

N (H(C") = H(M")) = H(C|M)
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Unicity Distance (cont.)

H(K), H(C"), and H(M") are fixed. Thus, in order to get a unique key we
need
N> HCM)
— H(C) = H(M)

H(K) > H(C|M) and thus it suffices to assume that we get a message of
length

H(K)
N2 ey HOD)

(which is the unicity distance of identifying the key uniquely).
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Unicity Distance (cont.)

Definition: the unicity distance N is

_ H(K)
N H(C") — H(M')

It HC") = H(M'), then H(M|C) = H(C|M) > 0, then the message is never
unique. In this case we say that N = oo.

Moreover, if H(K) £ H(M) then H(M|C') = H(K) > H(M) so the ci-
phertext does not disclose any information on the message M if the key has
sufficient entropy.

Conclusion: Compression of a message before encrypting reduces H(C") —
H(M'") and thus increases the unicity distance.
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Random Ciphers

Assume that the message space and the ciphertext space are of size n (n different
messages of size N).

The messages are redundant, i.e., not all the n messages are legal, or not all
have the same probabilities.

Each key represents a random permutation of the letters, each with probability
1/n!. Thus,

p(Ch) = 1/n
H(Cy) = logn
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Random Ciphers (cont.)

Let H(C") and H(M') be H(C") £ H(C)/N, and H(M') £ H(M)/N.
Definition: D £ H(C") — H(M’) is called the source redundancy.
Definition: The unicity distance is

H(K) _ H(K)
(C)—HM) D

N =
H
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Random Ciphers (cont.)

Example: In English D = log26 — H(M'). log26 =4.7, H(M') = 1.5 (as
letters are dependent in English). D =log26 — H(M') =4.7— 1.5 = 3.2.
In Caesar’s cipher (26 possible shifts), the unicity distance is thus

N H(K) _ log26 _

L.
3.2 3.2 °

In a substitution cipher

|
N H(K) _ log26! _ 88.4 07 6
3.2 3.2 3.2

In a uniformly random letter distribution, whose frequencies are as in English,
D =4.7—4 = 0.7 and the unicity distances would be 7 and 126, respectively.
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