Top Tree Compression of Tries

Philip Bille, Pawel Gawrychowski,
Inge Li Ggrtz, Gad M. Landau,
Oren Weimann

Goals

Compressed representation of tries

A Trie (Fredkin 1960) - k strings
abab acd bacde bacx

O
o
0]
Oa/) d/O AN
o PO s
O e/Q O

O

Goals

Compressed representation of tries

Given a pattern string P of length m determines if P is a prefix of
one of the strings

aba acx
O @ &
R
0]
03/3 d/O N
Za @ x
O O O

Results

Set of strings S=5,,...,S, of total length n Pointer Machine
Alphabet of size o

Compressed data structure (worst-case optimal)
size O(n/log, n)

Query time:
O(min(m log 6, m + log n)) (A tight Lower Bound

Tools

Top Trees (Alstrup, Holm, De Lichtenberg, Thorup 2005)
DAG compression of trees
Karp-Rabin Fingerprints

The Pointer Machine Model

A directed graph with bounded out-degree.
Each node contains a constant number of data fields or

pointer to other nodes.
Algorithms must access the data structure by traversing

the graph.

Using Repetitions to Compress Trees

* Input. Labeled, ordered, rooted tree T with N nodes
over an alphabet of size o.
* Goal. Compress T to:
* Take advantage of repetitions (tree pattern repeats)
e Obtain good guarantees on compression ratio.

» Support efficient navigation (access, parent, depth,
height, size, LCA, ...)

DAG Compression of Trees

* Merge subtree repeats into directed acyclic graph (DAG) representing T.
* Takes advantage of subtree repeats but not tree pattern repeats.

DAG Compression of Trees

DAG Compression of Trees

* Smallest DAG is unique.
* We can build smallest DAG in O(N) time [Downey, Sethi, Tarjan 1980]

* Smallest DAG can be exponentially smaller than N, but may not
compress at all.

e We can support navigational operations in O(log N) time [Bille,L.,
Raman, Sadakane, Satti, Weimann 2011]

* Popular for XML compression. See e.g. [Buneman, Grohe, Koch 2003]
[Frick, Grohe, Koch 2003]

Clustering and Top Trees

1 2 3 4 5
* Cluster is a connected subgraph of T, overlapping in 1 or 2 boundary nodes.

e 2 Clusters can be merged to form new cluster.
* Top tree = tree of clusters.

Creating the Top Tree

@ @9 @9 @9 @ @9 @b @b @ @ @b 62 @b @9 @ @9 @I @

Ilteration 1

Ilteration 1

@ @9 @2 @9 @ @9 @b @b @ @ @b @9 €9 @ @ @9 @I @

Ilteration 2

N R S 8
@ @ B @ @ b @ @ @ @ @D @

Ilteration 2

Thabodn oo
@ @ B @ b @ @ @ @ oD@

Iteration 3

@ © @ @
@ @/@@ OSERO @)

Ilteration 4

Ilteration 5

Ilteration 6

Ilteration 7/

(2) (2) (2)
2) (3 (1) 2)
(4) (5 (4) (4) (1) (4)

Top Tree Properties

* Top tree is a binary tree.
* Clusters size increase at each level by a factor of at most 2.

e Constructing and size of the top tree is O(N), its height is O(log N)
(Alstrup et al.).

Top Tree Compression

* DAG compress top tree

* Top tree compression may be viewed as transformation of the input
tree into another tree (which compresses well and supports fast
navigation).

Top DAG has size at most O(N /logs N). (Dudek and Gawrychowski)
Intuition.
ldentical clusters in top tree are merged in top DAG.

= All clusters encoded in top DAG are unique.

Top Tree Compression Of Tries

Given a pattern string P of length m determines if P is a prefix of
one of the strings
aba acx

@, &

O
i

, O %O
SN
b O
>/
O O O

Randomized Monte-
Carlo word RAM solution

Karp-Rabin Fingerprints

d(x) = Z X[i] - ¢"mod p
C —is a randomly chosen positive integer
P — prime

Let x =yz

Given any two of ¢(x), d(y) and P(z) it is possible to calculate the
remaining fingerprint in constant time.

Compressed Pattern Matching
i
5 AR
1 2 3 4 5

Case 1: A leaf cluster. Let e be the edge stored in C. We compare PJ[i + 1] with the
label of e.

Case 2: 3,4,5. Let A and B be the left and right child of C, respectively. We
compare P[i + 1] with the label a of the edge to the rightmost child of A. If P[i + 1]
< a, we continue the search in A for P[i+1...m]. Otherwise, we continue the
search in B for P[i+1...m].

Compressed Pattern Matching
i
5 AR
1 2 3 4 5

Case 3:1,2. Let A and B be the left and right child of C, respectively.
If|spine(A)| > m — i we continue the search in A for P[i + 1...m]. Otherwise, we
compare the fingerprint.

Compressed Pattern Matching

Given a pattern string P of length m determines if P is a prefix of
one of the strings

Pointer Machine model,
Deterministic algorithm

Time Complexity - O(min(m log 6, m + logn))

A Tight Lower Bound

Theorem: any structure storing a set S of strings of total length n over an

alphabet of size o needs to perform Q(min(m+log n, m log o)) comparisons to
decide if a given pattern of length m belongs to S.

* Note that the bound holds regardless of the size of the structure

Proof: by showing that any comparison-based algorithm that given P checks if

. Pli] = 0 (mod 2) needs to perform Q(min(m+logn, m log o))

comparisons in the worst case.

Conclusion

Find new uses of top tree compression to solve problems faster or with less
space.

Thanks

