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Goals

Compressed representation of tries

A Trie (Fredkin 1960) - k strings
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Goals

Compressed representation of tries

Given a pattern string P of length m determines if P is a prefix of
one of the strings
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Results

Set of strings S=5,,...,S, of total length n Pointer Machine
Alphabet of size o

Compressed data structure (worst-case optimal)
size O(n/log, n)

Query time:
O(min(m log 6, m + log n)) (A tight Lower Bound



Tools

Top Trees (Alstrup, Holm, De Lichtenberg, Thorup 2005)
DAG compression of trees
Karp-Rabin Fingerprints



The Pointer Machine Model

A directed graph with bounded out-degree.
Each node contains a constant number of data fields or

pointer to other nodes.
Algorithms must access the data structure by traversing

the graph.



Using Repetitions to Compress Trees

* Input. Labeled, ordered, rooted tree T with N nodes
over an alphabet of size o.
* Goal. Compress T to:
* Take advantage of repetitions (tree pattern repeats)
e Obtain good guarantees on compression ratio.

» Support efficient navigation (access, parent, depth,
height, size, LCA, ...)



DAG Compression of Trees

* Merge subtree repeats into directed acyclic graph (DAG) representing T.
* Takes advantage of subtree repeats but not tree pattern repeats.




DAG Compression of Trees




DAG Compression of Trees

* Smallest DAG is unique.
* We can build smallest DAG in O(N) time [Downey, Sethi, Tarjan 1980]

* Smallest DAG can be exponentially smaller than N, but may not
compress at all.

e We can support navigational operations in O(log N) time [Bille,L.,
Raman, Sadakane, Satti, Weimann 2011]

* Popular for XML compression. See e.g. [Buneman, Grohe, Koch 2003]
[Frick, Grohe, Koch 2003]



Clustering and Top Trees

1 2 3 4 5
* Cluster is a connected subgraph of T, overlapping in 1 or 2 boundary nodes.

e 2 Clusters can be merged to form new cluster.
* Top tree = tree of clusters.



Creating the Top Tree
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Ilteration 1




Ilteration 1
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Ilteration 2
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Ilteration 2
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Iteration 3
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Top Tree Properties

* Top tree is a binary tree.
* Clusters size increase at each level by a factor of at most 2.

e Constructing and size of the top tree is O(N), its height is O(log N)
(Alstrup et al.).



Top Tree Compression

* DAG compress top tree

* Top tree compression may be viewed as transformation of the input
tree into another tree (which compresses well and supports fast
navigation).






Top DAG has size at most O(N /logs N). (Dudek and Gawrychowski)
Intuition.
ldentical clusters in top tree are merged in top DAG.

= All clusters encoded in top DAG are unique.



Top Tree Compression Of Tries

Given a pattern string P of length m determines if P is a prefix of
one of the strings
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Randomized Monte-
Carlo word RAM solution




Karp-Rabin Fingerprints

d(x) = Z  X[i] - ¢"mod p
C —is a randomly chosen positive integer
P — prime

Let x =yz

Given any two of ¢(x), d(y) and P(z) it is possible to calculate the
remaining fingerprint in constant time.



Compressed Pattern Matching
i
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Case 1: A leaf cluster. Let e be the edge stored in C. We compare PJ[i + 1] with the
label of e.

Case 2: 3,4,5. Let A and B be the left and right child of C, respectively. We
compare P[i + 1] with the label a of the edge to the rightmost child of A. If P[i + 1]
< a, we continue the search in A for P[i+1...m]. Otherwise, we continue the
search in B for P[i+1...m].



Compressed Pattern Matching
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Case 3:1,2. Let A and B be the left and right child of C, respectively.
If|spine(A)| > m — i we continue the search in A for P[i + 1...m]. Otherwise, we
compare the fingerprint.



Compressed Pattern Matching

Given a pattern string P of length m determines if P is a prefix of
one of the strings

Pointer Machine model,
Deterministic algorithm

Time Complexity - O(min(m log 6, m + logn))



A Tight Lower Bound

Theorem: any structure storing a set S of strings of total length n over an

alphabet of size o needs to perform Q(min(m+log n, m log o)) comparisons to
decide if a given pattern of length m belongs to S.

* Note that the bound holds regardless of the size of the structure

Proof: by showing that any comparison-based algorithm that given P checks if

. Pli] = 0 (mod 2) needs to perform Q(min(m+logn, m log o))

comparisons in the worst case.



Conclusion

Find new uses of top tree compression to solve problems faster or with less
space.
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