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Digital Signatures

A signature is (according to the Miriam-Webster dictionary):

1. (a) The act of signing one’s name to something

(b) the name of a person written with his or her own hand

2. a feature in the appearance or qualities of a natural object formerly held
to indicate its utility in medicine

3. (a) a letter or figure placed usually at the bottom of the first page on
each sheet of printed pages (as of a book) as a direction to the binder
in arranging and gathering the sheets

(b) one unit of a book comprising a group of printed sheets that are
folded and stitched together

4. the part of a medical prescription that contains the directions to the
patient

5. something (as a tune, style, or logo) that serves to set apart or identify;
also : a characteristic mark
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Digital Signatures (cont.)

Actually, signature encompasses two functionalities:

e Writing the name of a person, in his own hands, as a confirmation.

e Commitment.

Distinguish between
e [dentification: Assures the identity:.

e Commitment: Assures the commitment.
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Digital Signatures (cont.)

[t is possible to have identification without commitment, and vice versa:
e An anonymous letter has neither.
e A company letter has an identifying title.

e A check is a commitment, even if it has no identification.
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Digital Signatures (cont.)

A Digital signature S(M):
1. Computable by the signer for any message M.
2. Everybody (and the receiver in particular) can verify its originality.
3. It is impossible to forge a signature.

4. The signer cannot claim that a message he signed is forged.
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One Way Functions

Informal Definition: A one way function Y = f(X) is a function
which is eflicient to calculate but difficult to invert: for a given Y it is difficult
to find any X such that Y = f(X).

Note: There is no relationship between a one way function and an invertible
function.

Example: Y = f(X) = AESx(0) is a one way function, if there is no suc-
cessful attack on AES which finds the key X from the ciphertext Y.
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Lamport and Diffie’s Signature Scheme

Preparation:

1. A one way function Y = f(X) is selected.

2. Each user U chooses 2n random values Xy, X1, ..., X9,_1, and computes
%73/17"'7)/271—1 bYY; — f(XZ)

3. U publishes the vector Y = (Y, Y1, ..., Y5, 1) in a public file under his
name (i.e., in a newspaper, or in a public file maintained by a trusted
center).

4. U publishes in advance as many vectors as the number of signatures he is
expected to sign.
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Lamport and Diffie’s Signature Scheme (cont.)

Signature generation:

1. A wants to sign an n-bit message M to B
(M = Moy .. .mn_1>.

2. A chooses one of his unused vectors from the public file, and sends it to

B.

3. B verifies the existence of the vector in the public file.
4. A and B mark the vector as used in the public file.

5. A computes the signature S = 5p5;...5,-1 by

g — {XQZ', if m; = O;
ol X, ifmy =1

and sends the signature S to B.
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Lamport and Diffie’s Signature Scheme (cont.)

Signature verification:

1. B verifies whether for all the 2’s

Yoii1, itm;=1
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Lamport and Diffie’s Signature Scheme (cont.)

Proof to a judge (and anybody else):

1. B sends the signature S and the vector Y to the judge.

2. The judge verifies that the vector Y appears in the public file as a vector
of A.

3. The judge verifies whether for all the 7’s

Yy, itm;=0;
f(5) = {Yzz'ﬂ, if m; =1
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Lamport and Diffie’s Signature Scheme (cont.)

Security:

If B can forge A’s signature, he can invert the one way function f!

Even if he is already given a signature of some message using some vector, still
he needs to invert the one way function f in order to forge a different message
using the same vector.
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Hashing

Problem: To sign a long message of 1,000,000 bits, a vector of 2,000,000 f(X;)
should be prepared in advance. The length of the signature is 128,000,000 bits
if f(X)=AESx(0).
Solution: Hashing.
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Hashing (cont.)

Definition: A cryptographic hash function, or briefly a hash func-
tion, is a function H : {0,1}* — {0,1}" for some constant n, which satisfies:

1. It is easy to compute H (M) for any M.

2. Given h € {0,1}", it is computationally difficult to find a preimage: a
message M € {0, 1}* such that h = H(M).

3. It is computationally difficult to find a collision: a pair of messages M;
and M, such that H (M) = H(Ms).
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Hashing (cont.)

Usage: Given a long message M, we sign H(M).
Other Applications of Hash Functions:

e Keeping H(M) can protect a long message M against modification.

e The “one-wayness” property can be used in protocols, where it is required
that nobody can invert the function.

e Publishing H(M) can be used as a commitment on M.
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Hashing (cont.)

Claim: Forging a signature S(H (M)) is difficult.

1. If the attacker chooses M, he can compute H (M) but cannot sign it.
2. If he chooses H(M ), he can neither sign, nor find M.

3. If he has a valid signature on Mj, he knows H(M;) and the signature
S(H(My)). If he can find another message M such that H(M) = H (M),
he has M’s signature, but it is difficult to find such an M.
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Rabin’s Hashing using DES

Let a message M = mymsy ... my, where each m; is 56-bit long. Let Sy be some
standard constant.

ny = DESml (S())

Nno — DESm2<n1>

ng = DESm3(n2)

n; = DESml<nl_1>
H(M) 2
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Rabin’s Hashing using DES (cont.)

Drawback: This function changes the DES key every block. Changing DES
keys is ineflicient in most DES hardware and software.
Security: This hash function is not secure (using DES).

e It is easy to find a collision: in about 22 messages, the birthday para-
dox predicts that with probability higher than half there are two distinct
messages hashing to the same value.

e Preimages X can be found for any hash value h. (Hint: build X from
two halves, and use the birthday paradox).

e Rabin’s hashing is secure when used with (secure) ciphers whose block
size is at least 128 bits (e.g., AES).
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The Required Hash Size

This method suggests that the hash function should be collision free (paragraph
3 in the definition should hold).

1. B chooses a pair of messages M; and M, satisfying H (M) = H (M),
where M is a message that A will accept and sign, and Ms is a message
which B prefers, but A will not agree to sign.

2. B requests A to sign H(My).
3. A signs S(H(M)).

4. B receives S(H(M)), and then concludes that the signature on Ms is
S(H(My)) = S(H(M)).

5. B can claim in court that A signed on M.

Alternatively, A can choose such two messages, sign one of them, and later
claim in court that he signed the other message.
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The Required Hash Size (cont.)

How to find a pair of messages satisfying H(M;) = H(M,)?
Assume the hash value size is n = 64 bits.

B chooses 2%% messages which A will accept Mj,... My, and 2% messages
which A will not accept M7,... M,.
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The Required Hash Size (cont.)

For example, B chooses 2% messages M;, which differ in 32 words, each of them
has two choices:

The bank A { L } { give} B an amount of 100 { US }

promises to let American

dollars { bef(?fe} April 2011, { Then’} B will { use } this amount
until Later, invest

for ...

and 2% messages M i of the form:

The bank A {;)V;(l)lmises to} {lgel E/e} B the amount of at least

{ twenty} { million} { US } dollars {WhiCh} are given as
forty billion American that

should

_ not be returned . ..
will

present, and
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The Required Hash Size (cont.)

By the birthday paradox, there is a high probability that there is some pair
of message M; and M such that H(M;) = H(M;). Both messages have the
same signature.

Conclusion: The hash value size must be at least n = 128 bits, for which the
birthday paradox requires about 2% complexity to find such a pair.

Notice also that by the birthday paradox there is a high probability for a collision
of two elements of the same set when the size of the set is about the square
root of the number of different possible elements.
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The Birthday Paradox

Assume that H can have m distinct outputs (m = 2"), and assume that for each
input value H choose the output at random, independently from the output of
the other inputs.

We can look at H as a function which throw a ball into a set of m boxes, and
the ball enters to one of the boxes at random (to the box H (7)).

[f we throw k balls, we receive m” assignments of the balls into the boxes. Only
m(m — 1)(m — 2)---(m — k 4+ 1) of them do not include any pair of balls in
the same box.

Thus, the probability that there will not be any collision is

m!
(m — k)!m*
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The Birthday Paradox (cont.)

and the probability of one or more collisions is

m/!
p(m, k) = 1— o
L m=Dm=2) (k1)

(D) (D)5

but for any 0 < X < 1,

X X
1-X<1—-X+X? (1—§> /2—|—X4(1—€)/24—|—...:6X
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The Birthday Paradox (cont.)

i

and thus (1 — L) < e~ m:

ot =1 (1) (1-2) - (1-52)

1 2 _ k=1

> 1 —e me m- m
1+2+...+(k—1) k(k—1)
— 1—6_ m :1—6_ 2m

DN —

For a large k, in order to get p(m, k) >

E>vV2mIn2 =1.17v/m.
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The Birthday Paradox (cont.)

When we deal with two distinct subsets of a global set, and one of these subsets
is chosen randomly from the global set, a similar result holds:

Let X by the global set with N elements. Let S; be a subset of X (chosen
either in deterministic or random way) of size v/ N, and let Sy be a subset of
X with v/N elements chosen randomly. Then, with probability 1 — é = 63.2%
there is at least one element s such that s € S} and s € 5.

Exercise: Prove the above claim.
Find the minimal value t satisfying that if |S;| = |S5| = ¢ then there is an
element in the two subsets with probability at least 50%.
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The Birthday Paradox (cont.)

Example: A birth date: there are 365 days in a year, thus in a group of
V2365 - In2 = 22.5 children, there are two children with the same birthday
with probability about half.

Example: A hash function with 64-bit hash value: n = 64, m = 2%. We
should compute about V2 - 264 . In2 = 1.17 - 232 hashes to find a collision with
probability about half.

If m = 2!?8 1.17 - 2% hashes are required.

Example: Out of n users of a system, about y/n are dishonest. A system
administrator picks users at random and check whether they are dishonest. It
is expected that after checking /n users he would find at least one dishonest
user with probability about 63%.
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Hash Functions

Most practical hash functions h(M) divide the messages M into fixed-length
blocks My, Ms, etc., pad the last block and append the message length to
the last block. The resultant last block (after all paddings) is denoted by M,,.
Then, the hash function applies a collision free function A on each of the blocks
sequentially.

Message Length

v > H > H > H > H > H |—| H |—» H —»OUtpUt

The function H takes as inputs the result of the application of H on the previous
block (or a fixed initial value in the first block), and the block itself, and results
with a hash value. The hash value is an input to the application of H on the
next block.
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Hash Functions (cont.)

The result of H on the last block is the hashed value of the message h(M).

hy = IV = a fixed initial value

hy = H(hgy, M)

hi — H<hi—17Mi>

hn — H<hn—17Mn)
h(M) £ h,
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Hash Functions (cont.)

Theorem: If H is collision free, then also h is collision free.
Proof: By contradiction. Assume the contrary. Thus, either

1. For a given Y, it is possible to find a message M such that h(M) =Y.
In this case also H(h, 1, M,) = Y, and thus H is not collision free.
Contradiction.
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Hash Functions (cont.)

2. It is possible to find two distinct messages M and M* such that
h(M) = h(M~*). Let k be the smallest integer & > 0 such that either
hp—r—1 # h'\ ;. or M,y # M, . In both cases hy,—r = h}._ ,, and
thus H(hp—g—1, M) = H(h'. . M. ), and thus H is not collision
free.

We remain with the case in which one message (without loss of generality)
M* is a postfix of the second message M, and h,:_,, = IV . However, in
this case we actually find H (hy«_p_1, My_,) = IV, which is impossible
for collision free functions. Contradiction.

QED
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Practical Hash Functions

Two approaches for the design of hash functions are:
1. To base the function H on a block cipher.
2. To design a special function H, not based on a block cipher.

The second approach is the more popular nowadays.
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Practical Hash Functions (cont.)

Hash function of the second approach include:

L.
2.
3.
4.

5.

0.

Snefru (128-224 bits) (broken, 1990).

MD4 (128 bits) (broken, 1995).

MD5 (128 bits) (broken, 2004).

The Secure Hash Standard (SHA, SHA-1) (160 bits) (broken, 2004, 2005).

The Secure Hash Standard SHA-224, SHA-256, SHA-384, and SHA-512
(224, 256, 384, 512 bits, respectively)

RIPEMD (160 bits).

7. Tiger (192 bits).

MD5, RIPEMD, and all SHA's are based on the structure of MD4 with various

1mprovements.
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SHA-1

The Secure Hash Standard was designed by the NSA, following the structure
of Rivest’s MD4 and MD5. The first standard was SHA (now called SHA-0).
It was later changed slightly to SHA-1, due to some unknown weakness found
by the NSA.

Step 1: Append padding bits: Given an m-bit message, a single bit “1” is
appended as the m + 1th bit and then (448 — (m + 1)) mod 512 (between 0 and
511) zero bits are appended. As a result, the message becomes 64-bit shy of
being a multiple of 512 bits long.

Step 2: Append length: A 64-bit representation of the message length m is
appended, making the result a multiple of 512 bits long.

The result is divided into 512-bit blocks, denoted by My, Mo, ..., M,.
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SHA-1 (cont.)

Step 3: The five 32-bit words A, B, C, D and E are used to keep the 160-bit
hash values h;.
Their initial value (hg) is (in hexadecimal)

A = 67452301
B = EFCDAB89
(' = 98BADCFE
D = 10325476
FE/ = C3D2E1FO.

Step 4: For each block X = M;, the function H(h;_1, X) is applied on the
previous value of h; = (A, B,C, D, F) and the block. The result remains in
hi = (A,B,C,D, E).

Step 5: The hash value is the 160-bit value h, = (A, B,C, D, F).
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The Function H of SHA-1
1. Divide X = Mi into 16 32-bit words: W(), Wl, WQ, Cee W15.

2. for t = 16 to 79 compute Wy = (W30 Wy s @ W14 B Wi _16) <K 1,
where X << Y (cyclicly) rotates X to the left by Y bits.

Remark: The one-bit rotate in computing W, was not included in SHA,
and is the only difference between SHA and SHA-1.

3. Save A as AA, Bas BB, C asCC, D as DD, and E as FE.

4. Fort =0 to 79 do

(a) T=A<5+ f(B,C,D)+ E+ W, + K,.
(b)) E=D,D=C,C=B<k30,B=A4 A=T.

5. Perfoorm A=A+ AA B=B+BB, C=C+CC,D =D+ DD, and
E = FE + EFE (modulo 2°%).
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The Function H of SHA-1 (cont.)

6. The function f; and the values K; used above are:

0<t<19 fi(X,)Y,Z)=XY V (=X)Z  K;=>5A827999
20<t<39 filX,) YV Z)=XpY DZ K; = 6ED9EBA1
40 <t <h9: fi(X,)Y,Z)=XYVXZVYZ K;=8F1BBCDC
60<t<79 fiX,)YV,Z)=XaYadZ K; = CA62C1D6
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The Function H of SHA-1 (cont.)

AO BQ C() D 0 EO
—
— K
H—H A=
Ki—H
Wl—’EE! <30
H)
— K
FH—HrE
-
W <30
H
I}
Feed Forward
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New Advances in Hash Functions Cryptanalysis

Since 2004, the field of hash functions cryptanalysis has evolved very rapidly.
The trigger to these developments are a series of research papers (by Prof. Xioayun
Wang and her colleagues) which shown new methods to cryptanalyze hash func-
tions.

The first attacks succeeded to completely break the collision-resistance of MD4
and MD5, claim some practical attacks against SHA-0O, and introduce some
theoretical collision attacks against SHA-1.

Since these attacks were developed, many techniques were developed, suggesting
many attacks against specific hash functions, as well as against the Merkle-
Damgard mode of iteration.
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New Advances in Hash Functions Cryptanalysis (cont.)

As a result, a great concern about the security of hash functions (even secure
ones, such as the SHA-2 family), led to the SHA-3 competition, to select “re-
placement” for SHA-1 (besides the SHA-2 family).

In 2008, NIST issued a call for SHA-3, when 64 submissions have been sent at
the end of 2008. 51 of which, were deemed eligible for entering the contest. Out
of these 51, about 27 were broken, and 14 out of unbroken ones were selected to
the second round of the competition. Later (December 2010), 5 finalists were
selected:

e BLAKE (Aummason, Henzen, Meier, Phan)

e Grgstl (Knudsen et al.)

e JH (Wu)

e Keccak (Daemen, Bertoni, Peeters, Van Assche)

e Skein (Schneier et al.)
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New Advances in Hash Functions Cryptanalysis (cont.)

In October 2012 Keccak was selected to be SHA-3, and it is currently under
standardization effort.
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Message Authentication Codes

Message authentication codes (MAC) are used to protect information against
modification. They mix the messages cryptographically under a secret key,
and the result (the MAC) is appended to the message. The receiver can then
recompute the MAC and verify its correctness. It should be impossible for
an attacker to forge a message and still be able to compute the correct MAC
without knowing the secret key.

The purpose is similar to signing messages against forging, however, usually
signature schemes are much slower, and MAC schemes are as fast as symmetric
encryption.
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CBC MAC

One very useful MAC function used in the industry (and adopted by standard

committees) is the CBC-MAC.
This MAC computes a CBC mode on the data (under a key designated for

authentication),

Ci = Ex(M; ® Cj-1),
and takes the last block (or two blocks, or half a block) as the MAC value.
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Example: PCBC MAC

Another MAC which was used by early versions of Kerberos was PCBC, which
was intended to unify encryption and MAC together. (CBC cannot be used for
encryption and MAC with the same key, as forgers can keep the last ciphertext
blocks unchanged; therefore it requires two CBC mode computations: one for
encryption and another for MAC).
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Example: PCBC MAC (cont.)

PCBC is similar to the CBC mode, but also feeds the previous message block
into the next one, increasing the mixing of the data.
PCBC computes

C;=Ex(M; ® M;_1 & C;_q).

M1 Mo M3 Mg Mg

\\ — — — —
T EHA T BTl T B
C1 Co C3 Ca Cs

[t seems that this MAC is even better than the CBC MAC, due to the additional

mixing, that ensures that errors in ciphertext transmission propagate further.
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Example: PCBC MAC (cont.)

However, it was later found that exchanging the order of the ciphertext blocks
(thus modifying the rest of the message blocks in some unpredictable way):

Dg(Ci) @& M; = M;_, & Ci_;.

And thus
M; ® C; = (C; ® Di(C;)) @ M;—; @ Ci—y

from which we get

M, &C,=1Va®» C;®Dg(C)

j=1

where 'V is the initial value (i.e., IV = My & Cy).
From this equation it is easy to see that the order of the ciphertext blocks does
not change the final MAC value.
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MACs Using Hash Functions

MACGCs can be built using hash functions. One such possibility can be to prepend
the key to the message and to hash them together:

MAC1 (M) = H(K|M).

In this construction, it is easy to append data to the end of a message and
predict the MAC of the longer message without knowing the key.
A better solution is

MAC2 (M) = H(K||M| K).

Even better solutions require using the hash function twice.
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HMAC
HMAC is a generic MAC which use an hash function to compute a MAC.

HMAC-Hg (M) = H (K @ opad||H ((K @ ipad)||M)),

where opad is a block of 64 bytes 36, and ipad is a block of 64 bytes 5¢,. It
accepts a variable length key K. to which zeroes are appended to form a full
block.

The instance using a hash function H it is called HMAC-H.

The most known MAC in the HMAC family is HMAC-MD5, which serves as
the standard MAC in the Internet, including in IPSEC. HMAC-SHA-1 is also
used.

Remark: MD5 is similar to SHA-1, but with 4 words only (A, B,C, D),
smaller number of rounds (64), and slightly different round functions.
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