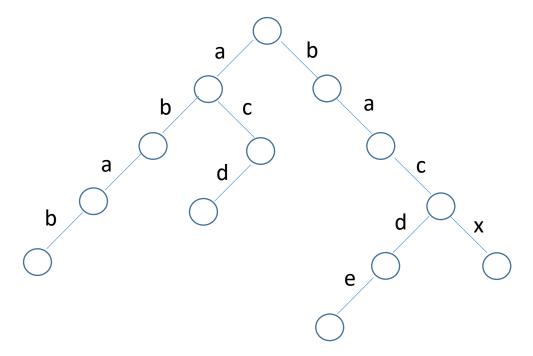
Top Tree Compression of Tries

Philip Bille, Pawel Gawrychowski, Inge Li Gørtz, Gad M. Landau, Oren Weimann

Goals

Compressed representation of tries

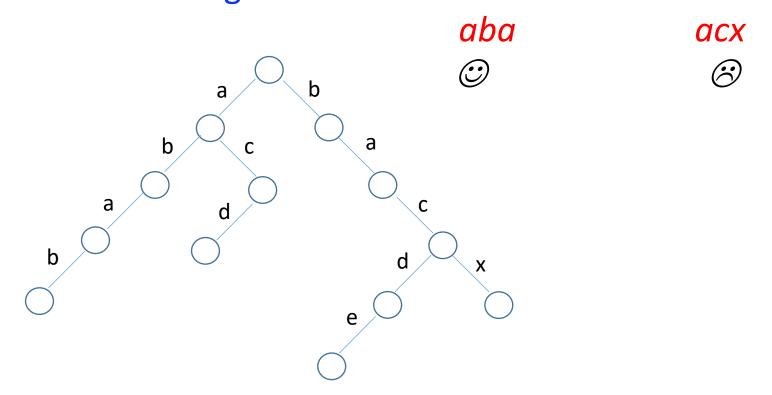
A Trie (Fredkin 1960) - k strings abab acd bacde bacx



Goals

Compressed representation of tries

Given a pattern string *P* of length *m* determines if P is a prefix of one of the strings



Results

Set of strings $S = S_1,...,S_k$ of total length nAlphabet of size σ Pointer Machine

Compressed data structure (worst-case optimal) size $O(n/\log_{\sigma} n)$

Query time:

O(min(m log σ , m + log n)) (A tight Lower Bound)

Lempel Ziv

Tools

Top Trees (Alstrup, Holm, De Lichtenberg, Thorup 2005) DAG compression of trees Karp-Rabin Fingerprints

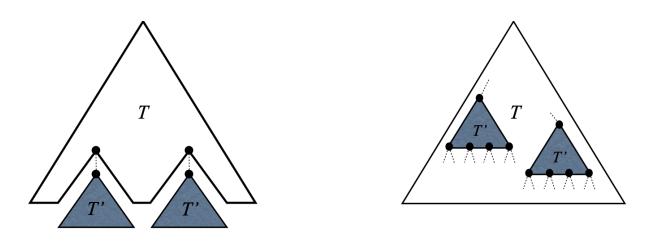
The Pointer Machine Model

A directed graph with bounded out-degree.

Each node contains a constant number of data fields or pointer to other nodes.

Algorithms must access the data structure by traversing the graph.

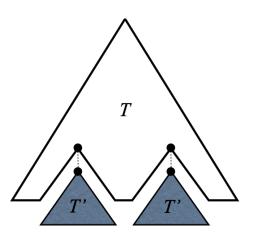
Using Repetitions to Compress Trees



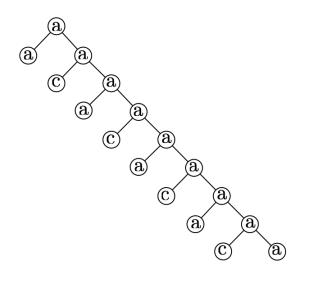
- Input. Labeled, ordered, rooted tree T with N nodes over an alphabet of size σ .
- Goal. Compress T to:
 - Take advantage of repetitions (tree pattern repeats)
 - Obtain good guarantees on compression ratio.
 - Support efficient navigation (access, parent, depth, height, size, LCA, ...)

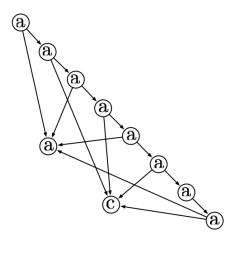
DAG Compression of Trees

- Merge subtree repeats into directed acyclic graph (DAG) representing T.
- Takes advantage of subtree repeats but not tree pattern repeats.



DAG Compression of Trees

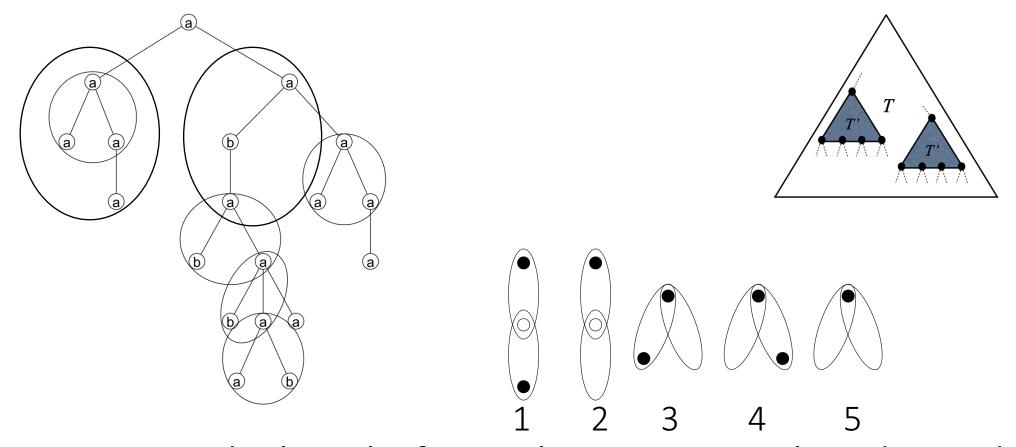




DAG Compression of Trees

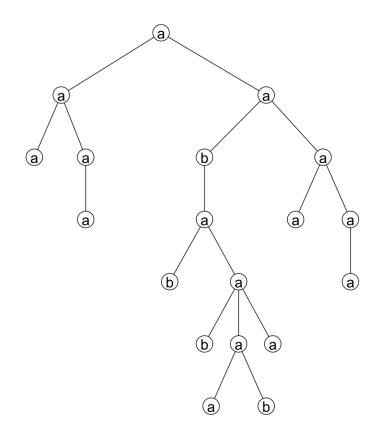
- Smallest DAG is unique.
- We can build smallest DAG in O(N) time [Downey, Sethi, Tarjan 1980]
- Smallest DAG can be exponentially smaller than N, but may not compress at all.
- We can support navigational operations in O(log N) time [Bille,L., Raman, Sadakane, Satti, Weimann 2011]
- Popular for XML compression. See e.g. [Buneman, Grohe, Koch 2003] [Frick, Grohe, Koch 2003]

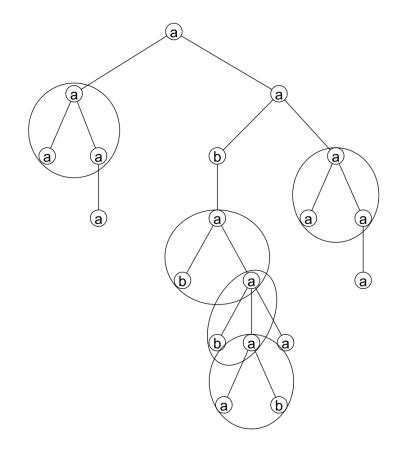
Clustering and Top Trees

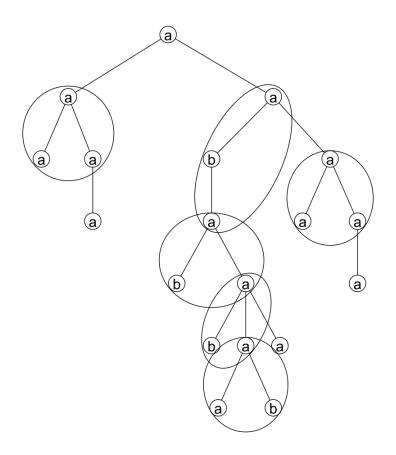


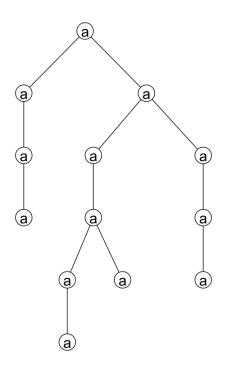
- Cluster is a connected subgraph of T, overlapping in 1 or 2 boundary nodes.
- 2 Clusters can be *merged* to form new cluster.
- Top tree = tree of clusters.

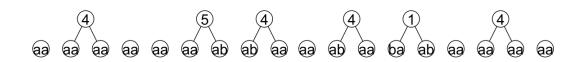
Creating the Top Tree

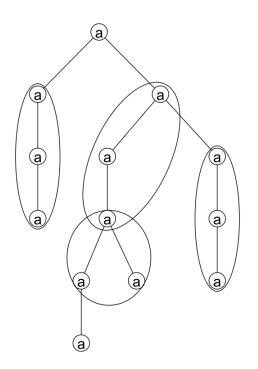


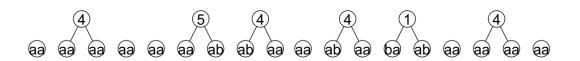


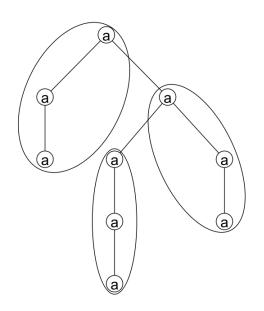


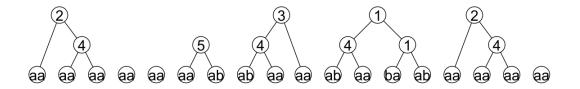


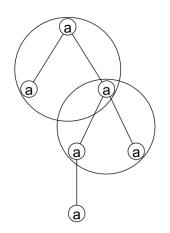


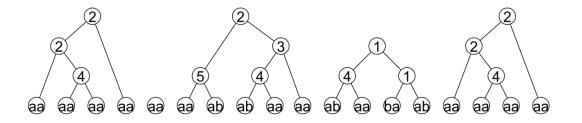


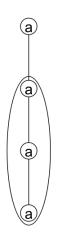


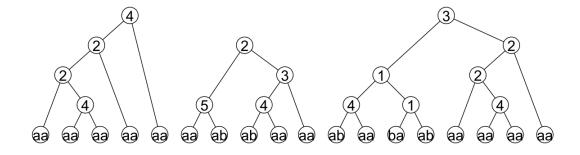


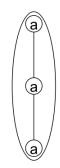


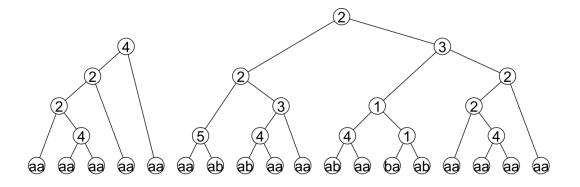


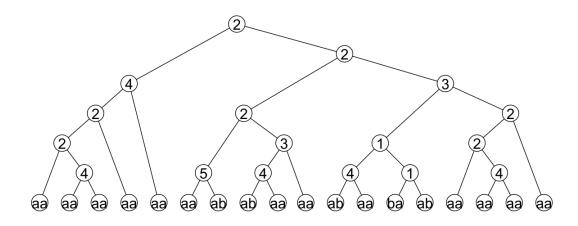












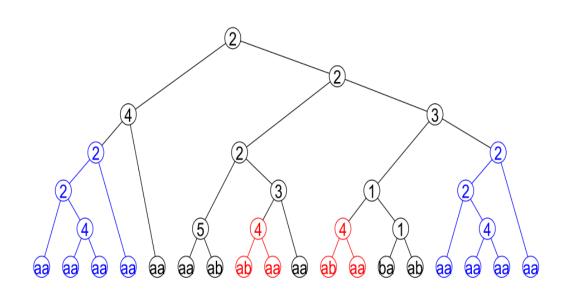
Top Tree Properties

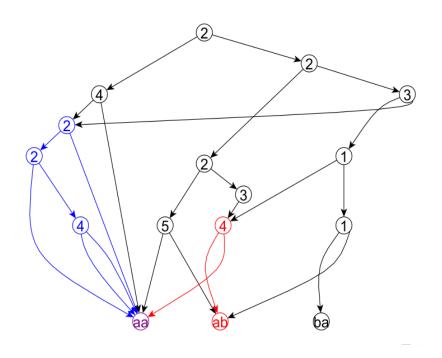
- Top tree is a binary tree.
- Clusters size increase at each level by a factor of at most 2.
- Constructing and size of the top tree is O(N), its height is O(log N)
 (Alstrup et al.).

Top Tree Compression

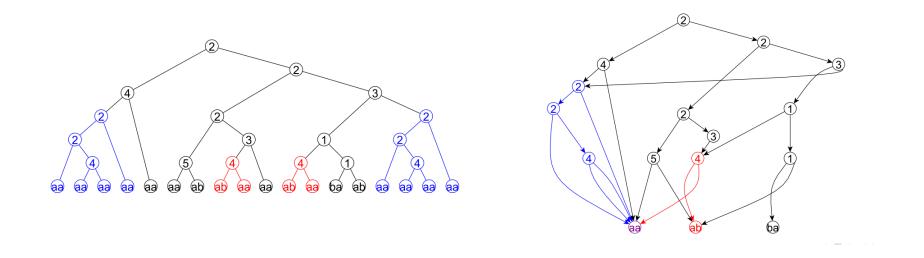
- DAG compress top tree
- Top tree compression may be viewed as *transformation* of the input tree into another tree (which compresses well and supports fast navigation).

Top DAG





Top DAG



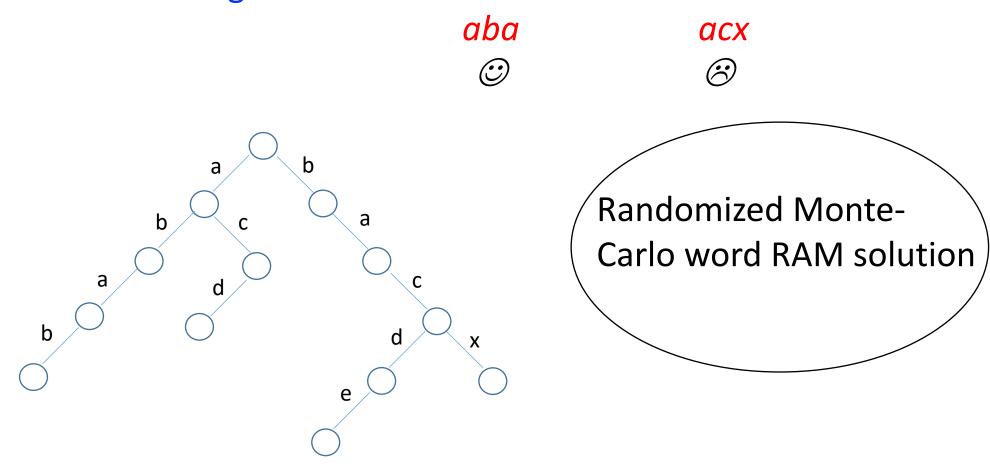
Top DAG has size at most $O(N / log_{\sigma} N)$. (Dudek and Gawrychowski) Intuition.

Identical clusters in top tree are merged in top DAG.

⇒ All clusters encoded in top DAG are unique.

Top Tree Compression Of Tries

Given a pattern string *P* of length *m* determines if P is a prefix of one of the strings



Karp-Rabin Fingerprints

$$\phi(x) = \sum_{i=1}^{|x|} x[i] \cdot c^{i} \mod p$$

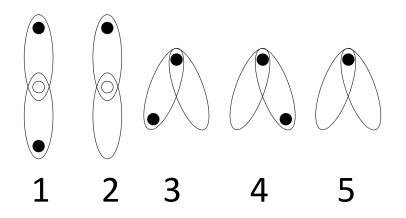
C – is a randomly chosen positive integer

P – prime

Let x = yz

Given any two of $\phi(x)$, $\phi(y)$ and $\phi(z)$ it is possible to calculate the remaining fingerprint in constant time.

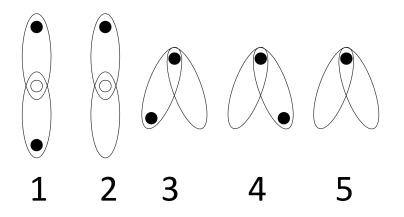
Compressed Pattern Matching



Case 1: A leaf cluster. Let e be the edge stored in C. We compare P[i + 1] with the label of e.

Case 2: 3,4,5. Let A and B be the left and right child of C, respectively. We compare P[i + 1] with the label α of the edge to the rightmost child of A. If P[i + 1] $\leq \alpha$, we continue the search in A for P[i+1...m]. Otherwise, we continue the search in B for P[i+1...m].

Compressed Pattern Matching



Case 3: 1,2. Let A and B be the left and right child of C, respectively. If |spine(A)| > m - i we continue the search in A for P[i + 1...m]. Otherwise, we compare the fingerprint.

Compressed Pattern Matching

Given a pattern string *P* of length *m* determines if P is a prefix of one of the strings

Pointer Machine model,

Deterministic algorithm

Time Complexity - $O(min(m \log \sigma, m + \log n))$

A Tight Lower Bound

<u>Theorem</u>: any structure storing a set S of strings of total length n over an alphabet of size σ needs to perform $\Omega(\min(m+\log n, m\log \sigma))$ comparisons to decide if a given pattern of length m belongs to S.

* Note that the bound holds regardless of the size of the structure

Proof: by showing that any comparison-based algorithm that given P checks if $\sum_{i=1}^{m} P[i] = 0 \pmod{2}$ needs to perform $\Omega(\min(m+\log n, m \log \sigma))$ comparisons in the worst case.

Conclusion

Find new uses of top tree compression to solve problems faster or with less space.

Thanks