Hash Functions —
MD5 and SHA1

Orr Dunkelman

Computer Science Department

14 March, 2012
Outline

1. The MD5 Hash Function

2. The SHA-1 Hash Function
The MD5 Hash Function

► A successor to MD4, designed by Rivest in 1992 (RFC 1321).
► Takes messages of size up to 2^{64} bits, and generates a digest of size 128 bits.
► Uses the Merkle-Damgård mode of iteration and a compression function (512-bit message block, 128-bit chaining value).
► The compression function is made in a Davies-Meyer mode (transformation of a block cipher into a compression function).
To hash a message M the following steps are performed:

1. M is padded with ‘1’ as many 0’s as needed (up to 512) and the original length of M encoded in 64 bits, such that the length of the padded message $pad(M)$ is divisible by 512.
2. $pad(M)$ is divided into ℓ blocks of 512 bits, i.e.,
 \[pad(M) = m_1, m_2, \ldots, m_\ell. \]
3. The 128-bit chaining value h_0 is initialized.
4. For $i = 1, 2, \ldots, \ell$, $h_i = H(h_{i-1}, m_i)$ (the compression function is applied).
5. The output is h_ℓ
The MD5 IV

- The internal state (chaining value) of MD5, is treated as four words of 32-bit each: A, B, C, D.
- The initial value h_0 is:

\[
A = 67452301_x \\
B = \text{EFCDAB89}_x \\
C = \text{98BADCFE}_x \\
D = \text{10325476}_x
\]

(this initial value is given in a little-endian manner)
The MD5 Compression Function

- Let $h_{i-1} = (A_0, B_0, C_0, D_0)$.
- Let the message block be $M_i = (W_0, W_1, \ldots, W_{15})$
- For $i = 0, 1, \ldots, 63$:
 1. $D_{i+1} \leftarrow C_i$
 2. $C_{i+1} \leftarrow B_i$
 3. $B_{i+1} \leftarrow B_i + (A_i + F_i(B_i, C_i, D_i) + K_i + W_{g(i)}) \ll s_i$
 4. $A_{i+1} \leftarrow D_i$
- $h_i \leftarrow (A_0 + A_{64}, B_0 + B_{64}, C_0 + C_{64}, D_0 + D_{64})$.

All additions are modulo 2^{32}, and \ll stands for rotation to the left.
The MD5 Compression Function

\[
\begin{align*}
A_0 & \quad B_0 \\
C_0 & \quad D_0
\end{align*}
\]

\[
\begin{align*}
K_1 & \quad W_1 \\
s_1
\end{align*}
\]

\[
\begin{align*}
K_i & \quad W_i \\
s_i
\end{align*}
\]

\[f_1 \quad f_i\]

Feed Forward
The MD5 Compression Function (cont.)

- Each round, a different message word is used, a different round constant is used, and a different function and rotations:

 \[
 \begin{align*}
 0 \leq t \leq 15: & \quad f_t(X, Y, Z) = XY \lor (\neg X)Z & g(t) = t \\
 16 \leq t \leq 31: & \quad f_t(X, Y, Z) = XY \lor (\neg Z)X & g(t) = (5 \cdot t + 1) \mod 16 \\
 32 \leq t \leq 47: & \quad f_t(X, Y, Z) = X \oplus Y \oplus Z & g(t) = (3 \cdot t) \mod 16 \\
 48 \leq t \leq 63: & \quad f_t(X, Y, Z) = Y \oplus (X \lor \neg Z) & g(t) = (7 \cdot t) \mod 16
 \end{align*}
 \]

The set of constants \(K_i \) is based on sin:

\[
K_i = \left\lfloor |\sin(i + 1)| \cdot 2^{32} \right\rfloor
\]
The rotation constants (s_i) are

<table>
<thead>
<tr>
<th>Rotation Constants</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 12 17 22 7 12 17 22 7 12 17 22 7 12 17 22</td>
</tr>
<tr>
<td>5 9 14 20 5 9 14 20 5 9 14 20 5 9 14 20</td>
</tr>
<tr>
<td>4 11 16 23 4 11 16 23 4 11 16 23 4 11 16 23</td>
</tr>
<tr>
<td>6 10 15 21 6 10 15 21 6 10 15 21 6 10 15 21</td>
</tr>
</tbody>
</table>
The SHA-1 Hash Function

- Designed by the NSA, following the structure of MD4 and MD5.
- The first standard was SHA (now called SHA-0), first published in 1993.
- Shortly after, it was later changed slightly to SHA-1, due to some unknown weakness found by the NSA.
- Today, the SHA family contains four more hash functions (the SHA-2 family), and in 2012, NIST is expected to select SHA-3.
The SHA-1 Hash Function (cont.)

- SHA-1 is a Merkle-Damgård hash function:
 1. **Padding**: Given an m-bit message, a single bit “1” is appended as the $m + 1$th bit and then $(448 - (m + 1)) \mod 512$ (between 0 and 511) zero bits are appended. As a result, the message becomes 64-bit short of being a multiple of 512 bits long.
 2. **Merkle-Damgård Strengthening**: Append the length: A 64-bit representation of the original length of m is appended, making the result a multiple of 512 bits long.
 3. **Division into Blocks**: The result is divided into 512-bit blocks, denoted by M_1, M_2, \ldots, M_ℓ.
The SHA-1 Hash Function (cont.)

The internal state of SHA-1 is composed of five 32-bit words A, B, C, D and E, used to keep the 160-bit chaining value h_i.

- **Initialization:** The initial value (h_0) is (in hexadecimal)

 $A = 67452301_x$
 $B = EFCDAB89_x$
 $C = 98BADCFE_x$
 $D = 10325476_x$
 $E = C3D2E1F0_x$.

- **Compression:** For each block, the compression function $h_i = H(h_{i-1}, M_i)$ is applied on the previous value of $h_{i-1} = (A, B, C, D, E)$ and the message block.

- **Output:** The hash value is the 160-bit value $h_\ell = (A, B, C, D, E)$.
The Compression Function H of SHA-1

1. Divide M_i into 16 32-bit words: $W_0, W_1, W_2, \ldots, W_{15}$.
2. for $t = 16$ to 79 compute
 $$W_t = (W_{t-3} \oplus W_{t-8} \oplus W_{t-14} \oplus W_{t-16}) \ll 1.$$

Remark The one-bit rotate in computing W_t was not included in SHA, and is the only difference between SHA and SHA-1.
The Compression Function H of SHA-1 (cont.)

3. Set $(A_0, B_0, C_0, D_0, E_0) \leftarrow h_{i-1}$.

4. For $t = 0$ to 79 do
 1. $T = A_t \ll 5 + f_t(B_t, C_t, D_t) + E_t + W_t + K_t$.
 2. $E_{t+1} = D_t$, $D_{t+1} = C_t$, $C_{t+1} = B_t \ll 30$, $B_{t+1} = A_t$, $A_{t+1} = T$.

5. Output $A = A_0 + A_{80}$, $B = B_0 + B_{80}$, $C = C_0 + C_{80}$, $D = D_0 + D_{80}$, and $E = E_0 + E_{80}$ (modulo 2^{32}).

6. The function f_t and the values K_t used above are:

 $0 \leq t \leq 19$: $f_t(X, Y, Z) = XY \lor (\neg X)Z$ \quad $K_t = 5A827999$

 $20 \leq t \leq 39$: $f_t(X, Y, Z) = X \oplus Y \oplus Z$ \quad $K_t = 6ED9EBA1$

 $40 \leq t \leq 59$: $f_t(X, Y, Z) = XY \lor XZ \lor YZ$ \quad $K_t = 8F1BBCDC$

 $60 \leq t \leq 79$: $f_t(X, Y, Z) = X \oplus Y \oplus Z$ \quad $K_t = CA62C1D6$
The Compression Function H of SHA-1 (cont.)