
Top Tree Compression of Tries

Philip Bille, Pawel Gawrychowski,
Inge Li Gørtz, Gad M. Landau,

Oren Weimann

Goals
Compressed representation of tries

A Trie (Fredkin 1960) - k strings
abab acd bacde bacx

a

a

a

b

b

b

c

c

d

d

e

x

Goals
Compressed representation of tries

Given a pattern string P of length m determines if P is a prefix of
one of the strings

aba acx
J L

a

a

a

b

b

b

c

c

d

d

e

x

Results

Set of strings S = S1,...,Sk of total length n
Alphabet of size σ

Compressed data structure (worst-case optimal)
size O(n/logσ n)

pointer machine Pointer Machine

Lempel ZivaaQuery time:
O(min(m log σ , m + log n)) (A tight Lower Bound)

Tools

Top Trees (Alstrup, Holm, De Lichtenberg, Thorup 2005)
DAG compression of trees
Karp-Rabin Fingerprints

The Pointer Machine Model

A directed graph with bounded out-degree.
Each node contains a constant number of data fields or
pointer to other nodes.
Algorithms must access the data structure by traversing
the graph.

• Input. Labeled, ordered, rooted tree T with N nodes
over an alphabet of size σ.
• Goal. Compress T to:
• Take advantage of repetitions (tree pattern repeats)
• Obtain good guarantees on compression ratio.
• Support efficient navigation (access, parent, depth,

height, size, LCA, ...)

Using Repetitions to Compress Trees

DAG Compression of Trees

• Merge subtree repeats into directed acyclic graph (DAG) representing T.
• Takes advantage of subtree repeats but not tree pattern repeats.

DAG Compression of Trees

• Smallest DAG is unique.
• We can build smallest DAG in O(N) time [Downey, Sethi, Tarjan 1980]
• Smallest DAG can be exponentially smaller than N, but may not

compress at all.
• We can support navigational operations in O(log N) time [Bille,L.,

Raman, Sadakane, Satti, Weimann 2011]
• Popular for XML compression. See e.g. [Buneman, Grohe, Koch 2003]

[Frick, Grohe, Koch 2003]

DAG Compression of Trees

• Cluster is a connected subgraph of T, overlapping in 1 or 2 boundary nodes.
• 2 Clusters can be merged to form new cluster.
• Top tree = tree of clusters.

Clustering and Top Trees

1 2 3 4 5

Creating the Top Tree

Iteration 1

Iteration 1

Iteration 2

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Iteration 6

Iteration 7

Top Tree Properties

• Top tree is a binary tree.
• Clusters size increase at each level by a factor of at most 2.
• Constructing and size of the top tree is O(N), its height is O(log N)

(Alstrup et al.).

Top Tree Compression

• DAG compress top tree
• Top tree compression may be viewed as transformation of the input

tree into another tree (which compresses well and supports fast
navigation).

Top DAG

Top DAG has size at most O(N /logσ N). (Dudek and Gawrychowski)
Intuition.
Identical clusters in top tree are merged in top DAG.
⇒ All clusters encoded in top DAG are unique.

Top DAG

Top Tree Compression Of Tries
Given a pattern string P of length m determines if P is a prefix of
one of the strings

aba acx
J L

a

a

a

b

b

b

c

c

d

d

e

x

pointer machine RRRA
Randomized Monte-
Carlo word RAM solution

Karp-Rabin Fingerprints

φ(x) = ∑#$%
|'| x[i] · ci mod p

C – is a randomly chosen positive integer
P – prime

Let x = yz
Given any two of φ(x), φ(y) and φ(z) it is possible to calculate the
remaining fingerprint in constant time.

1 2 3 4 5

Compressed Pattern Matching

Case 1: A leaf cluster. Let e be the edge stored in C. We compare P[i + 1] with the
label of e.

Case 2: 3,4,5. Let A and B be the left and right child of C, respectively. We
compare P[i + 1] with the label α of the edge to the rightmost child of A. If P[i + 1]
≤ α, we continue the search in A for P[i+1...m]. Otherwise, we continue the
search in B for P[i+1...m].

1 2 3 4 5

Compressed Pattern Matching

Case 3: 1,2. Let A and B be the left and right child of C, respectively.
If|spine(A)| > m − i we continue the search in A for P[i + 1...m]. Otherwise, we
compare the fingerprint.

Compressed Pattern Matching
Given a pattern string P of length m determines if P is a prefix of
one of the strings

Pointer Machine model,

Deterministic algorithm

Time Complexity - O(min(m log σ , m + logn))

A Tight Lower Bound
Theorem: any structure storing a set S of strings of total length n over an
alphabet of size σ needs to perform Ω(min(m+log n, m log σ)) comparisons to
decide if a given pattern of length m belongs to S.

* Note that the bound holds regardless of the size of the structure

Proof: by showing that any comparison-based algorithm that given P checks if
∑#$%() * = 0 (./0 2) needs to perform Ω(min(m+logn, m log σ))
comparisons in the worst case.

Find new uses of top tree compression to solve problems faster or with less
space.

Conclusion

Thanks

