MULTILATERAL SECURITY

Based on chapter 9 of “Security Engineering” by Ross Anderson

Presenter: Omer Paparo – עומר פפורו
Outline

- Introduction
- Motivation
- Data flow models
 - Compartmentation and the lattice model
 - The Chinese wall model
 - The British Medical Association (BMA) model
- Inference control
 - What is Inference control?
 - Control types
 - Limitations of generic approaches
- The residual problem
- Summary
What is multilateral security?

- In one sentence: controlling information flow across a database or shared data
 - Ideally, anyone will have access to exactly what he needs, and nothing more
 - This is not so easy, as we will see
- Centralization of systems makes this issue critical

Credit: “Security Engineering” by Ross Anderson
The many faces of our adversary

• Loss of sensitive information is dangerous
 • Medical, intelligence, individuals’ private information is sensitive

• Motivation of attacker can vary
 • Military superiority, commercial use, blackmail and even worse

• Adversary types
 • An individual inside an organization
 • An individual outside of organization that used a policy exploit

• Attacks
 • Countless. Comes in all sizes, shapes and colors
Compartmentation and the lattice model

- Problem: Clearance levels just are not enough
 - Add codewords
- Basic idea: accessing the information requires both clearance and membership in the suitable group
 - Information flows in a lattice like manner
 - Each two nodes A, B can be in a dominance relation, A > B or B > A, but they do not have to be
An individual from compartment A may access information from compartment B if and only if A dominates B.

Credit: “Security Engineering” by Ross Anderson
Compartmentation and the lattice model – continued

• Issues:
 • Data derived from two compartments effectively creates a third compartment
 • Information sharing or searching becomes a hard task
 • Needs additional information on how to sanitize subjects with high clearance back to lower compartments

Credit: datamining.typepad.com
The Chinese wall model

- Problem: Some services firms provides services to companies or organizations that are in competition
 - Need to prevent conflict of interests inside the firm
- Solution: Chinese walls
The Chinese wall model – continued

- Chinese walls: rules to prevent conflicts of interests
 - E.g., a partner who has worked recently for one company in a business sector may not see the papers of any other company in that sector

Credit: alpenrosewealth.com
The Chinese wall model – continued

- This can raise interesting questions
 - Is two competing companies A and B are both clients of the same investment bank, is B’s data truly inaccessible to A?
 - Maybe they can gather information from side channels?
The British medical association (BMA) model

• Threat model:
 • Medical information is often quite controversial
 • Needs to be available on one hand (especially on emergencies)
 • Can be very sensitive on the other hand
 • Also, use secondary uses can have privacy and ethical issues
 • Centralization is a double-edge sword
 • more and more public agencies will come up with arguments why they need access to the data

Credit: communityhealthpartnership.co.uk
Introduction

Motivation

Data flow models

Inference control

Residual problem

Summary

The British medical association (BMA) model – continued

• Security policy first solution attempt: multilevel
 • E.g., AIDS database would be secret, patient records are classified, drug prescriptions are restricted
 • Based on a single Electronic Patient Record (EPR)
 • This had several problems:
 • The levels division is not always a clean cut
 • Single EPR is often not a good idea

Credit: wikipedia.org
The British medical association (BMA) model – continued

- **Security policy outline:**
 - Patient consent to information access is mandatory
 - Prevent too many people from getting access to too many identifiable records

- **Basic principles:**
 - Each patient will have several records
 - Each record has an access control list
 - Every change in the access list must be approved by the patient
 - There shall be effective measures to prevent the aggregation of personal health information

Credit: wikipedia.org
Arstechnica.com
What is inference control?

- Medical information, for example, is often released for research purposes
 - Information needs to be anonymous
 - Remove names and other identifiers, this should be enough!
 - Nope
- Inference is the ability to deduce information
 - From the given database alone or combined with another
- Of course, we do not want to restrict the queries more than needed
Control types

• Query set size control
 • E.g., specify a minimum query size

• Trackers control
 • Solving this issue involves serious restrictions on the queries

• More sophisticated query controls
 • E.g., ‘n-respondent, k%-dominance rule’

<table>
<thead>
<tr>
<th>Person</th>
<th>Drugs bought</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>55</td>
</tr>
<tr>
<td>B</td>
<td>32</td>
</tr>
<tr>
<td>C</td>
<td>16</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
</tr>
</tbody>
</table>

For n=3 and k=75, the answer for the query “Total number of drugs bought” (=112) will be rejected
Control types – continued

- **Cell suppression:**
 - E.g.,

<table>
<thead>
<tr>
<th>Major:</th>
<th>Biology</th>
<th>Physics</th>
<th>Chemistry</th>
<th>Geology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology</td>
<td>–</td>
<td>16</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>Physics</td>
<td>7</td>
<td>–</td>
<td>32</td>
<td>18</td>
</tr>
<tr>
<td>Chemistry</td>
<td>33</td>
<td>41</td>
<td>–</td>
<td>2</td>
</tr>
<tr>
<td>Geology</td>
<td>9</td>
<td>13</td>
<td>6</td>
<td>–</td>
</tr>
</tbody>
</table>

Credit: “Security Engineering” by Ross Anderson

<table>
<thead>
<tr>
<th>Major:</th>
<th>Biology</th>
<th>Physics</th>
<th>Chemistry</th>
<th>Geology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology</td>
<td>–</td>
<td>blanked</td>
<td>17</td>
<td>blanked</td>
</tr>
<tr>
<td>Physics</td>
<td>7</td>
<td>–</td>
<td>32</td>
<td>18</td>
</tr>
<tr>
<td>Chemistry</td>
<td>33</td>
<td>blanked</td>
<td>–</td>
<td>blanked</td>
</tr>
<tr>
<td>Geology</td>
<td>9</td>
<td>13</td>
<td>6</td>
<td>–</td>
</tr>
</tbody>
</table>

Credit: “Security Engineering” by Ross Anderson
Control types – continued

- Maximum order control
 - Limit the number of attributes in a query
 - Reject queries that would partition the sample population into too many sets

- Query overlap control

- Randomization
 - Perturbation
 - Random sample queries
Limitations of generic approaches

- Specific applications will have specific inference attacks
 - E.g., a system used for analyzing trends in drug prescribing

<table>
<thead>
<tr>
<th>Week:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doctor A</td>
<td>17</td>
<td>26</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>Doctor B</td>
<td>25</td>
<td>31</td>
<td>9</td>
<td>29</td>
</tr>
<tr>
<td>Doctor C</td>
<td>32</td>
<td>30</td>
<td>39</td>
<td>27</td>
</tr>
<tr>
<td>Doctor D</td>
<td>16</td>
<td>19</td>
<td>18</td>
<td>13</td>
</tr>
</tbody>
</table>

Sample of de-identified drug prescribing data

Credit: “Security Engineering” by Ross Anderson

- The general case is harder

- Active attacks
 - Where users have the ability to insert or delete records into the database
The residual problem

- Ok, so we know what data to protect
- We know good ways to protect it
 - In the immediate context, such as an hospital for medical data
 - In the secondary context, such as for research
The residual problem - continued

- But we have many real-life problems
 - Determining the sensitivity level of the information
 - Excluding single points of failure
 - Other problems dictated by real needs
 - E.g., processing medical claims for payment by the insurance companies

Credit: Dilbert.com
Summary

• Sensitive information is priceless

• Multilateral security has many sides and aspects
 • Attacks types are countless and keep evolving, especially when it comes to inference attacks

• When it comes to designing a multilateral security policy, it is almost impossible to create a watertight solution
 • Still, we must not give up
Questions?