Computer Security Seminar — Lecture 2

Orr Dunkelman

Computer Science Department

15th March, 2015

Outline

- 1 Security Engineering Introduction
 - Motivation
 - Framework
 - Example Airport Security
 - Example A Bank
- 2 Get to Know Your Adversaries
 - Who Acts Adversarially?
 - Why to Act Adversarially?
 - How to Attack?
 - How to Protect?

Computer Security

- Most engineering fields try to optimize:
 - Minimal costs (production, deployment, maintenance),
 - Maximal reuse (chemicals, designs, code snippets),
 - Safety margins,
- Safety margins are the outcome of experience and risk assessment processes:
 - Ground type (the more solid lower safety margins),
 - Risk of earth-quacks (the safer lower safety margins),
 - ► Failure "cost" (less users lower safety margins),
 - Identification of "wear and tear" (easier identification lower safety margins)

Computer Security (cont.)

- Security engineering is very different from typical engineering:
 - ▶ The damage is not caused randomly, but is targeted.
 - ► The adversary is malicious, rather than "randomly distributed" (e.g., in communication systems).
 - ▶ The adversary looks for the weakest link.
 - The adversary may have a great deal of resources at his disposal.
- ▶ In addition, the risk assessment process is biased.
 - We have very little experience with the effects of failed security mechanisms,
 - ▶ The economic incentives are not always aligned correctly.
 - ► The working environments of running code changes, leaving "internal" systems open to the "world".
 - Security engineering not a very common practice.

Security Engineering

- Building dependable systems in face of malice, error, or mischance.
- Composed of tools, processes, and methods for:
 - Design,
 - Implementation,
 - Testing,
 - Auditing,
 - Adaptation,
- to target a varying set of attacks and adversaries.

The Security Engineering Framework

- Policy the intended outcome (security level).
- Mechanism how to achieve the security level.
- ▶ Assurance the trust needed from each mechanism.
- Incentives motivating the entities in the "world".

Example — Airport Security

- ▶ The 9/11 success was due to policy failure (small knives were allowed through security at that time).
- The policy has changed to ban knives.
- Now, the policy has changed to ban many "possible" weapons (e.g., umbrellas, liquids).
- ▶ Of course, even a good policy does not cover all cases.
- Moreover, airport security prefers to "err" to the safe side.
- Obviously, this approach is wrong.
- ▶ As noted by Freakonimcs writers, the total time wasted in these security checks is equivalent to the lives of several tens of people a year. . .
- ► Which makes the 6–8 billion US\$/year spent by the TSA a huge waste.

Example — Airport Security (cont.)

- Other good policies/mechanisms would be:
 - 1 Fortify the cockpits (one time investment).
 - Quarding airports at night.
 - 3 True identification of flyers (and maintaining a database of true suspects).
 - Profiling identifying which person is more of a threat.
- However, political, psychological, and moral issues, tend to interfere with these policies.

The Security Evaluation Process

- ► To define the policies, we first need to identify the threat model:
 - What are the assets to protect,
 - What are the possible threats (and their probabilities),
 - What are the risks which arise from these threats,
 - Who is the adversary, and what resources he has at his disposal,
 - What is the "security budget" (purchase, training, maintenance, interference with usability, etc.)
 - What are the impacts of applying the policies.
- ▶ Usually the threats are organized in *attack vectors*, which identify the weakness source, and the adversarial plan.

The Security Evaluation Process — Threats

- Confidentiality, secrecy, and privacy obtaining access to restricted information.
- Integrity changing values or system behavior by unauthorized entities.
- Availability preventing access from authorized entities.
- ▶ Destruction disabling resources.
- Money stealing/laundering/hiding performing illegal/illegitimate actions with money (or equivalent tokens).

Security Analysis of a Typical Bank

- Identify the systems in use:
 - Bookkeeping system (teller, branch, county, bank).
 - Automatic teller machine systems.
 - Website (information, promotional, users' accounts).
 - Messaging systems (between branches, banks, stock exchange, etc.)
 - Alarms in branches.
 - ▶ Identification (account holders, personal, safes).

Threats on the Bookkeeping System

- ► Tellers:
 - "Creative" transaction registration,
 - Report faulty loses in case of a bank robbery,
 - "Manipulating" account holders,
- Accountants:
 - "Creative" transaction registration,
 - Embezzlement,
- Loan agents: Abusing credit supplied by bank,
- Bookkeeping software developer/system personal:
 - Installation of backdoors in software/system,
 - Collaboration with other fraudulent individuals,
 - Obtaining access codes of other users in the system,

Threats on the Automated Teller Machines

- "Insiders":
 - Developer/system personal,
 - Bank agents (abusing new bank cards),
- Account holders: Reporting "unsuccessful" withdrawals.
- Crooks:
 - Stealing bank cards and PINs,
 - Mugging,
 - Rouge ATM machines deployment,
 - Stealing an ATM machine.

Who are the Adversaries?

Everyone!

- Users and insiders.
- "Old school" hackers.
- Script Kiddies.
- Criminals.
- Terrorists.
- Countries and superpowers.

Why to Hack/Attack?

- ► Fun.
- Money.
- Espionage (business/intelligence).
- Causing damage.
- Reputation (as an attacker).
- Hurting reputation (as a defender).
- Instantiating fear.
- Cyber warfare.

How to Attack?

- Social engineering.
- Wiretapping.
- Manipulating communications.
- Manipulating data (at transit or at rest).
- Physical entry/Inside access.
- ► The use of malware (viruses, Trojan horses, worms, ...).
- (Distributed) Denial of Service.
- Spam.
- Targeted attacks.

How to Protect?

- Physical security.
- Authentication and identification.
- Security protocols.
- Cryptographic tools.
- Security products (firewalls, proxies, ...).
- Audit trials.
- Redundancy.
- Virtualization.
- Access control.
- Failsafe design methodologies.
- Awareness.
- Penetration testing.